zephyr/arch/arm/core/swap.s

224 lines
7.2 KiB
ArmAsm

/* swap.s - thread context switching for ARM Cortex-M */
/*
* Copyright (c) 2013-2014 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
DESCRIPTION
This module implements the routines necessary for thread context switching
on ARM Cortex-M3/M4 CPUs.
*/
#define _ASMLANGUAGE
#include <nanok.h>
#include <offsets.h>
#include <toolchain.h>
#include <nanokernel/cpu.h>
_ASM_FILE_PROLOGUE
GTEXT(_Swap)
GTEXT(__svc)
GTEXT(__pendsv)
GDATA(_NanoKernel)
/*******************************************************************************
*
* __pendsv - PendSV exception handler, handling context switches
*
* The PendSV exception is the only context in the system that can perform
* context switching. When an execution context finds out it has to switch
* contexts, it pends the PendSV exception.
*
* When PendSV is pended, the decision that a context switch must happen has
* already been taken. In other words, when __pendsv() runs, we *know* we have
* to swap *something*.
*
* The scheduling algorithm is simple: schedule the head of the runnable FIBER
* context list, which is represented by _NanoKernel.fiber. If there are no
* runnable FIBER contexts, then schedule the TASK context represented by
* _NanoKernel.task. The _NanoKernel.task field will never be NULL.
*/
SECTION_FUNC(TEXT, __pendsv)
_GDB_STUB_EXC_ENTRY
/* load _Nanokernel into r1 and current tCCS into r2 */
ldr r1, =_NanoKernel
ldr r2, [r1, #__tNANO_current_OFFSET]
/* addr of callee-saved regs in CCS in r0 */
add r0, r2, #__tCCS_preempReg_OFFSET
/* save callee-saved + psp in CCS */
mrs ip, PSP
stmia r0, {v1-v8, ip}
/*
* Prepare to clear PendSV with interrupts unlocked, but
* don't clear it yet. PendSV must not be cleared until
* the new thread is context-switched in since all decisions
* to pend PendSV have been taken with the current kernel
* state and this is what we're handling currently.
*/
ldr ip, =_SCS_ICSR
ldr r3, =_SCS_ICSR_UNPENDSV
/* protect the kernel state while we play with the thread lists */
movs.n r0, #_EXC_IRQ_DEFAULT_PRIO
msr BASEPRI, r0
/* find out incoming context (fiber or task) */
/* is there a fiber ready ? */
ldr r2, [r1, #__tNANO_fiber_OFFSET]
cmp r2, #0
/*
* if so, remove fiber from list
* else, the task is the thread we're switching in
*/
itte ne
ldrne.w r0, [r2, #__tCCS_link_OFFSET] /* then */
strne.w r0, [r1, #__tNANO_fiber_OFFSET] /* then */
ldreq.w r2, [r1, #__tNANO_task_OFFSET] /* else */
/* r2 contains the new thread */
ldr r0, [r2, #__tCCS_flags_OFFSET]
str r0, [r1, #__tNANO_flags_OFFSET]
str r2, [r1, #__tNANO_current_OFFSET]
/*
* Clear PendSV so that if another interrupt comes in and
* decides, with the new kernel state baseed on the new thread
* being context-switched in, that it needs to reschedules, it
* will take, but that previously pended PendSVs do not take,
* since they were based on the previous kernel state and this
* has been handled.
*/
/* _SCS_ICSR is still in ip and _SCS_ICSR_UNPENDSV in r3 */
str r3, [ip, #0]
/* restore BASEPRI for the incoming thread */
ldr r0, [r2, #__tCCS_basepri_OFFSET]
mov ip, #0
str ip, [r2, #__tCCS_basepri_OFFSET]
msr BASEPRI, r0
/* load callee-saved + psp from CCS */
add r0, r2, #__tCCS_preempReg_OFFSET
ldmia r0, {v1-v8, ip}
msr PSP, ip
_GDB_STUB_EXC_EXIT
/* exc return */
bx lr
/*******************************************************************************
*
* __svc - service call handler
*
* The service call (svc) is only used in _Swap() to enter handler mode so we
* can go through the PendSV exception to perform a context switch.
*
* RETURNS: N/A
*/
SECTION_FUNC(TEXT, __svc)
_GDB_STUB_EXC_ENTRY
/*
* Unlock interrupts:
* - in a SVC call, so protected against context switches
* - allow PendSV, since it's running at prio 0xff
*/
eors.n r0, r0
msr BASEPRI, r0
/* set PENDSV bit, pending the PendSV exception */
ldr r1, =_SCS_ICSR
ldr r2, =_SCS_ICSR_PENDSV
str r2, [r1, #0]
_GDB_STUB_EXC_EXIT
/* handler mode exit, to PendSV */
bx lr
/*******************************************************************************
*
* _Swap - initiate a cooperative context switch
*
* The _Swap() routine is invoked by various nanokernel services to effect
* a cooperative context context switch. Prior to invoking _Swap(), the caller
* disables interrupts via irq_lock() and the return 'key' is passed as a
* parameter to _Swap(). The 'key' actually represents the BASEPRI register
* prior to disabling interrupts via the BASEPRI mechanism.
*
* _Swap() itself does not do much.
*
* It simply stores the intlock key (the BASEPRI value) parameter into
* current->basepri, and then triggers a service call exception (svc) to setup
* the PendSV exception, which does the heavy lifting of context switching.
* This is the only place we have to save BASEPRI since the other paths to
* __pendsv all come from handling an interrupt, which means we know the
* interrupts were not locked: in that case the BASEPRI value is 0.
*
* Given that _Swap() is called to effect a cooperative context context switch,
* only the caller-saved integer registers need to be saved in the tCCS of the
* outgoing context. This is all performed by the hardware, which stores it in
* its exception stack frame, created when handling the svc exception.
*
* RETURNS: may contain a return value setup by a call to fiberRtnValueSet()
*
* C function prototype:
*
* unsigned int _Swap (unsigned int basepri);
*
*/
SECTION_FUNC(TEXT, _Swap)
ldr r1, =_NanoKernel
ldr r2, [r1, #__tNANO_current_OFFSET]
str r0, [r2, #__tCCS_basepri_OFFSET]
svc #0
/* r0 contains the return value if needed */
bx lr