hal_nordic/nrfx/hal/nrf_spis.h

752 lines
25 KiB
C

/*
* Copyright (c) 2015 - 2022, Nordic Semiconductor ASA
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef NRF_SPIS_H__
#define NRF_SPIS_H__
#include <nrfx.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_spis_hal SPIS HAL
* @{
* @ingroup nrf_spis
* @brief Hardware access layer for managing the SPIS peripheral.
*/
/**
* @brief Macro getting pointer to the structure of registers of the SPIS peripheral.
*
* @param[in] idx SPIS instance index.
*
* @return Pointer to the structure of registers of the SPIS peripheral.
*/
#define NRF_SPIS_INST_GET(idx) NRFX_CONCAT_2(NRF_SPIS, idx)
/**
* @brief This value can be used as a parameter for the @ref nrf_spis_pins_set
* function to specify that a given SPI signal (SCK, MOSI, or MISO)
* shall not be connected to a physical pin.
*/
#define NRF_SPIS_PIN_NOT_CONNECTED 0xFFFFFFFF
/** @brief SPIS tasks. */
typedef enum
{
NRF_SPIS_TASK_ACQUIRE = offsetof(NRF_SPIS_Type, TASKS_ACQUIRE), ///< Acquire SPI semaphore.
NRF_SPIS_TASK_RELEASE = offsetof(NRF_SPIS_Type, TASKS_RELEASE), ///< Release SPI semaphore, enabling the SPI slave to acquire it.
} nrf_spis_task_t;
/** @brief SPIS events. */
typedef enum
{
NRF_SPIS_EVENT_END = offsetof(NRF_SPIS_Type, EVENTS_END), ///< Granted transaction completed.
NRF_SPIS_EVENT_ACQUIRED = offsetof(NRF_SPIS_Type, EVENTS_ACQUIRED) ///< Semaphore acquired.
} nrf_spis_event_t;
/** @brief SPIS shortcuts. */
typedef enum
{
NRF_SPIS_SHORT_END_ACQUIRE = SPIS_SHORTS_END_ACQUIRE_Msk ///< Shortcut between END event and ACQUIRE task.
} nrf_spis_short_mask_t;
/** @brief SPIS interrupts. */
typedef enum
{
NRF_SPIS_INT_END_MASK = SPIS_INTENSET_END_Msk, ///< Interrupt on END event.
NRF_SPIS_INT_ACQUIRED_MASK = SPIS_INTENSET_ACQUIRED_Msk ///< Interrupt on ACQUIRED event.
} nrf_spis_int_mask_t;
/** @brief SPI modes. */
typedef enum
{
NRF_SPIS_MODE_0, ///< SCK active high, sample on leading edge of clock.
NRF_SPIS_MODE_1, ///< SCK active high, sample on trailing edge of clock.
NRF_SPIS_MODE_2, ///< SCK active low, sample on leading edge of clock.
NRF_SPIS_MODE_3 ///< SCK active low, sample on trailing edge of clock.
} nrf_spis_mode_t;
/** @brief SPI bit orders. */
typedef enum
{
NRF_SPIS_BIT_ORDER_MSB_FIRST = SPIS_CONFIG_ORDER_MsbFirst, ///< Most significant bit shifted out first.
NRF_SPIS_BIT_ORDER_LSB_FIRST = SPIS_CONFIG_ORDER_LsbFirst ///< Least significant bit shifted out first.
} nrf_spis_bit_order_t;
/** @brief SPI semaphore status. */
typedef enum
{
NRF_SPIS_SEMSTAT_FREE = 0, ///< Semaphore is free.
NRF_SPIS_SEMSTAT_CPU = 1, ///< Semaphore is assigned to the CPU.
NRF_SPIS_SEMSTAT_SPIS = 2, ///< Semaphore is assigned to the SPI slave.
NRF_SPIS_SEMSTAT_CPUPENDING = 3 ///< Semaphore is assigned to the SPI, but a handover to the CPU is pending.
} nrf_spis_semstat_t;
/** @brief SPIS status. */
typedef enum
{
NRF_SPIS_STATUS_OVERREAD = SPIS_STATUS_OVERREAD_Msk, ///< TX buffer over-read detected and prevented.
NRF_SPIS_STATUS_OVERFLOW = SPIS_STATUS_OVERFLOW_Msk ///< RX buffer overflow detected and prevented.
} nrf_spis_status_mask_t;
/**
* @brief Function for activating the specified SPIS task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task to be activated.
*/
NRF_STATIC_INLINE void nrf_spis_task_trigger(NRF_SPIS_Type * p_reg,
nrf_spis_task_t task);
/**
* @brief Function for getting the address of the specified SPIS task register.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task The specified task.
*
* @return Address of the specified task register.
*/
NRF_STATIC_INLINE uint32_t nrf_spis_task_address_get(NRF_SPIS_Type const * p_reg,
nrf_spis_task_t task);
/**
* @brief Function for clearing the specified SPIS event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be cleared.
*/
NRF_STATIC_INLINE void nrf_spis_event_clear(NRF_SPIS_Type * p_reg,
nrf_spis_event_t event);
/**
* @brief Function for retrieving the state of the SPIS event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be checked.
*
* @retval true The event has been generated.
* @retval false The event has not been generated.
*/
NRF_STATIC_INLINE bool nrf_spis_event_check(NRF_SPIS_Type const * p_reg,
nrf_spis_event_t event);
/**
* @brief Function for getting the address of the specified SPIS event register.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event The specified event.
*
* @return Address of the specified event register.
*/
NRF_STATIC_INLINE uint32_t nrf_spis_event_address_get(NRF_SPIS_Type const * p_reg,
nrf_spis_event_t event);
/**
* @brief Function for enabling the specified shortcuts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Shortcuts to be enabled.
*/
NRF_STATIC_INLINE void nrf_spis_shorts_enable(NRF_SPIS_Type * p_reg,
uint32_t mask);
/**
* @brief Function for disabling the specified shortcuts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Shortcuts to be disabled.
*/
NRF_STATIC_INLINE void nrf_spis_shorts_disable(NRF_SPIS_Type * p_reg,
uint32_t mask);
/**
* @brief Function for enabling the specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be enabled.
*/
NRF_STATIC_INLINE void nrf_spis_int_enable(NRF_SPIS_Type * p_reg,
uint32_t mask);
/**
* @brief Function for disabling the specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be disabled.
*/
NRF_STATIC_INLINE void nrf_spis_int_disable(NRF_SPIS_Type * p_reg,
uint32_t mask);
/**
* @brief Function for checking if the specified interrupts are enabled.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be checked.
*
* @return Mask of enabled interrupts.
*/
NRF_STATIC_INLINE uint32_t nrf_spis_int_enable_check(NRF_SPIS_Type const * p_reg, uint32_t mask);
#if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for setting the subscribe configuration for a given
* SPIS task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task for which to set the configuration.
* @param[in] channel Channel through which to subscribe events.
*/
NRF_STATIC_INLINE void nrf_spis_subscribe_set(NRF_SPIS_Type * p_reg,
nrf_spis_task_t task,
uint8_t channel);
/**
* @brief Function for clearing the subscribe configuration for a given
* SPIS task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task for which to clear the configuration.
*/
NRF_STATIC_INLINE void nrf_spis_subscribe_clear(NRF_SPIS_Type * p_reg,
nrf_spis_task_t task);
/**
* @brief Function for setting the publish configuration for a given
* SPIS event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event for which to set the configuration.
* @param[in] channel Channel through which to publish the event.
*/
NRF_STATIC_INLINE void nrf_spis_publish_set(NRF_SPIS_Type * p_reg,
nrf_spis_event_t event,
uint8_t channel);
/**
* @brief Function for clearing the publish configuration for a given
* SPIS event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event for which to clear the configuration.
*/
NRF_STATIC_INLINE void nrf_spis_publish_clear(NRF_SPIS_Type * p_reg,
nrf_spis_event_t event);
#endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for enabling the SPIS peripheral.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spis_enable(NRF_SPIS_Type * p_reg);
/**
* @brief Function for disabling the SPIS peripheral.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spis_disable(NRF_SPIS_Type * p_reg);
/**
* @brief Function for retrieving the SPIS semaphore status.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @returns Current semaphore status.
*/
NRF_STATIC_INLINE nrf_spis_semstat_t nrf_spis_semaphore_status_get(NRF_SPIS_Type const * p_reg);
/**
* @brief Function for retrieving the SPIS status.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @returns Current SPIS status.
*/
NRF_STATIC_INLINE nrf_spis_status_mask_t nrf_spis_status_get(NRF_SPIS_Type const * p_reg);
/**
* @brief Function for configuring SPIS pins.
*
* If a given signal is not needed, pass the @ref NRF_SPIS_PIN_NOT_CONNECTED
* value instead of its pin number.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] sck_pin SCK pin number.
* @param[in] mosi_pin MOSI pin number.
* @param[in] miso_pin MISO pin number.
* @param[in] csn_pin CSN pin number.
*/
NRF_STATIC_INLINE void nrf_spis_pins_set(NRF_SPIS_Type * p_reg,
uint32_t sck_pin,
uint32_t mosi_pin,
uint32_t miso_pin,
uint32_t csn_pin);
/**
* @brief Function for getting the SCK pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return SCK pin selection.
*/
NRF_STATIC_INLINE uint32_t nrf_spis_sck_pin_get(NRF_SPIS_Type const * p_reg);
/**
* @brief Function for getting the MOSI pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return MOSI pin selection.
*/
NRF_STATIC_INLINE uint32_t nrf_spis_mosi_pin_get(NRF_SPIS_Type const * p_reg);
/**
* @brief Function for getting the MISO pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return MISO pin selection.
*/
NRF_STATIC_INLINE uint32_t nrf_spis_miso_pin_get(NRF_SPIS_Type const * p_reg);
/**
* @brief Function for getting the CSN pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return CSN pin selection.
*/
NRF_STATIC_INLINE uint32_t nrf_spis_csn_pin_get(NRF_SPIS_Type const * p_reg);
/**
* @brief Function for setting the transmit buffer.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] p_buffer Pointer to the buffer that contains the data to send.
* @param[in] length Maximum number of data bytes to transmit.
*/
NRF_STATIC_INLINE void nrf_spis_tx_buffer_set(NRF_SPIS_Type * p_reg,
uint8_t const * p_buffer,
size_t length);
/**
* @brief Function for setting the receive buffer.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] p_buffer Pointer to the buffer for received data.
* @param[in] length Maximum number of data bytes to receive.
*/
NRF_STATIC_INLINE void nrf_spis_rx_buffer_set(NRF_SPIS_Type * p_reg,
uint8_t * p_buffer,
size_t length);
/**
* @brief Function for getting the number of bytes transmitted
* in the last granted transaction.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @returns Number of bytes transmitted.
*/
NRF_STATIC_INLINE size_t nrf_spis_tx_amount_get(NRF_SPIS_Type const * p_reg);
/**
* @brief Function for getting the number of bytes received
* in the last granted transaction.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @returns Number of bytes received.
*/
NRF_STATIC_INLINE size_t nrf_spis_rx_amount_get(NRF_SPIS_Type const * p_reg);
/**
* @brief Function for setting the SPI configuration.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] spi_mode SPI mode.
* @param[in] spi_bit_order SPI bit order.
*/
NRF_STATIC_INLINE void nrf_spis_configure(NRF_SPIS_Type * p_reg,
nrf_spis_mode_t spi_mode,
nrf_spis_bit_order_t spi_bit_order);
/**
* @brief Function for setting the default character.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] def Default character that is clocked out in case of
* an overflow of the RXD buffer.
*/
NRF_STATIC_INLINE void nrf_spis_def_set(NRF_SPIS_Type * p_reg,
uint8_t def);
/**
* @brief Function for setting the over-read character.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] orc Over-read character that is clocked out in case of
* an over-read of the TXD buffer.
*/
NRF_STATIC_INLINE void nrf_spis_orc_set(NRF_SPIS_Type * p_reg,
uint8_t orc);
#if defined(SPIS_TXD_LIST_LIST_Msk) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for enabling the TX list feature.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spis_tx_list_enable(NRF_SPIS_Type * p_reg);
/**
* @brief Function for disabling the TX list feature.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spis_tx_list_disable(NRF_SPIS_Type * p_reg);
#endif // defined(SPIS_TXD_LIST_LIST_Msk) || defined(__NRFX_DOXYGEN__)
#if defined(SPIS_RXD_LIST_LIST_Msk) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for enabling the RX list feature.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spis_rx_list_enable(NRF_SPIS_Type * p_reg);
/**
* @brief Function for disabling the RX list feature.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spis_rx_list_disable(NRF_SPIS_Type * p_reg);
#endif // defined(SPIS_RXD_LIST_LIST_Msk) || defined(__NRFX_DOXYGEN__)
#ifndef NRF_DECLARE_ONLY
NRF_STATIC_INLINE void nrf_spis_task_trigger(NRF_SPIS_Type * p_reg,
nrf_spis_task_t task)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL;
}
NRF_STATIC_INLINE uint32_t nrf_spis_task_address_get(NRF_SPIS_Type const * p_reg,
nrf_spis_task_t task)
{
return (uint32_t)p_reg + (uint32_t)task;
}
NRF_STATIC_INLINE void nrf_spis_event_clear(NRF_SPIS_Type * p_reg,
nrf_spis_event_t event)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL;
nrf_event_readback((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE bool nrf_spis_event_check(NRF_SPIS_Type const * p_reg,
nrf_spis_event_t event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE uint32_t nrf_spis_event_address_get(NRF_SPIS_Type const * p_reg,
nrf_spis_event_t event)
{
return (uint32_t)p_reg + (uint32_t)event;
}
NRF_STATIC_INLINE void nrf_spis_shorts_enable(NRF_SPIS_Type * p_reg,
uint32_t mask)
{
p_reg->SHORTS |= mask;
}
NRF_STATIC_INLINE void nrf_spis_shorts_disable(NRF_SPIS_Type * p_reg,
uint32_t mask)
{
p_reg->SHORTS &= ~(mask);
}
NRF_STATIC_INLINE void nrf_spis_int_enable(NRF_SPIS_Type * p_reg,
uint32_t mask)
{
p_reg->INTENSET = mask;
}
NRF_STATIC_INLINE void nrf_spis_int_disable(NRF_SPIS_Type * p_reg,
uint32_t mask)
{
p_reg->INTENCLR = mask;
}
NRF_STATIC_INLINE uint32_t nrf_spis_int_enable_check(NRF_SPIS_Type const * p_reg, uint32_t mask)
{
return p_reg->INTENSET & mask;
}
#if defined(DPPI_PRESENT)
NRF_STATIC_INLINE void nrf_spis_subscribe_set(NRF_SPIS_Type * p_reg,
nrf_spis_task_t task,
uint8_t channel)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) =
((uint32_t)channel | SPIS_SUBSCRIBE_ACQUIRE_EN_Msk);
}
NRF_STATIC_INLINE void nrf_spis_subscribe_clear(NRF_SPIS_Type * p_reg,
nrf_spis_task_t task)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0;
}
NRF_STATIC_INLINE void nrf_spis_publish_set(NRF_SPIS_Type * p_reg,
nrf_spis_event_t event,
uint8_t channel)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) =
((uint32_t)channel | SPIS_PUBLISH_END_EN_Msk);
}
NRF_STATIC_INLINE void nrf_spis_publish_clear(NRF_SPIS_Type * p_reg,
nrf_spis_event_t event)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0;
}
#endif // defined(DPPI_PRESENT)
NRF_STATIC_INLINE void nrf_spis_enable(NRF_SPIS_Type * p_reg)
{
p_reg->ENABLE = (SPIS_ENABLE_ENABLE_Enabled << SPIS_ENABLE_ENABLE_Pos);
}
NRF_STATIC_INLINE void nrf_spis_disable(NRF_SPIS_Type * p_reg)
{
p_reg->ENABLE = (SPIS_ENABLE_ENABLE_Disabled << SPIS_ENABLE_ENABLE_Pos);
}
NRF_STATIC_INLINE nrf_spis_semstat_t nrf_spis_semaphore_status_get(NRF_SPIS_Type const * p_reg)
{
return (nrf_spis_semstat_t) ((p_reg->SEMSTAT & SPIS_SEMSTAT_SEMSTAT_Msk)
>> SPIS_SEMSTAT_SEMSTAT_Pos);
}
NRF_STATIC_INLINE nrf_spis_status_mask_t nrf_spis_status_get(NRF_SPIS_Type const * p_reg)
{
return (nrf_spis_status_mask_t) p_reg->STATUS;
}
NRF_STATIC_INLINE void nrf_spis_pins_set(NRF_SPIS_Type * p_reg,
uint32_t sck_pin,
uint32_t mosi_pin,
uint32_t miso_pin,
uint32_t csn_pin)
{
#if defined (NRF51)
p_reg->PSELSCK = sck_pin;
p_reg->PSELMOSI = mosi_pin;
p_reg->PSELMISO = miso_pin;
p_reg->PSELCSN = csn_pin;
#else
p_reg->PSEL.SCK = sck_pin;
p_reg->PSEL.MOSI = mosi_pin;
p_reg->PSEL.MISO = miso_pin;
p_reg->PSEL.CSN = csn_pin;
#endif
}
NRF_STATIC_INLINE uint32_t nrf_spis_sck_pin_get(NRF_SPIS_Type const * p_reg)
{
#if defined (NRF51)
return p_reg->PSELSCK;
#else
return p_reg->PSEL.SCK;
#endif
}
NRF_STATIC_INLINE uint32_t nrf_spis_mosi_pin_get(NRF_SPIS_Type const * p_reg)
{
#if defined (NRF51)
return p_reg->PSELMOSI;
#else
return p_reg->PSEL.MOSI;
#endif
}
NRF_STATIC_INLINE uint32_t nrf_spis_miso_pin_get(NRF_SPIS_Type const * p_reg)
{
#if defined (NRF51)
return p_reg->PSELMISO;
#else
return p_reg->PSEL.MISO;
#endif
}
NRF_STATIC_INLINE uint32_t nrf_spis_csn_pin_get(NRF_SPIS_Type const * p_reg)
{
#if defined (NRF51)
return p_reg->PSELCSN;
#else
return p_reg->PSEL.CSN;
#endif
}
NRF_STATIC_INLINE void nrf_spis_tx_buffer_set(NRF_SPIS_Type * p_reg,
uint8_t const * p_buffer,
size_t length)
{
#if defined (NRF51)
p_reg->TXDPTR = (uint32_t)p_buffer;
p_reg->MAXTX = length;
#else
p_reg->TXD.PTR = (uint32_t)p_buffer;
p_reg->TXD.MAXCNT = length;
#endif
}
NRF_STATIC_INLINE void nrf_spis_rx_buffer_set(NRF_SPIS_Type * p_reg,
uint8_t * p_buffer,
size_t length)
{
#if defined (NRF51)
p_reg->RXDPTR = (uint32_t)p_buffer;
p_reg->MAXRX = length;
#else
p_reg->RXD.PTR = (uint32_t)p_buffer;
p_reg->RXD.MAXCNT = length;
#endif
}
NRF_STATIC_INLINE size_t nrf_spis_tx_amount_get(NRF_SPIS_Type const * p_reg)
{
#if defined (NRF51)
return p_reg->AMOUNTTX;
#else
return p_reg->TXD.AMOUNT;
#endif
}
NRF_STATIC_INLINE size_t nrf_spis_rx_amount_get(NRF_SPIS_Type const * p_reg)
{
#if defined (NRF51)
return p_reg->AMOUNTRX;
#else
return p_reg->RXD.AMOUNT;
#endif
}
NRF_STATIC_INLINE void nrf_spis_configure(NRF_SPIS_Type * p_reg,
nrf_spis_mode_t spi_mode,
nrf_spis_bit_order_t spi_bit_order)
{
uint32_t config = (spi_bit_order == NRF_SPIS_BIT_ORDER_MSB_FIRST ?
SPIS_CONFIG_ORDER_MsbFirst : SPIS_CONFIG_ORDER_LsbFirst);
switch (spi_mode)
{
default:
case NRF_SPIS_MODE_0:
config |= (SPIS_CONFIG_CPOL_ActiveHigh << SPIS_CONFIG_CPOL_Pos) |
(SPIS_CONFIG_CPHA_Leading << SPIS_CONFIG_CPHA_Pos);
break;
case NRF_SPIS_MODE_1:
config |= (SPIS_CONFIG_CPOL_ActiveHigh << SPIS_CONFIG_CPOL_Pos) |
(SPIS_CONFIG_CPHA_Trailing << SPIS_CONFIG_CPHA_Pos);
break;
case NRF_SPIS_MODE_2:
config |= (SPIS_CONFIG_CPOL_ActiveLow << SPIS_CONFIG_CPOL_Pos) |
(SPIS_CONFIG_CPHA_Leading << SPIS_CONFIG_CPHA_Pos);
break;
case NRF_SPIS_MODE_3:
config |= (SPIS_CONFIG_CPOL_ActiveLow << SPIS_CONFIG_CPOL_Pos) |
(SPIS_CONFIG_CPHA_Trailing << SPIS_CONFIG_CPHA_Pos);
break;
}
p_reg->CONFIG = config;
}
NRF_STATIC_INLINE void nrf_spis_orc_set(NRF_SPIS_Type * p_reg,
uint8_t orc)
{
p_reg->ORC = orc;
}
NRF_STATIC_INLINE void nrf_spis_def_set(NRF_SPIS_Type * p_reg,
uint8_t def)
{
p_reg->DEF = def;
}
#if defined(SPIS_TXD_LIST_LIST_Msk)
NRF_STATIC_INLINE void nrf_spis_tx_list_enable(NRF_SPIS_Type * p_reg)
{
p_reg->TXD.LIST = SPIS_TXD_LIST_LIST_ArrayList << SPIS_TXD_LIST_LIST_Pos;
}
NRF_STATIC_INLINE void nrf_spis_tx_list_disable(NRF_SPIS_Type * p_reg)
{
p_reg->TXD.LIST = SPIS_TXD_LIST_LIST_Disabled << SPIS_TXD_LIST_LIST_Pos;
}
#endif // defined(SPIS_TXD_LIST_LIST_Msk)
#if defined(SPIS_RXD_LIST_LIST_Msk)
NRF_STATIC_INLINE void nrf_spis_rx_list_enable(NRF_SPIS_Type * p_reg)
{
p_reg->RXD.LIST = SPIS_RXD_LIST_LIST_ArrayList << SPIS_RXD_LIST_LIST_Pos;
}
NRF_STATIC_INLINE void nrf_spis_rx_list_disable(NRF_SPIS_Type * p_reg)
{
p_reg->RXD.LIST = SPIS_RXD_LIST_LIST_Disabled << SPIS_RXD_LIST_LIST_Pos;
}
#endif // defined(SPIS_RXD_LIST_LIST_Msk)
#endif // NRF_DECLARE_ONLY
/** @} */
#ifdef __cplusplus
}
#endif
#endif // NRF_SPIS_H__