hal_nordic/nrfx/hal/nrf_spim.h

878 lines
32 KiB
C

/*
* Copyright (c) 2015 - 2022, Nordic Semiconductor ASA
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef NRF_SPIM_H__
#define NRF_SPIM_H__
#include <nrfx.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_spim_hal SPIM HAL
* @{
* @ingroup nrf_spim
* @brief Hardware access layer for managing the SPIM peripheral.
*/
/**
* @brief Macro getting pointer to the structure of registers of the SPIM peripheral.
*
* @param[in] idx SPIM instance index.
*
* @return Pointer to the structure of registers of the SPIM peripheral.
*/
#define NRF_SPIM_INST_GET(idx) NRFX_CONCAT_2(NRF_SPIM, idx)
#if defined(SPIM_FREQUENCY_FREQUENCY_M32) || defined(__NRFX_DOXYGEN__)
/** @brief Symbol indicating whether 32 MHz clock frequency is available. */
#define NRF_SPIM_HAS_32_MHZ_FREQ 1
#else
#define NRF_SPIM_HAS_32_MHZ_FREQ 0
#endif
/**
* @brief This value can be used as a parameter for the @ref nrf_spim_pins_set
* function to specify that a given SPI signal (SCK, MOSI, or MISO)
* shall not be connected to a physical pin.
*/
#define NRF_SPIM_PIN_NOT_CONNECTED 0xFFFFFFFF
/** @brief Macro for checking if the hardware chip select function is available. */
#define NRF_SPIM_HW_CSN_PRESENT \
(NRFX_CHECK(SPIM0_FEATURE_HARDWARE_CSN_PRESENT) || \
NRFX_CHECK(SPIM1_FEATURE_HARDWARE_CSN_PRESENT) || \
NRFX_CHECK(SPIM2_FEATURE_HARDWARE_CSN_PRESENT) || \
NRFX_CHECK(SPIM3_FEATURE_HARDWARE_CSN_PRESENT) || \
NRFX_CHECK(SPIM4_FEATURE_HARDWARE_CSN_PRESENT))
/** @brief Macro for checking if the DCX pin control is available. */
#define NRF_SPIM_DCX_PRESENT \
(NRFX_CHECK(SPIM0_FEATURE_DCX_PRESENT) || \
NRFX_CHECK(SPIM1_FEATURE_DCX_PRESENT) || \
NRFX_CHECK(SPIM2_FEATURE_DCX_PRESENT) || \
NRFX_CHECK(SPIM3_FEATURE_DCX_PRESENT) || \
NRFX_CHECK(SPIM4_FEATURE_DCX_PRESENT))
/** @brief Macro for checking if the RXDELAY function is available. */
#define NRF_SPIM_RXDELAY_PRESENT \
(NRFX_CHECK(SPIM0_FEATURE_RXDELAY_PRESENT) || \
NRFX_CHECK(SPIM1_FEATURE_RXDELAY_PRESENT) || \
NRFX_CHECK(SPIM2_FEATURE_RXDELAY_PRESENT) || \
NRFX_CHECK(SPIM3_FEATURE_RXDELAY_PRESENT) || \
NRFX_CHECK(SPIM4_FEATURE_RXDELAY_PRESENT))
#if defined(NRF_SPIM_DCX_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief This value specified in the DCX line configuration causes this line
* to be set low during whole transmission (all transmitted bytes are
* marked as command bytes). Any lower value causes the DCX line to be
* switched from low to high after this number of bytes is transmitted
* (all remaining bytes are marked as data bytes).
*/
#define NRF_SPIM_DCX_CNT_ALL_CMD 0xF
#endif
/** @brief SPIM tasks. */
typedef enum
{
NRF_SPIM_TASK_START = offsetof(NRF_SPIM_Type, TASKS_START), ///< Start SPI transaction.
NRF_SPIM_TASK_STOP = offsetof(NRF_SPIM_Type, TASKS_STOP), ///< Stop SPI transaction.
NRF_SPIM_TASK_SUSPEND = offsetof(NRF_SPIM_Type, TASKS_SUSPEND), ///< Suspend SPI transaction.
NRF_SPIM_TASK_RESUME = offsetof(NRF_SPIM_Type, TASKS_RESUME) ///< Resume SPI transaction.
} nrf_spim_task_t;
/** @brief SPIM events. */
typedef enum
{
NRF_SPIM_EVENT_STOPPED = offsetof(NRF_SPIM_Type, EVENTS_STOPPED), ///< SPI transaction has stopped.
NRF_SPIM_EVENT_ENDRX = offsetof(NRF_SPIM_Type, EVENTS_ENDRX), ///< End of RXD buffer reached.
NRF_SPIM_EVENT_END = offsetof(NRF_SPIM_Type, EVENTS_END), ///< End of RXD buffer and TXD buffer reached.
NRF_SPIM_EVENT_ENDTX = offsetof(NRF_SPIM_Type, EVENTS_ENDTX), ///< End of TXD buffer reached.
NRF_SPIM_EVENT_STARTED = offsetof(NRF_SPIM_Type, EVENTS_STARTED) ///< Transaction started.
} nrf_spim_event_t;
/**
* @brief SPIM shortcuts.
*/
typedef enum
{
NRF_SPIM_SHORT_END_START_MASK = SPIM_SHORTS_END_START_Msk, ///< Shortcut between END event and START task.
NRF_SPIM_ALL_SHORTS_MASK = SPIM_SHORTS_END_START_Msk ///< All SPIM shortcuts.
} nrf_spim_short_mask_t;
/** @brief SPIM interrupts. */
typedef enum
{
NRF_SPIM_INT_STOPPED_MASK = SPIM_INTENSET_STOPPED_Msk, ///< Interrupt on STOPPED event.
NRF_SPIM_INT_ENDRX_MASK = SPIM_INTENSET_ENDRX_Msk, ///< Interrupt on ENDRX event.
NRF_SPIM_INT_END_MASK = SPIM_INTENSET_END_Msk, ///< Interrupt on END event.
NRF_SPIM_INT_ENDTX_MASK = SPIM_INTENSET_ENDTX_Msk, ///< Interrupt on ENDTX event.
NRF_SPIM_INT_STARTED_MASK = SPIM_INTENSET_STARTED_Msk, ///< Interrupt on STARTED event.
NRF_SPIM_ALL_INTS_MASK = SPIM_INTENSET_STOPPED_Msk |
SPIM_INTENSET_ENDRX_Msk |
SPIM_INTENSET_END_Msk |
SPIM_INTENSET_ENDTX_Msk |
SPIM_INTENSET_STARTED_Msk ///< All SPIM interrupts.
} nrf_spim_int_mask_t;
/** @brief SPI master data rates. */
typedef enum
{
NRF_SPIM_FREQ_125K = SPIM_FREQUENCY_FREQUENCY_K125, ///< 125 kbps.
NRF_SPIM_FREQ_250K = SPIM_FREQUENCY_FREQUENCY_K250, ///< 250 kbps.
NRF_SPIM_FREQ_500K = SPIM_FREQUENCY_FREQUENCY_K500, ///< 500 kbps.
NRF_SPIM_FREQ_1M = SPIM_FREQUENCY_FREQUENCY_M1, ///< 1 Mbps.
NRF_SPIM_FREQ_2M = SPIM_FREQUENCY_FREQUENCY_M2, ///< 2 Mbps.
NRF_SPIM_FREQ_4M = SPIM_FREQUENCY_FREQUENCY_M4, ///< 4 Mbps.
// [conversion to 'int' needed to prevent compilers from complaining
// that the provided value (0x80000000UL) is out of range of "int"]
NRF_SPIM_FREQ_8M = (int)SPIM_FREQUENCY_FREQUENCY_M8, ///< 8 Mbps.
#if defined(SPIM_FREQUENCY_FREQUENCY_M16) || defined(__NRFX_DOXYGEN__)
NRF_SPIM_FREQ_16M = SPIM_FREQUENCY_FREQUENCY_M16, ///< 16 Mbps.
#endif
#if defined(SPIM_FREQUENCY_FREQUENCY_M32) || defined(__NRFX_DOXYGEN__)
NRF_SPIM_FREQ_32M = SPIM_FREQUENCY_FREQUENCY_M32 ///< 32 Mbps.
#endif
} nrf_spim_frequency_t;
/** @brief SPI modes. */
typedef enum
{
NRF_SPIM_MODE_0, ///< SCK active high, sample on leading edge of clock.
NRF_SPIM_MODE_1, ///< SCK active high, sample on trailing edge of clock.
NRF_SPIM_MODE_2, ///< SCK active low, sample on leading edge of clock.
NRF_SPIM_MODE_3 ///< SCK active low, sample on trailing edge of clock.
} nrf_spim_mode_t;
/** @brief SPI bit orders. */
typedef enum
{
NRF_SPIM_BIT_ORDER_MSB_FIRST = SPIM_CONFIG_ORDER_MsbFirst, ///< Most significant bit shifted out first.
NRF_SPIM_BIT_ORDER_LSB_FIRST = SPIM_CONFIG_ORDER_LsbFirst ///< Least significant bit shifted out first.
} nrf_spim_bit_order_t;
#if (NRF_SPIM_HW_CSN_PRESENT) || defined(__NRFX_DOXYGEN__)
/** @brief SPI CSN pin polarity. */
typedef enum
{
NRF_SPIM_CSN_POL_LOW = SPIM_CSNPOL_CSNPOL_LOW, ///< Active low (idle state high).
NRF_SPIM_CSN_POL_HIGH = SPIM_CSNPOL_CSNPOL_HIGH ///< Active high (idle state low).
} nrf_spim_csn_pol_t;
#endif // (NRF_SPIM_HW_CSN_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for activating the specified SPIM task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task to be activated.
*/
NRF_STATIC_INLINE void nrf_spim_task_trigger(NRF_SPIM_Type * p_reg,
nrf_spim_task_t task);
/**
* @brief Function for getting the address of the specified SPIM task register.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task The specified task.
*
* @return Address of the specified task register.
*/
NRF_STATIC_INLINE uint32_t nrf_spim_task_address_get(NRF_SPIM_Type const * p_reg,
nrf_spim_task_t task);
/**
* @brief Function for clearing the specified SPIM event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be cleared.
*/
NRF_STATIC_INLINE void nrf_spim_event_clear(NRF_SPIM_Type * p_reg,
nrf_spim_event_t event);
/**
* @brief Function for retrieving the state of the SPIM event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be checked.
*
* @retval true The event has been generated.
* @retval false The event has not been generated.
*/
NRF_STATIC_INLINE bool nrf_spim_event_check(NRF_SPIM_Type const * p_reg,
nrf_spim_event_t event);
/**
* @brief Function for getting the address of the specified SPIM event register.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event The specified event.
*
* @return Address of the specified event register.
*/
NRF_STATIC_INLINE uint32_t nrf_spim_event_address_get(NRF_SPIM_Type const * p_reg,
nrf_spim_event_t event);
/**
* @brief Function for enabling the specified shortcuts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Shortcuts to be enabled.
*/
NRF_STATIC_INLINE void nrf_spim_shorts_enable(NRF_SPIM_Type * p_reg,
uint32_t mask);
/**
* @brief Function for disabling the specified shortcuts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Shortcuts to be disabled.
*/
NRF_STATIC_INLINE void nrf_spim_shorts_disable(NRF_SPIM_Type * p_reg,
uint32_t mask);
/**
* @brief Function for getting the shortcut setting.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return Current shortcut configuration.
*/
NRF_STATIC_INLINE uint32_t nrf_spim_shorts_get(NRF_SPIM_Type const * p_reg);
/**
* @brief Function for enabling the specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be enabled.
*/
NRF_STATIC_INLINE void nrf_spim_int_enable(NRF_SPIM_Type * p_reg,
uint32_t mask);
/**
* @brief Function for disabling the specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be disabled.
*/
NRF_STATIC_INLINE void nrf_spim_int_disable(NRF_SPIM_Type * p_reg,
uint32_t mask);
/**
* @brief Function for checking if the specified interrupts are enabled.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be checked.
*
* @return Mask of enabled interrupts.
*/
NRF_STATIC_INLINE uint32_t nrf_spim_int_enable_check(NRF_SPIM_Type const * p_reg, uint32_t mask);
#if defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for setting the subscribe configuration for a given
* SPIM task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task for which to set the configuration.
* @param[in] channel Channel through which to subscribe events.
*/
NRF_STATIC_INLINE void nrf_spim_subscribe_set(NRF_SPIM_Type * p_reg,
nrf_spim_task_t task,
uint8_t channel);
/**
* @brief Function for clearing the subscribe configuration for a given
* SPIM task.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] task Task for which to clear the configuration.
*/
NRF_STATIC_INLINE void nrf_spim_subscribe_clear(NRF_SPIM_Type * p_reg,
nrf_spim_task_t task);
/**
* @brief Function for setting the publish configuration for a given
* SPIM event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event for which to set the configuration.
* @param[in] channel Channel through which to publish the event.
*/
NRF_STATIC_INLINE void nrf_spim_publish_set(NRF_SPIM_Type * p_reg,
nrf_spim_event_t event,
uint8_t channel);
/**
* @brief Function for clearing the publish configuration for a given
* SPIM event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event for which to clear the configuration.
*/
NRF_STATIC_INLINE void nrf_spim_publish_clear(NRF_SPIM_Type * p_reg,
nrf_spim_event_t event);
#endif // defined(DPPI_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for enabling the SPIM peripheral.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spim_enable(NRF_SPIM_Type * p_reg);
/**
* @brief Function for disabling the SPIM peripheral.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spim_disable(NRF_SPIM_Type * p_reg);
/**
* @brief Function for configuring SPIM pins.
*
* If a given signal is not needed, pass the @ref NRF_SPIM_PIN_NOT_CONNECTED
* value instead of its pin number.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] sck_pin SCK pin number.
* @param[in] mosi_pin MOSI pin number.
* @param[in] miso_pin MISO pin number.
*/
NRF_STATIC_INLINE void nrf_spim_pins_set(NRF_SPIM_Type * p_reg,
uint32_t sck_pin,
uint32_t mosi_pin,
uint32_t miso_pin);
/**
* @brief Function for getting the SCK pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return SCK pin selection.
*/
NRF_STATIC_INLINE uint32_t nrf_spim_sck_pin_get(NRF_SPIM_Type const * p_reg);
/**
* @brief Function for getting the MOSI pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return MOSI pin selection.
*/
NRF_STATIC_INLINE uint32_t nrf_spim_mosi_pin_get(NRF_SPIM_Type const * p_reg);
/**
* @brief Function for getting the MISO pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return MISO pin selection.
*/
NRF_STATIC_INLINE uint32_t nrf_spim_miso_pin_get(NRF_SPIM_Type const * p_reg);
#if (NRF_SPIM_HW_CSN_PRESENT) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for configuring the SPIM hardware CSN pin.
*
* If this signal is not needed, pass the @ref NRF_SPIM_PIN_NOT_CONNECTED
* value instead of its pin number.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] pin CSN pin number.
* @param[in] polarity CSN pin polarity.
* @param[in] duration Minimum duration between the edge of CSN and the edge of SCK
* and minimum duration of CSN must stay unselected between transactions.
* The value is specified in number of 64 MHz clock cycles (15.625 ns).
*/
NRF_STATIC_INLINE void nrf_spim_csn_configure(NRF_SPIM_Type * p_reg,
uint32_t pin,
nrf_spim_csn_pol_t polarity,
uint32_t duration);
#endif // (NRF_SPIM_HW_CSN_PRESENT) || defined(__NRFX_DOXYGEN__)
#if NRF_SPIM_DCX_PRESENT || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for configuring the SPIM DCX pin.
*
* If this signal is not needed, pass the @ref NRF_SPIM_PIN_NOT_CONNECTED
* value instead of its pin number.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] dcx_pin DCX pin number.
*/
NRF_STATIC_INLINE void nrf_spim_dcx_pin_set(NRF_SPIM_Type * p_reg,
uint32_t dcx_pin);
/**
* @brief Function for getting the DCX pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return DCX pin selection.
*/
NRF_STATIC_INLINE uint32_t nrf_spim_dcx_pin_get(NRF_SPIM_Type const * p_reg);
/**
* @brief Function for configuring the number of command bytes.
*
* Maximum value available for dividing the transmitted bytes into command
* bytes and data bytes is @ref NRF_SPIM_DCX_CNT_ALL_CMD - 1.
* The @ref NRF_SPIM_DCX_CNT_ALL_CMD value passed as the @c count parameter
* causes all transmitted bytes to be marked as command bytes.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] count Number of command bytes preceding the data bytes.
*/
NRF_STATIC_INLINE void nrf_spim_dcx_cnt_set(NRF_SPIM_Type * p_reg,
uint32_t count);
#endif // NRF_SPIM_DCX_PRESENT || defined(__NRFX_DOXYGEN__)
#if NRF_SPIM_RXDELAY_PRESENT || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for configuring the extended SPIM interface.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] rxdelay Sample delay for input serial data on MISO,
* specified in 64 MHz clock cycles (15.625 ns) from the sampling edge of SCK.
*/
NRF_STATIC_INLINE void nrf_spim_iftiming_set(NRF_SPIM_Type * p_reg,
uint32_t rxdelay);
#endif // NRF_SPIM_RXDELAY_PRESENT || defined(__NRFX_DOXYGEN__)
#if defined(SPIM_STALLSTAT_RX_Msk) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for clearing stall status for RX EasyDMA RAM accesses.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spim_stallstat_rx_clear(NRF_SPIM_Type * p_reg);
/**
* @brief Function for getting stall status for RX EasyDMA RAM accesses.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return Stall status of RX EasyDMA RAM accesses.
*/
NRF_STATIC_INLINE bool nrf_spim_stallstat_rx_get(NRF_SPIM_Type const * p_reg);
#endif // defined(SPIM_STALLSTAT_RX_Msk) || defined(__NRFX_DOXYGEN__)
#if defined(SPIM_STALLSTAT_TX_Msk) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for clearing stall status for TX EasyDMA RAM accesses.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spim_stallstat_tx_clear(NRF_SPIM_Type * p_reg);
/**
* @brief Function for getting stall status for TX EasyDMA RAM accesses.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return Stall status of TX EasyDMA RAM accesses.
*/
NRF_STATIC_INLINE bool nrf_spim_stallstat_tx_get(NRF_SPIM_Type const * p_reg);
#endif // defined(SPIM_STALLSTAT_TX_Msk) || defined(__NRFX_DOXYGEN__)
/**
* @brief Function for setting the SPI master data rate.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] frequency SPI frequency.
*/
NRF_STATIC_INLINE void nrf_spim_frequency_set(NRF_SPIM_Type * p_reg,
nrf_spim_frequency_t frequency);
/**
* @brief Function for setting the transmit buffer.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] p_buffer Pointer to the buffer with data to send.
* @param[in] length Maximum number of data bytes to transmit.
*/
NRF_STATIC_INLINE void nrf_spim_tx_buffer_set(NRF_SPIM_Type * p_reg,
uint8_t const * p_buffer,
size_t length);
/**
* @brief Function for setting the receive buffer.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] p_buffer Pointer to the buffer for received data.
* @param[in] length Maximum number of data bytes to receive.
*/
NRF_STATIC_INLINE void nrf_spim_rx_buffer_set(NRF_SPIM_Type * p_reg,
uint8_t * p_buffer,
size_t length);
/**
* @brief Function for setting the SPI configuration.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] spi_mode SPI mode.
* @param[in] spi_bit_order SPI bit order.
*/
NRF_STATIC_INLINE void nrf_spim_configure(NRF_SPIM_Type * p_reg,
nrf_spim_mode_t spi_mode,
nrf_spim_bit_order_t spi_bit_order);
/**
* @brief Function for setting the over-read character.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] orc Over-read character that is clocked out in case of
* an over-read of the TXD buffer.
*/
NRF_STATIC_INLINE void nrf_spim_orc_set(NRF_SPIM_Type * p_reg,
uint8_t orc);
/**
* @brief Function for enabling the TX list feature.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spim_tx_list_enable(NRF_SPIM_Type * p_reg);
/**
* @brief Function for disabling the TX list feature.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spim_tx_list_disable(NRF_SPIM_Type * p_reg);
/**
* @brief Function for enabling the RX list feature.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spim_rx_list_enable(NRF_SPIM_Type * p_reg);
/**
* @brief Function for disabling the RX list feature.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spim_rx_list_disable(NRF_SPIM_Type * p_reg);
#ifndef NRF_DECLARE_ONLY
NRF_STATIC_INLINE void nrf_spim_task_trigger(NRF_SPIM_Type * p_reg,
nrf_spim_task_t task)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)task)) = 0x1UL;
}
NRF_STATIC_INLINE uint32_t nrf_spim_task_address_get(NRF_SPIM_Type const * p_reg,
nrf_spim_task_t task)
{
return (uint32_t)((uint8_t *)p_reg + (uint32_t)task);
}
NRF_STATIC_INLINE void nrf_spim_event_clear(NRF_SPIM_Type * p_reg,
nrf_spim_event_t event)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL;
nrf_event_readback((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE bool nrf_spim_event_check(NRF_SPIM_Type const * p_reg,
nrf_spim_event_t event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE uint32_t nrf_spim_event_address_get(NRF_SPIM_Type const * p_reg,
nrf_spim_event_t event)
{
return (uint32_t)((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE void nrf_spim_shorts_enable(NRF_SPIM_Type * p_reg,
uint32_t mask)
{
p_reg->SHORTS |= mask;
}
NRF_STATIC_INLINE void nrf_spim_shorts_disable(NRF_SPIM_Type * p_reg,
uint32_t mask)
{
p_reg->SHORTS &= ~(mask);
}
NRF_STATIC_INLINE uint32_t nrf_spim_shorts_get(NRF_SPIM_Type const * p_reg)
{
return p_reg->SHORTS;
}
NRF_STATIC_INLINE void nrf_spim_int_enable(NRF_SPIM_Type * p_reg,
uint32_t mask)
{
p_reg->INTENSET = mask;
}
NRF_STATIC_INLINE void nrf_spim_int_disable(NRF_SPIM_Type * p_reg,
uint32_t mask)
{
p_reg->INTENCLR = mask;
}
NRF_STATIC_INLINE uint32_t nrf_spim_int_enable_check(NRF_SPIM_Type const * p_reg, uint32_t mask)
{
return p_reg->INTENSET & mask;
}
#if defined(DPPI_PRESENT)
NRF_STATIC_INLINE void nrf_spim_subscribe_set(NRF_SPIM_Type * p_reg,
nrf_spim_task_t task,
uint8_t channel)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) =
((uint32_t)channel | SPIM_SUBSCRIBE_START_EN_Msk);
}
NRF_STATIC_INLINE void nrf_spim_subscribe_clear(NRF_SPIM_Type * p_reg,
nrf_spim_task_t task)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) task + 0x80uL)) = 0;
}
NRF_STATIC_INLINE void nrf_spim_publish_set(NRF_SPIM_Type * p_reg,
nrf_spim_event_t event,
uint8_t channel)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) =
((uint32_t)channel | SPIM_PUBLISH_STARTED_EN_Msk);
}
NRF_STATIC_INLINE void nrf_spim_publish_clear(NRF_SPIM_Type * p_reg,
nrf_spim_event_t event)
{
*((volatile uint32_t *) ((uint8_t *) p_reg + (uint32_t) event + 0x80uL)) = 0;
}
#endif // defined(DPPI_PRESENT)
NRF_STATIC_INLINE void nrf_spim_enable(NRF_SPIM_Type * p_reg)
{
p_reg->ENABLE = (SPIM_ENABLE_ENABLE_Enabled << SPIM_ENABLE_ENABLE_Pos);
}
NRF_STATIC_INLINE void nrf_spim_disable(NRF_SPIM_Type * p_reg)
{
p_reg->ENABLE = (SPIM_ENABLE_ENABLE_Disabled << SPIM_ENABLE_ENABLE_Pos);
}
NRF_STATIC_INLINE void nrf_spim_pins_set(NRF_SPIM_Type * p_reg,
uint32_t sck_pin,
uint32_t mosi_pin,
uint32_t miso_pin)
{
p_reg->PSEL.SCK = sck_pin;
p_reg->PSEL.MOSI = mosi_pin;
p_reg->PSEL.MISO = miso_pin;
}
NRF_STATIC_INLINE uint32_t nrf_spim_sck_pin_get(NRF_SPIM_Type const * p_reg)
{
return p_reg->PSEL.SCK;
}
NRF_STATIC_INLINE uint32_t nrf_spim_mosi_pin_get(NRF_SPIM_Type const * p_reg)
{
return p_reg->PSEL.MOSI;
}
NRF_STATIC_INLINE uint32_t nrf_spim_miso_pin_get(NRF_SPIM_Type const * p_reg)
{
return p_reg->PSEL.MISO;
}
#if NRF_SPIM_HW_CSN_PRESENT
NRF_STATIC_INLINE void nrf_spim_csn_configure(NRF_SPIM_Type * p_reg,
uint32_t pin,
nrf_spim_csn_pol_t polarity,
uint32_t duration)
{
p_reg->PSEL.CSN = pin;
p_reg->CSNPOL = polarity;
p_reg->IFTIMING.CSNDUR = duration;
}
#endif // NRF_SPIM_HW_CSN_PRESENT
#if NRF_SPIM_DCX_PRESENT
NRF_STATIC_INLINE void nrf_spim_dcx_pin_set(NRF_SPIM_Type * p_reg,
uint32_t dcx_pin)
{
p_reg->PSELDCX = dcx_pin;
}
NRF_STATIC_INLINE uint32_t nrf_spim_dcx_pin_get(NRF_SPIM_Type const * p_reg)
{
return p_reg->PSELDCX;
}
NRF_STATIC_INLINE void nrf_spim_dcx_cnt_set(NRF_SPIM_Type * p_reg,
uint32_t dcx_cnt)
{
p_reg->DCXCNT = dcx_cnt;
}
#endif // NRF_SPIM_DCX_PRESENT
#if NRF_SPIM_RXDELAY_PRESENT
NRF_STATIC_INLINE void nrf_spim_iftiming_set(NRF_SPIM_Type * p_reg,
uint32_t rxdelay)
{
p_reg->IFTIMING.RXDELAY = rxdelay;
}
#endif // NRF_SPIM_RXDELAY_PRESENT
#if defined(SPIM_STALLSTAT_RX_Msk)
NRF_STATIC_INLINE void nrf_spim_stallstat_rx_clear(NRF_SPIM_Type * p_reg)
{
p_reg->STALLSTAT &= ~(SPIM_STALLSTAT_RX_Msk);
}
NRF_STATIC_INLINE bool nrf_spim_stallstat_rx_get(NRF_SPIM_Type const * p_reg)
{
return (p_reg->STALLSTAT & SPIM_STALLSTAT_RX_Msk) != 0;
}
#endif // defined(SPIM_STALLSTAT_RX_Msk)
#if defined(SPIM_STALLSTAT_TX_Msk)
NRF_STATIC_INLINE void nrf_spim_stallstat_tx_clear(NRF_SPIM_Type * p_reg)
{
p_reg->STALLSTAT &= ~(SPIM_STALLSTAT_TX_Msk);
}
NRF_STATIC_INLINE bool nrf_spim_stallstat_tx_get(NRF_SPIM_Type const * p_reg)
{
return (p_reg->STALLSTAT & SPIM_STALLSTAT_TX_Msk) != 0;
}
#endif // defined(SPIM_STALLSTAT_TX_Msk)
NRF_STATIC_INLINE void nrf_spim_frequency_set(NRF_SPIM_Type * p_reg,
nrf_spim_frequency_t frequency)
{
p_reg->FREQUENCY = (uint32_t)frequency;
}
NRF_STATIC_INLINE void nrf_spim_tx_buffer_set(NRF_SPIM_Type * p_reg,
uint8_t const * p_buffer,
size_t length)
{
p_reg->TXD.PTR = (uint32_t)p_buffer;
p_reg->TXD.MAXCNT = length;
}
NRF_STATIC_INLINE void nrf_spim_rx_buffer_set(NRF_SPIM_Type * p_reg,
uint8_t * p_buffer,
size_t length)
{
p_reg->RXD.PTR = (uint32_t)p_buffer;
p_reg->RXD.MAXCNT = length;
}
NRF_STATIC_INLINE void nrf_spim_configure(NRF_SPIM_Type * p_reg,
nrf_spim_mode_t spi_mode,
nrf_spim_bit_order_t spi_bit_order)
{
uint32_t config = (spi_bit_order == NRF_SPIM_BIT_ORDER_MSB_FIRST ?
SPIM_CONFIG_ORDER_MsbFirst : SPIM_CONFIG_ORDER_LsbFirst);
switch (spi_mode)
{
default:
case NRF_SPIM_MODE_0:
config |= (SPIM_CONFIG_CPOL_ActiveHigh << SPIM_CONFIG_CPOL_Pos) |
(SPIM_CONFIG_CPHA_Leading << SPIM_CONFIG_CPHA_Pos);
break;
case NRF_SPIM_MODE_1:
config |= (SPIM_CONFIG_CPOL_ActiveHigh << SPIM_CONFIG_CPOL_Pos) |
(SPIM_CONFIG_CPHA_Trailing << SPIM_CONFIG_CPHA_Pos);
break;
case NRF_SPIM_MODE_2:
config |= (SPIM_CONFIG_CPOL_ActiveLow << SPIM_CONFIG_CPOL_Pos) |
(SPIM_CONFIG_CPHA_Leading << SPIM_CONFIG_CPHA_Pos);
break;
case NRF_SPIM_MODE_3:
config |= (SPIM_CONFIG_CPOL_ActiveLow << SPIM_CONFIG_CPOL_Pos) |
(SPIM_CONFIG_CPHA_Trailing << SPIM_CONFIG_CPHA_Pos);
break;
}
p_reg->CONFIG = config;
}
NRF_STATIC_INLINE void nrf_spim_orc_set(NRF_SPIM_Type * p_reg,
uint8_t orc)
{
p_reg->ORC = orc;
}
NRF_STATIC_INLINE void nrf_spim_tx_list_enable(NRF_SPIM_Type * p_reg)
{
p_reg->TXD.LIST = SPIM_TXD_LIST_LIST_ArrayList << SPIM_TXD_LIST_LIST_Pos;
}
NRF_STATIC_INLINE void nrf_spim_tx_list_disable(NRF_SPIM_Type * p_reg)
{
p_reg->TXD.LIST = SPIM_TXD_LIST_LIST_Disabled << SPIM_TXD_LIST_LIST_Pos;
}
NRF_STATIC_INLINE void nrf_spim_rx_list_enable(NRF_SPIM_Type * p_reg)
{
p_reg->RXD.LIST = SPIM_RXD_LIST_LIST_ArrayList << SPIM_RXD_LIST_LIST_Pos;
}
NRF_STATIC_INLINE void nrf_spim_rx_list_disable(NRF_SPIM_Type * p_reg)
{
p_reg->RXD.LIST = SPIM_RXD_LIST_LIST_Disabled << SPIM_RXD_LIST_LIST_Pos;
}
#endif // NRF_DECLARE_ONLY
/** @} */
#ifdef __cplusplus
}
#endif
#endif // NRF_SPIM_H__