zephyr/boards/arm/qemu_cortex_m0/nrf_timer_timer.c

261 lines
6.1 KiB
C

/*
* Copyright (c) 2016-2019 Nordic Semiconductor ASA
* Copyright (c) 2018 Intel Corporation
*
* SPDX-License-Identifier: Apache-2.0
*/
#include <soc.h>
#include <drivers/clock_control.h>
#include <drivers/clock_control/nrf_clock_control.h>
#include <drivers/timer/system_timer.h>
#include <sys_clock.h>
#include <hal/nrf_timer.h>
#include <spinlock.h>
#define TIMER NRF_TIMER0
#define COUNTER_MAX 0xFFFFFFFFUL
#define COUNTER_HALF_SPAN 0x80000000UL
#define CYC_PER_TICK (sys_clock_hw_cycles_per_sec() \
/ CONFIG_SYS_CLOCK_TICKS_PER_SEC)
#define MAX_TICKS ((COUNTER_HALF_SPAN - CYC_PER_TICK) / CYC_PER_TICK)
#define MAX_CYCLES (MAX_TICKS * CYC_PER_TICK)
static struct k_spinlock lock;
static uint32_t last_count;
static uint32_t counter_sub(uint32_t a, uint32_t b)
{
return (a - b) & COUNTER_MAX;
}
static void set_comparator(uint32_t cyc)
{
nrf_timer_cc_set(TIMER, NRF_TIMER_CC_CHANNEL0, cyc & COUNTER_MAX);
}
static uint32_t get_comparator(void)
{
return nrf_timer_cc_get(TIMER, NRF_TIMER_CC_CHANNEL0);
}
static void event_clear(void)
{
nrf_timer_event_clear(TIMER, NRF_TIMER_EVENT_COMPARE0);
}
static void int_disable(void)
{
nrf_timer_int_disable(TIMER, NRF_TIMER_INT_COMPARE0_MASK);
}
static void int_enable(void)
{
nrf_timer_int_enable(TIMER, NRF_TIMER_INT_COMPARE0_MASK);
}
static uint32_t counter(void)
{
nrf_timer_task_trigger(TIMER,
nrf_timer_capture_task_get(NRF_TIMER_CC_CHANNEL1));
return nrf_timer_cc_get(TIMER, NRF_TIMER_CC_CHANNEL1);
}
/* Function ensures that previous CC value will not set event */
static void prevent_false_prev_evt(void)
{
uint32_t now = counter();
uint32_t prev_val;
/* First take care of a risk of an event coming from CC being set to
* next tick. Reconfigure CC to future (now tick is the furthest
* future). If CC was set to next tick we need to wait for up to 0.5us
* (half of 1M tick) and clean potential event. After that time there
* is no risk of unwanted event.
*/
prev_val = get_comparator();
event_clear();
set_comparator(now);
if (counter_sub(prev_val, now) == 1) {
k_busy_wait(1);
event_clear();
}
/* Clear interrupt that may have fired as we were setting the
* comparator.
*/
NVIC_ClearPendingIRQ(TIMER0_IRQn);
}
/* If settings is next tick from now, function attempts to set next tick. If
* counter progresses during that time it means that 1 tick elapsed and
* interrupt is set pending.
*/
static void handle_next_tick_case(uint32_t t)
{
set_comparator(t + 2U);
while (t != counter()) {
/* already expired, tick elapsed but event might not be
* generated. Trigger interrupt.
*/
t = counter();
set_comparator(t + 2U);
}
}
/* Function safely sets absolute alarm. It assumes that provided value is
* less than MAX_TICKS from now. It detects late setting and also handles
* +1 tick case.
*/
static void set_absolute_ticks(uint32_t abs_val)
{
uint32_t diff;
uint32_t t = counter();
diff = counter_sub(abs_val, t);
if (diff == 1U) {
handle_next_tick_case(t);
return;
}
set_comparator(abs_val);
}
/* Sets relative ticks alarm from any context. Function is lockless. It only
* blocks TIMER interrupt.
*/
static void set_protected_absolute_ticks(uint32_t ticks)
{
int_disable();
prevent_false_prev_evt();
set_absolute_ticks(ticks);
int_enable();
}
void timer0_nrf_isr(void *arg)
{
ARG_UNUSED(arg);
event_clear();
uint32_t t = get_comparator();
uint32_t dticks = counter_sub(t, last_count) / CYC_PER_TICK;
last_count += dticks * CYC_PER_TICK;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
/* protection is not needed because we are in the TIMER interrupt
* so it won't get preempted by the interrupt.
*/
set_absolute_ticks(last_count + CYC_PER_TICK);
}
sys_clock_announce(IS_ENABLED(CONFIG_TICKLESS_KERNEL) ? dticks : (dticks > 0));
}
void sys_clock_set_timeout(int32_t ticks, bool idle)
{
ARG_UNUSED(idle);
uint32_t cyc;
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return;
}
ticks = (ticks == K_TICKS_FOREVER) ? MAX_TICKS : ticks;
ticks = CLAMP(ticks - 1, 0, (int32_t)MAX_TICKS);
uint32_t unannounced = counter_sub(counter(), last_count);
/* If we haven't announced for more than half the 24-bit wrap
* duration, then force an announce to avoid loss of a wrap
* event. This can happen if new timeouts keep being set
* before the existing one triggers the interrupt.
*/
if (unannounced >= COUNTER_HALF_SPAN) {
ticks = 0;
}
/* Get the cycles from last_count to the tick boundary after
* the requested ticks have passed starting now.
*/
cyc = ticks * CYC_PER_TICK + 1 + unannounced;
cyc += (CYC_PER_TICK - 1);
cyc = (cyc / CYC_PER_TICK) * CYC_PER_TICK;
/* Due to elapsed time the calculation above might produce a
* duration that laps the counter. Don't let it.
*/
if (cyc > MAX_CYCLES) {
cyc = MAX_CYCLES;
}
cyc += last_count;
set_protected_absolute_ticks(cyc);
/* FIXME - QEMU requires clearing the events when setting the comparator,
* but the TIMER peripheral HW does not need this. Remove when fixed in
* QEMU.
*/
event_clear();
NVIC_ClearPendingIRQ(TIMER0_IRQn);
}
uint32_t sys_clock_elapsed(void)
{
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
return 0;
}
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = counter_sub(counter(), last_count) / CYC_PER_TICK;
k_spin_unlock(&lock, key);
return ret;
}
uint32_t sys_clock_cycle_get_32(void)
{
k_spinlock_key_t key = k_spin_lock(&lock);
uint32_t ret = counter_sub(counter(), last_count) + last_count;
k_spin_unlock(&lock, key);
return ret;
}
static int sys_clock_driver_init(const struct device *dev)
{
ARG_UNUSED(dev);
/* FIXME switch to 1 MHz once this is fixed in QEMU */
nrf_timer_frequency_set(TIMER, NRF_TIMER_FREQ_2MHz);
nrf_timer_bit_width_set(TIMER, NRF_TIMER_BIT_WIDTH_32);
IRQ_CONNECT(TIMER0_IRQn, 1, timer0_nrf_isr, 0, 0);
irq_enable(TIMER0_IRQn);
nrf_timer_task_trigger(TIMER, NRF_TIMER_TASK_CLEAR);
nrf_timer_task_trigger(TIMER, NRF_TIMER_TASK_START);
if (!IS_ENABLED(CONFIG_TICKLESS_KERNEL)) {
set_comparator(counter() + CYC_PER_TICK);
}
event_clear();
NVIC_ClearPendingIRQ(TIMER0_IRQn);
int_enable();
return 0;
}
SYS_INIT(sys_clock_driver_init, PRE_KERNEL_2,
CONFIG_SYSTEM_CLOCK_INIT_PRIORITY);