hal_nordic/nrfx/hal/nrf_pwm.h

757 lines
31 KiB
C
Raw Normal View History

/*
* Copyright (c) 2015 - 2022, Nordic Semiconductor ASA
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef NRF_PWM_H__
#define NRF_PWM_H__
#include <nrfx.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_pwm_hal PWM HAL
* @{
* @ingroup nrf_pwm
* @brief Hardware access layer for managing the Pulse Width Modulation (PWM) peripheral.
*/
/**
* @brief Macro getting pointer to the structure of registers of the PWM peripheral.
*
* @param[in] idx PWM instance index.
*
* @return Pointer to the structure of registers of the PWM peripheral.
*/
#define NRF_PWM_INST_GET(idx) NRFX_CONCAT_2(NRF_PWM, idx)
/**
* @brief This value can be provided as a parameter for the @ref nrf_pwm_pins_set
* function call to specify that a given output channel shall not be
* connected to a physical pin.
*/
#define NRF_PWM_PIN_NOT_CONNECTED 0xFFFFFFFF
/** @brief Number of channels in each PWM instance. */
#define NRF_PWM_CHANNEL_COUNT 4
/**
* @brief Helper macro for calculating the number of 16-bit values in the specified
* array of duty cycle values.
*/
#define NRF_PWM_VALUES_LENGTH(array) (sizeof(array) / sizeof(uint16_t))
/** @brief PWM tasks. */
typedef enum
{
NRF_PWM_TASK_STOP = offsetof(NRF_PWM_Type, TASKS_STOP), ///< Stops PWM pulse generation on all channels at the end of the current PWM period, and stops the sequence playback.
NRF_PWM_TASK_SEQSTART0 = offsetof(NRF_PWM_Type, TASKS_SEQSTART[0]), ///< Starts playback of sequence 0.
NRF_PWM_TASK_SEQSTART1 = offsetof(NRF_PWM_Type, TASKS_SEQSTART[1]), ///< Starts playback of sequence 1.
NRF_PWM_TASK_NEXTSTEP = offsetof(NRF_PWM_Type, TASKS_NEXTSTEP) ///< Steps by one value in the current sequence if the decoder is set to @ref NRF_PWM_STEP_TRIGGERED mode.
} nrf_pwm_task_t;
/** @brief PWM events. */
typedef enum
{
NRF_PWM_EVENT_STOPPED = offsetof(NRF_PWM_Type, EVENTS_STOPPED), ///< Response to STOP task, emitted when PWM pulses are no longer generated.
NRF_PWM_EVENT_SEQSTARTED0 = offsetof(NRF_PWM_Type, EVENTS_SEQSTARTED[0]), ///< First PWM period started on sequence 0.
NRF_PWM_EVENT_SEQSTARTED1 = offsetof(NRF_PWM_Type, EVENTS_SEQSTARTED[1]), ///< First PWM period started on sequence 1.
NRF_PWM_EVENT_SEQEND0 = offsetof(NRF_PWM_Type, EVENTS_SEQEND[0]), ///< Emitted at the end of every sequence 0 when its last value has been read from RAM.
NRF_PWM_EVENT_SEQEND1 = offsetof(NRF_PWM_Type, EVENTS_SEQEND[1]), ///< Emitted at the end of every sequence 1 when its last value has been read from RAM.
NRF_PWM_EVENT_PWMPERIODEND = offsetof(NRF_PWM_Type, EVENTS_PWMPERIODEND), ///< Emitted at the end of each PWM period.
NRF_PWM_EVENT_LOOPSDONE = offsetof(NRF_PWM_Type, EVENTS_LOOPSDONE) ///< Concatenated sequences have been played the specified number of times.
} nrf_pwm_event_t;
/** @brief PWM interrupts. */
typedef enum
{
NRF_PWM_INT_STOPPED_MASK = PWM_INTENSET_STOPPED_Msk, ///< Interrupt on STOPPED event.
NRF_PWM_INT_SEQSTARTED0_MASK = PWM_INTENSET_SEQSTARTED0_Msk, ///< Interrupt on SEQSTARTED[0] event.
NRF_PWM_INT_SEQSTARTED1_MASK = PWM_INTENSET_SEQSTARTED1_Msk, ///< Interrupt on SEQSTARTED[1] event.
NRF_PWM_INT_SEQEND0_MASK = PWM_INTENSET_SEQEND0_Msk, ///< Interrupt on SEQEND[0] event.
NRF_PWM_INT_SEQEND1_MASK = PWM_INTENSET_SEQEND1_Msk, ///< Interrupt on SEQEND[1] event.
NRF_PWM_INT_PWMPERIODEND_MASK = PWM_INTENSET_PWMPERIODEND_Msk, ///< Interrupt on PWMPERIODEND event.
NRF_PWM_INT_LOOPSDONE_MASK = PWM_INTENSET_LOOPSDONE_Msk ///< Interrupt on LOOPSDONE event.
} nrf_pwm_int_mask_t;
/** @brief PWM shortcuts. */
typedef enum
{
NRF_PWM_SHORT_SEQEND0_STOP_MASK = PWM_SHORTS_SEQEND0_STOP_Msk, ///< Shortcut between SEQEND[0] event and STOP task.
NRF_PWM_SHORT_SEQEND1_STOP_MASK = PWM_SHORTS_SEQEND1_STOP_Msk, ///< Shortcut between SEQEND[1] event and STOP task.
NRF_PWM_SHORT_LOOPSDONE_SEQSTART0_MASK = PWM_SHORTS_LOOPSDONE_SEQSTART0_Msk, ///< Shortcut between LOOPSDONE event and SEQSTART[0] task.
NRF_PWM_SHORT_LOOPSDONE_SEQSTART1_MASK = PWM_SHORTS_LOOPSDONE_SEQSTART1_Msk, ///< Shortcut between LOOPSDONE event and SEQSTART[1] task.
NRF_PWM_SHORT_LOOPSDONE_STOP_MASK = PWM_SHORTS_LOOPSDONE_STOP_Msk ///< Shortcut between LOOPSDONE event and STOP task.
} nrf_pwm_short_mask_t;
/** @brief PWM modes of operation. */
typedef enum
{
NRF_PWM_MODE_UP = PWM_MODE_UPDOWN_Up, ///< Up counter (edge-aligned PWM duty cycle).
NRF_PWM_MODE_UP_AND_DOWN = PWM_MODE_UPDOWN_UpAndDown, ///< Up and down counter (center-aligned PWM duty cycle).
} nrf_pwm_mode_t;
/** @brief PWM base clock frequencies. */
typedef enum
{
NRF_PWM_CLK_16MHz = PWM_PRESCALER_PRESCALER_DIV_1, ///< 16 MHz / 1 = 16 MHz.
NRF_PWM_CLK_8MHz = PWM_PRESCALER_PRESCALER_DIV_2, ///< 16 MHz / 2 = 8 MHz.
NRF_PWM_CLK_4MHz = PWM_PRESCALER_PRESCALER_DIV_4, ///< 16 MHz / 4 = 4 MHz.
NRF_PWM_CLK_2MHz = PWM_PRESCALER_PRESCALER_DIV_8, ///< 16 MHz / 8 = 2 MHz.
NRF_PWM_CLK_1MHz = PWM_PRESCALER_PRESCALER_DIV_16, ///< 16 MHz / 16 = 1 MHz.
NRF_PWM_CLK_500kHz = PWM_PRESCALER_PRESCALER_DIV_32, ///< 16 MHz / 32 = 500 kHz.
NRF_PWM_CLK_250kHz = PWM_PRESCALER_PRESCALER_DIV_64, ///< 16 MHz / 64 = 250 kHz.
NRF_PWM_CLK_125kHz = PWM_PRESCALER_PRESCALER_DIV_128 ///< 16 MHz / 128 = 125 kHz.
} nrf_pwm_clk_t;
/**
* @brief PWM decoder load modes.
*
* The selected mode determines how the sequence data is read from RAM and
* spread to the compare registers.
*/
typedef enum
{
NRF_PWM_LOAD_COMMON = PWM_DECODER_LOAD_Common, ///< 1st half word (16-bit) used in all PWM channels (0-3).
NRF_PWM_LOAD_GROUPED = PWM_DECODER_LOAD_Grouped, ///< 1st half word (16-bit) used in channels 0 and 1; 2nd word in channels 2 and 3.
NRF_PWM_LOAD_INDIVIDUAL = PWM_DECODER_LOAD_Individual, ///< 1st half word (16-bit) used in channel 0; 2nd in channel 1; 3rd in channel 2; 4th in channel 3.
NRF_PWM_LOAD_WAVE_FORM = PWM_DECODER_LOAD_WaveForm ///< 1st half word (16-bit) used in channel 0; 2nd in channel 1; ... ; 4th as the top value for the pulse generator counter.
} nrf_pwm_dec_load_t;
/**
* @brief PWM decoder next step modes.
*
* The selected mode determines when the next value from the active sequence
* is loaded.
*/
typedef enum
{
NRF_PWM_STEP_AUTO = PWM_DECODER_MODE_RefreshCount, ///< Automatically after the current value is played and repeated the requested number of times.
NRF_PWM_STEP_TRIGGERED = PWM_DECODER_MODE_NextStep ///< When the @ref NRF_PWM_TASK_NEXTSTEP task is triggered.
} nrf_pwm_dec_step_t;
/**
* @brief Type used for defining duty cycle values for a sequence
* loaded in @ref NRF_PWM_LOAD_COMMON mode.
*/
typedef uint16_t nrf_pwm_values_common_t;
/**
* @brief Structure for defining duty cycle values for a sequence
* loaded in @ref NRF_PWM_LOAD_GROUPED mode.
*/
typedef struct {
uint16_t group_0; ///< Duty cycle value for group 0 (channels 0 and 1).
uint16_t group_1; ///< Duty cycle value for group 1 (channels 2 and 3).
} nrf_pwm_values_grouped_t;
/**
* @brief Structure for defining duty cycle values for a sequence
* loaded in @ref NRF_PWM_LOAD_INDIVIDUAL mode.
*/
typedef struct
{
uint16_t channel_0; ///< Duty cycle value for channel 0.
uint16_t channel_1; ///< Duty cycle value for channel 1.
uint16_t channel_2; ///< Duty cycle value for channel 2.
uint16_t channel_3; ///< Duty cycle value for channel 3.
} nrf_pwm_values_individual_t;
/**
* @brief Structure for defining duty cycle values for a sequence
* loaded in @ref NRF_PWM_LOAD_WAVE_FORM mode.
*/
typedef struct {
uint16_t channel_0; ///< Duty cycle value for channel 0.
uint16_t channel_1; ///< Duty cycle value for channel 1.
uint16_t channel_2; ///< Duty cycle value for channel 2.
uint16_t counter_top; ///< Top value for the pulse generator counter.
} nrf_pwm_values_wave_form_t;
/**
* @brief Union grouping pointers to arrays of duty cycle values applicable to
* various loading modes.
*/
typedef union {
nrf_pwm_values_common_t const * p_common; ///< Pointer to be used in @ref NRF_PWM_LOAD_COMMON mode.
nrf_pwm_values_grouped_t const * p_grouped; ///< Pointer to be used in @ref NRF_PWM_LOAD_GROUPED mode.
nrf_pwm_values_individual_t const * p_individual; ///< Pointer to be used in @ref NRF_PWM_LOAD_INDIVIDUAL mode.
nrf_pwm_values_wave_form_t const * p_wave_form; ///< Pointer to be used in @ref NRF_PWM_LOAD_WAVE_FORM mode.
uint16_t const * p_raw; ///< Pointer providing raw access to the values.
} nrf_pwm_values_t;
/**
* @brief Structure for defining a sequence of PWM duty cycles.
*
* When the sequence is set (by a call to @ref nrf_pwm_sequence_set), the
* provided duty cycle values are not copied. The @p values pointer is stored
* in the internal register of the peripheral, and the values are loaded from RAM
* during the sequence playback. Therefore, you must ensure that the values
* do not change before and during the sequence playback (for example,
* the values cannot be placed in a local variable that is allocated on stack).
* If the sequence is played in a loop and the values are to be updated
* before the next iteration, it is safe to modify them when the corresponding
* event signaling the end of sequence occurs (@ref NRF_PWM_EVENT_SEQEND0
* or @ref NRF_PWM_EVENT_SEQEND1, respectively).
*
* @note The @p repeats and @p end_delay values (which are written to the
* SEQ[n].REFRESH and SEQ[n].ENDDELAY registers in the peripheral,
* respectively) are ignored at the end of a complex sequence
* playback, indicated by the LOOPSDONE event.
* See the Product Specification for more information.
*/
typedef struct
{
nrf_pwm_values_t values; ///< Pointer to an array with duty cycle values. This array must be in Data RAM.
/**< This field is defined as an union of pointers
* to provide a convenient way to define duty
* cycle values in various loading modes
* (see @ref nrf_pwm_dec_load_t).
* In each value, the most significant bit (15)
* determines the polarity of the output and the
* others (14-0) compose the 15-bit value to be
* compared with the pulse generator counter. */
uint16_t length; ///< Number of 16-bit values in the array pointed by @p values.
uint32_t repeats; ///< Number of times that each duty cycle is to be repeated (after being played once). Ignored in @ref NRF_PWM_STEP_TRIGGERED mode.
uint32_t end_delay; ///< Additional time (in PWM periods) that the last duty cycle is to be kept after the sequence is played. Ignored in @ref NRF_PWM_STEP_TRIGGERED mode.
} nrf_pwm_sequence_t;
/**
* @brief Function for activating the specified PWM task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task to be activated.
*/
NRF_STATIC_INLINE void nrf_pwm_task_trigger(NRF_PWM_Type * p_reg,
nrf_pwm_task_t task);
/**
* @brief Function for getting the address of the specified PWM task register.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task PWM task.
*
* @return Address of the specified task register.
*/
NRF_STATIC_INLINE uint32_t nrf_pwm_task_address_get(NRF_PWM_Type const * p_reg,
nrf_pwm_task_t task);
/**
* @brief Function for clearing the specified PWM event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to clear.
*/
NRF_STATIC_INLINE void nrf_pwm_event_clear(NRF_PWM_Type * p_reg,
nrf_pwm_event_t event);
/**
* @brief Function for retrieving the state of the PWM event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be checked.
*
* @retval true The event has been generated.
* @retval false The event has not been generated.
*/
NRF_STATIC_INLINE bool nrf_pwm_event_check(NRF_PWM_Type const * p_reg,
nrf_pwm_event_t event);
/**
* @brief Function for getting the address of the specified PWM event register.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event PWM event.
*
* @return Address of the specified event register.
*/
NRF_STATIC_INLINE uint32_t nrf_pwm_event_address_get(NRF_PWM_Type const * p_reg,
nrf_pwm_event_t event);
/**
* @brief Function for enabling the specified shortcuts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of shortcuts to be enabled.
*/
NRF_STATIC_INLINE void nrf_pwm_shorts_enable(NRF_PWM_Type * p_reg,
uint32_t mask);
/**
* @brief Function for disabling the specified shortcuts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of shortcuts to be disabled.
*/
NRF_STATIC_INLINE void nrf_pwm_shorts_disable(NRF_PWM_Type * p_reg,
uint32_t mask);
/**
* @brief Function for setting the configuration of PWM shortcuts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Shortcuts configuration to be set.
*/
NRF_STATIC_INLINE void nrf_pwm_shorts_set(NRF_PWM_Type * p_reg,
uint32_t mask);
/**
* @brief Function for enabling specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be enabled.
*/
NRF_STATIC_INLINE void nrf_pwm_int_enable(NRF_PWM_Type * p_reg,
uint32_t mask);
/**
* @brief Function for disabling specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be disabled.
*/
NRF_STATIC_INLINE void nrf_pwm_int_disable(NRF_PWM_Type * p_reg,
uint32_t mask);
/**
* @brief Function for setting the configuration of PWM interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be set.
*/
NRF_STATIC_INLINE void nrf_pwm_int_set(NRF_PWM_Type * p_reg,
uint32_t mask);
/**
* @brief Function for checking if the specified interrupts are enabled.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be checked.
*
* @return Mask of enabled interrupts.
*/
NRF_STATIC_INLINE uint32_t nrf_pwm_int_enable_check(NRF_PWM_Type const * p_reg, uint32_t mask);
#if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for setting the subscribe configuration for a given
* PWM task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task for which to set the configuration.
* @param[in] channel Channel through which to subscribe events.
*/
NRF_STATIC_INLINE void nrf_pwm_subscribe_set(NRF_PWM_Type * p_reg,
nrf_pwm_task_t task,
uint8_t channel);
/**
* @brief Function for clearing the subscribe configuration for a given
* PWM task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task for which to clear the configuration.
*/
NRF_STATIC_INLINE void nrf_pwm_subscribe_clear(NRF_PWM_Type * p_reg,
nrf_pwm_task_t task);
/**
* @brief Function for setting the publish configuration for a given
* PWM event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event for which to set the configuration.
* @param[in] channel Channel through which to publish the event.
*/
NRF_STATIC_INLINE void nrf_pwm_publish_set(NRF_PWM_Type * p_reg,
nrf_pwm_event_t event,
uint8_t channel);
/**
* @brief Function for clearing the publish configuration for a given
* PWM event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event for which to clear the configuration.
*/
NRF_STATIC_INLINE void nrf_pwm_publish_clear(NRF_PWM_Type * p_reg,
nrf_pwm_event_t event);
#endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for enabling the PWM peripheral.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_pwm_enable(NRF_PWM_Type * p_reg);
/**
* @brief Function for disabling the PWM peripheral.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_pwm_disable(NRF_PWM_Type * p_reg);
/**
* @brief Function for assigning pins to PWM output channels.
*
* Usage of all PWM output channels is optional. If a given channel is not
* needed, pass the @ref NRF_PWM_PIN_NOT_CONNECTED value instead of its pin
* number.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] out_pins Array with pin numbers for individual PWM output channels.
*/
NRF_STATIC_INLINE void nrf_pwm_pins_set(NRF_PWM_Type * p_reg,
uint32_t out_pins[NRF_PWM_CHANNEL_COUNT]);
/**
* @brief Function for getting pin selection associated with specified PWM output channel.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] channel PWM output channel.
*
* @return Pin selection associated with specified PWM output channel.
*/
NRF_STATIC_INLINE uint32_t nrf_pwm_pin_get(NRF_PWM_Type const * p_reg, uint8_t channel);
/**
* @brief Function for configuring the PWM peripheral.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] base_clock Base clock frequency.
* @param[in] mode Operating mode of the pulse generator counter.
* @param[in] top_value Value up to which the pulse generator counter counts.
*/
NRF_STATIC_INLINE void nrf_pwm_configure(NRF_PWM_Type * p_reg,
nrf_pwm_clk_t base_clock,
nrf_pwm_mode_t mode,
uint16_t top_value);
/**
* @brief Function for defining a sequence of PWM duty cycles.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] seq_id Identifier of the sequence (0 or 1).
* @param[in] p_seq Pointer to the sequence definition.
*/
NRF_STATIC_INLINE void nrf_pwm_sequence_set(NRF_PWM_Type * p_reg,
uint8_t seq_id,
nrf_pwm_sequence_t const * p_seq);
/**
* @brief Function for modifying the pointer to the duty cycle values
* in the specified sequence.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] seq_id Identifier of the sequence (0 or 1).
* @param[in] p_values Pointer to an array with duty cycle values.
*/
NRF_STATIC_INLINE void nrf_pwm_seq_ptr_set(NRF_PWM_Type * p_reg,
uint8_t seq_id,
uint16_t const * p_values);
/**
* @brief Function for modifying the total number of duty cycle values
* in the specified sequence.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] seq_id Identifier of the sequence (0 or 1).
* @param[in] length Number of duty cycle values.
*/
NRF_STATIC_INLINE void nrf_pwm_seq_cnt_set(NRF_PWM_Type * p_reg,
uint8_t seq_id,
uint16_t length);
/**
* @brief Function for modifying the additional number of PWM periods spent
* on each duty cycle value in the specified sequence.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] seq_id Identifier of the sequence (0 or 1).
* @param[in] refresh Number of additional PWM periods for each duty cycle value.
*/
NRF_STATIC_INLINE void nrf_pwm_seq_refresh_set(NRF_PWM_Type * p_reg,
uint8_t seq_id,
uint32_t refresh);
/**
* @brief Function for modifying the additional time added after the sequence
* is played.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] seq_id Identifier of the sequence (0 or 1).
* @param[in] end_delay Number of PWM periods added at the end of the sequence.
*/
NRF_STATIC_INLINE void nrf_pwm_seq_end_delay_set(NRF_PWM_Type * p_reg,
uint8_t seq_id,
uint32_t end_delay);
/**
* @brief Function for setting the mode of loading sequence data from RAM
* and advancing the sequence.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] dec_load Mode of loading sequence data from RAM.
* @param[in] dec_step Mode of advancing the active sequence.
*/
NRF_STATIC_INLINE void nrf_pwm_decoder_set(NRF_PWM_Type * p_reg,
nrf_pwm_dec_load_t dec_load,
nrf_pwm_dec_step_t dec_step);
/**
* @brief Function for setting the number of times the sequence playback
* should be performed.
*
* This function applies to two-sequence playback (concatenated sequence 0 and 1).
* A single sequence can be played back only once.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] loop_count Number of times to perform the sequence playback.
*/
NRF_STATIC_INLINE void nrf_pwm_loop_set(NRF_PWM_Type * p_reg, uint16_t loop_count);
#ifndef NRF_DECLARE_ONLY
NRF_STATIC_INLINE void nrf_pwm_task_trigger(NRF_PWM_Type * p_reg,
nrf_pwm_task_t task)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL;
}
NRF_STATIC_INLINE uint32_t nrf_pwm_task_address_get(NRF_PWM_Type const * p_reg,
nrf_pwm_task_t task)
{
return ((uint32_t)p_reg + (uint32_t)task);
}
NRF_STATIC_INLINE void nrf_pwm_event_clear(NRF_PWM_Type * p_reg,
nrf_pwm_event_t event)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL;
nrf_event_readback((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE bool nrf_pwm_event_check(NRF_PWM_Type const * p_reg,
nrf_pwm_event_t event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE uint32_t nrf_pwm_event_address_get(NRF_PWM_Type const * p_reg,
nrf_pwm_event_t event)
{
return ((uint32_t)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE void nrf_pwm_shorts_enable(NRF_PWM_Type * p_reg, uint32_t mask)
{
p_reg->SHORTS |= mask;
}
NRF_STATIC_INLINE void nrf_pwm_shorts_disable(NRF_PWM_Type * p_reg, uint32_t mask)
{
p_reg->SHORTS &= ~(mask);
}
NRF_STATIC_INLINE void nrf_pwm_shorts_set(NRF_PWM_Type * p_reg, uint32_t mask)
{
p_reg->SHORTS = mask;
}
NRF_STATIC_INLINE void nrf_pwm_int_enable(NRF_PWM_Type * p_reg, uint32_t mask)
{
p_reg->INTENSET = mask;
}
NRF_STATIC_INLINE void nrf_pwm_int_disable(NRF_PWM_Type * p_reg, uint32_t mask)
{
p_reg->INTENCLR = mask;
}
NRF_STATIC_INLINE void nrf_pwm_int_set(NRF_PWM_Type * p_reg, uint32_t mask)
{
p_reg->INTEN = mask;
}
NRF_STATIC_INLINE uint32_t nrf_pwm_int_enable_check(NRF_PWM_Type const * p_reg, uint32_t mask)
{
return p_reg->INTENSET & mask;
}
#if defined(DPPI_PRESENT)
NRF_STATIC_INLINE void nrf_pwm_subscribe_set(NRF_PWM_Type * p_reg,
nrf_pwm_task_t task,
uint8_t channel)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) =
((uint32_t)channel | PWM_SUBSCRIBE_STOP_EN_Msk);
}
NRF_STATIC_INLINE void nrf_pwm_subscribe_clear(NRF_PWM_Type * p_reg,
nrf_pwm_task_t task)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0;
}
NRF_STATIC_INLINE void nrf_pwm_publish_set(NRF_PWM_Type * p_reg,
nrf_pwm_event_t event,
uint8_t channel)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) =
((uint32_t)channel | PWM_PUBLISH_STOPPED_EN_Msk);
}
NRF_STATIC_INLINE void nrf_pwm_publish_clear(NRF_PWM_Type * p_reg,
nrf_pwm_event_t event)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0;
}
#endif // defined(DPPI_PRESENT)
NRF_STATIC_INLINE void nrf_pwm_enable(NRF_PWM_Type * p_reg)
{
p_reg->ENABLE = (PWM_ENABLE_ENABLE_Enabled << PWM_ENABLE_ENABLE_Pos);
}
NRF_STATIC_INLINE void nrf_pwm_disable(NRF_PWM_Type * p_reg)
{
p_reg->ENABLE = (PWM_ENABLE_ENABLE_Disabled << PWM_ENABLE_ENABLE_Pos);
}
NRF_STATIC_INLINE void nrf_pwm_pins_set(NRF_PWM_Type * p_reg,
uint32_t out_pins[NRF_PWM_CHANNEL_COUNT])
{
uint8_t i;
for (i = 0; i < NRF_PWM_CHANNEL_COUNT; ++i)
{
p_reg->PSEL.OUT[i] = out_pins[i];
}
}
NRF_STATIC_INLINE uint32_t nrf_pwm_pin_get(NRF_PWM_Type const * p_reg, uint8_t channel)
{
NRFX_ASSERT(channel < NRF_PWM_CHANNEL_COUNT);
return p_reg->PSEL.OUT[channel];
}
NRF_STATIC_INLINE void nrf_pwm_configure(NRF_PWM_Type * p_reg,
nrf_pwm_clk_t base_clock,
nrf_pwm_mode_t mode,
uint16_t top_value)
{
NRFX_ASSERT(top_value <= PWM_COUNTERTOP_COUNTERTOP_Msk);
p_reg->PRESCALER = base_clock;
p_reg->MODE = mode;
p_reg->COUNTERTOP = top_value;
}
NRF_STATIC_INLINE void nrf_pwm_sequence_set(NRF_PWM_Type * p_reg,
uint8_t seq_id,
nrf_pwm_sequence_t const * p_seq)
{
NRFX_ASSERT(p_seq != NULL);
nrf_pwm_seq_ptr_set( p_reg, seq_id, p_seq->values.p_raw);
nrf_pwm_seq_cnt_set( p_reg, seq_id, p_seq->length);
nrf_pwm_seq_refresh_set( p_reg, seq_id, p_seq->repeats);
nrf_pwm_seq_end_delay_set(p_reg, seq_id, p_seq->end_delay);
}
NRF_STATIC_INLINE void nrf_pwm_seq_ptr_set(NRF_PWM_Type * p_reg,
uint8_t seq_id,
uint16_t const * p_values)
{
NRFX_ASSERT(seq_id <= 1);
NRFX_ASSERT(p_values != NULL);
p_reg->SEQ[seq_id].PTR = (uint32_t)p_values;
}
NRF_STATIC_INLINE void nrf_pwm_seq_cnt_set(NRF_PWM_Type * p_reg,
uint8_t seq_id,
uint16_t length)
{
NRFX_ASSERT(seq_id <= 1);
NRFX_ASSERT(length != 0);
NRFX_ASSERT(length <= PWM_SEQ_CNT_CNT_Msk);
p_reg->SEQ[seq_id].CNT = length;
}
NRF_STATIC_INLINE void nrf_pwm_seq_refresh_set(NRF_PWM_Type * p_reg,
uint8_t seq_id,
uint32_t refresh)
{
NRFX_ASSERT(seq_id <= 1);
NRFX_ASSERT(refresh <= PWM_SEQ_REFRESH_CNT_Msk);
p_reg->SEQ[seq_id].REFRESH = refresh;
}
NRF_STATIC_INLINE void nrf_pwm_seq_end_delay_set(NRF_PWM_Type * p_reg,
uint8_t seq_id,
uint32_t end_delay)
{
NRFX_ASSERT(seq_id <= 1);
NRFX_ASSERT(end_delay <= PWM_SEQ_ENDDELAY_CNT_Msk);
p_reg->SEQ[seq_id].ENDDELAY = end_delay;
}
NRF_STATIC_INLINE void nrf_pwm_decoder_set(NRF_PWM_Type * p_reg,
nrf_pwm_dec_load_t dec_load,
nrf_pwm_dec_step_t dec_step)
{
p_reg->DECODER = ((uint32_t)dec_load << PWM_DECODER_LOAD_Pos) |
((uint32_t)dec_step << PWM_DECODER_MODE_Pos);
}
NRF_STATIC_INLINE void nrf_pwm_loop_set(NRF_PWM_Type * p_reg,
uint16_t loop_count)
{
p_reg->LOOP = loop_count;
}
#endif // NRF_DECLARE_ONLY
/** @} */
#ifdef __cplusplus
}
#endif
#endif // NRF_PWM_H__