zephyr/arch/arm/core/fault.c

415 lines
10 KiB
C

/* fault.c - common fault handler for ARM Cortex-M */
/*
* Copyright (c) 2014 Wind River Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2) Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3) Neither the name of Wind River Systems nor the names of its contributors
* may be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
DESCRIPTION
Common fault handler for ARM Cortex-M processors.
*/
#include <toolchain.h>
#include <sections.h>
#include <cputype.h>
#include <nanokernel.h>
#include <nanokernel/cpu.h>
#include <nanok.h>
#ifdef CONFIG_PRINTK
#include <misc/printk.h>
#define PR_EXC(...) printk(__VA_ARGS__)
#else
#define PR_EXC(...)
#endif /* CONFIG_PRINTK */
#if (CONFIG_FAULT_DUMP > 0)
#define FAULT_DUMP(esf, fault) _FaultDump(esf, fault)
#else
#define FAULT_DUMP(esf, fault) \
do { \
(void) esf; \
(void) fault; \
} while ((0))
#endif
#if (CONFIG_FAULT_DUMP == 1)
/*******************************************************************************
*
* _FaultDump - dump information regarding fault (FAULT_DUMP == 1)
*
* Dump information regarding the fault when CONFIG_FAULT_DUMP is set to 1
* (short form).
*
* eg. (precise bus error escalated to hard fault):
*
* Fault! EXC #3, Thread: 0x200000dc, instr: 0x000011d3
* HARD FAULT: Escalation (see below)!
* MMFSR: 0x00000000, BFSR: 0x00000082, UFSR: 0x00000000
* BFAR: 0xff001234
*
* RETURNS: N/A
*
* \NOMANUAL
*/
void _FaultDump(const NANO_ESF *esf, int fault)
{
int escalation = 0;
PR_EXC("Fault! EXC #%d, Thread: %x, instr @ %x\n",
fault,
context_self_get(),
esf->pc);
if (3 == fault) { /* hard fault */
escalation = _ScbHardFaultIsForced();
PR_EXC("HARD FAULT: %s\n",
escalation ? "Escalation (see below)!"
: "Bus fault on vector table read\n");
}
PR_EXC("MMFSR: %x, BFSR: %x, UFSR: %x\n",
__scs.scb.cfsr.byte.mmfsr.val,
__scs.scb.cfsr.byte.bfsr.val,
__scs.scb.cfsr.byte.ufsr.val);
if (_ScbMemFaultIsMmfarValid()) {
PR_EXC("MMFAR: %x\n", _ScbMemFaultAddrGet());
if (escalation) {
_ScbMemFaultMmfarReset();
}
}
if (_ScbBusFaultIsBfarValid()) {
PR_EXC("BFAR: %x\n", _ScbBusFaultAddrGet());
if (escalation) {
_ScbBusFaultBfarReset();
}
}
/* clear USFR sticky bits */
_ScbUsageFaultAllFaultsReset();
}
#endif
#if (CONFIG_FAULT_DUMP == 2)
/*******************************************************************************
*
* _FaultContextShow - dump context information
*
* See _FaultDump() for example.
*
* RETURNS: N/A
*
* \NOMANUAL
*/
static void _FaultContextShow(const NANO_ESF *esf)
{
PR_EXC(" Executing context ID (thread): 0x%x\n"
" Faulting instruction address: 0x%x\n",
context_self_get(),
esf->pc);
}
/*******************************************************************************
*
* _MpuFault - dump MPU fault information
*
* See _FaultDump() for example.
*
* RETURNS: N/A
*
* \NOMANUAL
*/
static void _MpuFault(const NANO_ESF *esf,
int fromHardFault)
{
PR_EXC("***** MPU FAULT *****\n");
_FaultContextShow(esf);
if (_ScbMemFaultIsStacking()) {
PR_EXC(" Stacking error\n");
} else if (_ScbMemFaultIsUnstacking()) {
PR_EXC(" Unstacking error\n");
} else if (_ScbMemFaultIsDataAccessViolation()) {
PR_EXC(" Data Access Violation\n");
if (_ScbMemFaultIsMmfarValid()) {
PR_EXC(" Address: 0x%x\n", _ScbMemFaultAddrGet());
if (fromHardFault) {
_ScbMemFaultMmfarReset();
}
}
} else if (_ScbMemFaultIsInstrAccessViolation()) {
PR_EXC(" Instruction Access Violation\n");
}
}
/*******************************************************************************
*
* _BusFault - dump bus fault information
*
* See _FaultDump() for example.
*
* RETURNS: N/A
*
* \NOMANUAL
*/
static void _BusFault(const NANO_ESF *esf,
int fromHardFault)
{
PR_EXC("***** BUS FAULT *****\n");
_FaultContextShow(esf);
if (_ScbBusFaultIsStacking()) {
PR_EXC(" Stacking error\n");
} else if (_ScbBusFaultIsUnstacking()) {
PR_EXC(" Unstacking error\n");
} else if (_ScbBusFaultIsPrecise()) {
PR_EXC(" Precise data bus error\n");
if (_ScbBusFaultIsBfarValid()) {
PR_EXC(" Address: 0x%x\n", _ScbBusFaultAddrGet());
if (fromHardFault) {
_ScbBusFaultBfarReset();
}
}
/* it's possible to have both a precise and imprecise fault */
if (_ScbBusFaultIsImprecise()) {
PR_EXC(" Imprecise data bus error\n");
}
} else if (_ScbBusFaultIsImprecise()) {
PR_EXC(" Imprecise data bus error\n");
} else if (_ScbBusFaultIsInstrBusErr()) {
PR_EXC(" Instruction bus error\n");
}
}
/*******************************************************************************
*
* _UsageFault - dump usage fault information
*
* See _FaultDump() for example.
*
* RETURNS: N/A
*
* \NOMANUAL
*/
static void _UsageFault(const NANO_ESF *esf)
{
PR_EXC("***** USAGE FAULT *****\n");
_FaultContextShow(esf);
/* bits are sticky: they stack and must be reset */
if (_ScbUsageFaultIsDivByZero()) {
PR_EXC(" Division by zero\n");
}
if (_ScbUsageFaultIsUnaligned()) {
PR_EXC(" Unaligned memory access\n");
}
if (_ScbUsageFaultIsNoCp()) {
PR_EXC(" No coprocessor instructions\n");
}
if (_ScbUsageFaultIsInvalidPcLoad()) {
PR_EXC(" Illegal load of EXC_RETURN into PC\n");
}
if (_ScbUsageFaultIsInvalidState()) {
PR_EXC(" Illegal use of the EPSR\n");
}
if (_ScbUsageFaultIsUndefinedInstr()) {
PR_EXC(" Attempt to execute undefined instruction\n");
}
_ScbUsageFaultAllFaultsReset();
}
/*******************************************************************************
*
* _HardFault - dump hard fault information
*
* See _FaultDump() for example.
*
* RETURNS: N/A
*
* \NOMANUAL
*/
static void _HardFault(const NANO_ESF *esf)
{
PR_EXC("***** HARD FAULT *****\n");
if (_ScbHardFaultIsBusErrOnVectorRead()) {
PR_EXC(" Bus fault on vector table read\n");
} else if (_ScbHardFaultIsForced()) {
PR_EXC(" Fault escalation (see below)\n");
if (_ScbIsMemFault()) {
_MpuFault(esf, 1);
} else if (_ScbIsBusFault()) {
_BusFault(esf, 1);
} else if (_ScbIsUsageFault()) {
_UsageFault(esf);
}
}
}
/*******************************************************************************
*
* _DebugMonitor - dump debug monitor exception information
*
* See _FaultDump() for example.
*
* RETURNS: N/A
*
* \NOMANUAL
*/
static void _DebugMonitor(const NANO_ESF *esf)
{
PR_EXC("***** Debug monitor exception (not implemented) *****\n");
}
/*******************************************************************************
*
* _ReservedException - dump reserved exception information
*
* See _FaultDump() for example.
*
* RETURNS: N/A
*
* \NOMANUAL
*/
static void _ReservedException(const NANO_ESF *esf,
int fault)
{
PR_EXC("***** %s %d) *****\n",
fault < 16 ? "Reserved Exception (" : "Spurious interrupt (IRQ ",
fault - 16);
}
/*******************************************************************************
*
* _FaultDump - dump information regarding fault (FAULT_DUMP == 2)
*
* Dump information regarding the fault when CONFIG_FAULT_DUMP is set to 2
* (long form).
*
* eg. (precise bus error escalated to hard fault):
*
* Executing context ID (thread): 0x200000dc
* Faulting instruction address: 0x000011d3
* ***** HARD FAULT *****
* Fault escalation (see below)
* ***** BUS FAULT *****
* Precise data bus error
* Address: 0xff001234
*
* RETURNS: N/A
*
* \NOMANUAL
*/
static void _FaultDump(const NANO_ESF *esf, int fault)
{
switch (fault) {
case 3:
_HardFault(esf);
break;
case 4:
_MpuFault(esf, 0);
break;
case 5:
_BusFault(esf, 0);
break;
case 6:
_UsageFault(esf);
break;
case 12:
_DebugMonitor(esf);
break;
default:
_ReservedException(esf, fault);
break;
}
}
#endif /* FAULT_DUMP == 2 */
/*******************************************************************************
*
* _Fault - fault handler
*
* This routine is called when fatal error conditions are detected by hardware
* and is responsible only for reporting the error. Once reported, it then
* invokes the user provided routine _SysFatalErrorHandler() which is
* responsible for implementing the error handling policy.
*
* Since the ESF can be either on the MSP or PSP depending if an exception or
* interrupt was already being handled, it is passed a pointer to both and has
* to find out on which the ESP is present.
*
* RETURNS: This function does not return.
*
* \NOMANUAL
*/
void _Fault(
const NANO_ESF *msp, /* pointer to potential ESF on MSP */
const NANO_ESF *psp /* pointer to potential ESF on PSP */
)
{
const NANO_ESF *esf = _ScbIsNestedExc() ? msp : psp;
int fault = _ScbActiveVectorGet();
FAULT_DUMP(esf, fault);
_SysFatalErrorHandler(_NANO_ERR_HW_EXCEPTION, esf);
}
/*******************************************************************************
*
* _FaultInit - initialization of fault handling
*
* Turns on the desired hardware faults.
*
* RETURNS: N/A
*
* \NOMANUAL
*/
void _FaultInit(void)
{
_ScbDivByZeroFaultEnable();
_ScbUnalignedFaultEnable();
}