hal_nordic/nrfx/hal/nrf_spi.h

422 lines
14 KiB
C

/*
* Copyright (c) 2015 - 2022, Nordic Semiconductor ASA
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef NRF_SPI_H__
#define NRF_SPI_H__
#include <nrfx.h>
#ifdef __cplusplus
extern "C" {
#endif
/**
* @defgroup nrf_spi_hal SPI HAL
* @{
* @ingroup nrf_spi
* @brief Hardware access layer for managing the SPI peripheral.
*/
/**
* @brief Macro getting pointer to the structure of registers of the SPI peripheral.
*
* @param[in] idx SPI instance index.
*
* @return Pointer to the structure of registers of the SPI peripheral.
*/
#define NRF_SPI_INST_GET(idx) NRFX_CONCAT_2(NRF_SPI, idx)
/**
* @brief This value can be used as a parameter for the @ref nrf_spi_pins_set
* function to specify that a given SPI signal (SCK, MOSI, or MISO)
* shall not be connected to a physical pin.
*/
#define NRF_SPI_PIN_NOT_CONNECTED 0xFFFFFFFF
/** @brief SPI events. */
typedef enum
{
NRF_SPI_EVENT_READY = offsetof(NRF_SPI_Type, EVENTS_READY) ///< TXD byte sent and RXD byte received.
} nrf_spi_event_t;
/** @brief SPI interrupts. */
typedef enum
{
NRF_SPI_INT_READY_MASK = SPI_INTENSET_READY_Msk, ///< Interrupt on READY event.
NRF_SPI_ALL_INTS_MASK = SPI_INTENSET_READY_Msk ///< All SPI interrupts.
} nrf_spi_int_mask_t;
/** @brief SPI data rates. */
typedef enum
{
NRF_SPI_FREQ_125K = SPI_FREQUENCY_FREQUENCY_K125, ///< 125 kbps.
NRF_SPI_FREQ_250K = SPI_FREQUENCY_FREQUENCY_K250, ///< 250 kbps.
NRF_SPI_FREQ_500K = SPI_FREQUENCY_FREQUENCY_K500, ///< 500 kbps.
NRF_SPI_FREQ_1M = SPI_FREQUENCY_FREQUENCY_M1, ///< 1 Mbps.
NRF_SPI_FREQ_2M = SPI_FREQUENCY_FREQUENCY_M2, ///< 2 Mbps.
NRF_SPI_FREQ_4M = SPI_FREQUENCY_FREQUENCY_M4, ///< 4 Mbps.
// [conversion to 'int' needed to prevent compilers from complaining
// that the provided value (0x80000000UL) is out of range of "int"]
NRF_SPI_FREQ_8M = (int)SPI_FREQUENCY_FREQUENCY_M8 ///< 8 Mbps.
} nrf_spi_frequency_t;
/** @brief SPI modes. */
typedef enum
{
NRF_SPI_MODE_0, ///< SCK active high, sample on leading edge of clock.
NRF_SPI_MODE_1, ///< SCK active high, sample on trailing edge of clock.
NRF_SPI_MODE_2, ///< SCK active low, sample on leading edge of clock.
NRF_SPI_MODE_3 ///< SCK active low, sample on trailing edge of clock.
} nrf_spi_mode_t;
/** @brief SPI bit orders. */
typedef enum
{
NRF_SPI_BIT_ORDER_MSB_FIRST = SPI_CONFIG_ORDER_MsbFirst, ///< Most significant bit shifted out first.
NRF_SPI_BIT_ORDER_LSB_FIRST = SPI_CONFIG_ORDER_LsbFirst ///< Least significant bit shifted out first.
} nrf_spi_bit_order_t;
/**
* @brief Function for clearing the specified SPI event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be cleared.
*/
NRF_STATIC_INLINE void nrf_spi_event_clear(NRF_SPI_Type * p_reg,
nrf_spi_event_t event);
/**
* @brief Function for retrieving the state of the SPI event.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event Event to be checked.
*
* @retval true The event has been generated.
* @retval false The event has not been generated.
*/
NRF_STATIC_INLINE bool nrf_spi_event_check(NRF_SPI_Type const * p_reg,
nrf_spi_event_t event);
/**
* @brief Function for getting the address of the specified SPI event register.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] event The specified event.
*
* @return Address of the specified event register.
*/
NRF_STATIC_INLINE uint32_t nrf_spi_event_address_get(NRF_SPI_Type const * p_reg,
nrf_spi_event_t event);
/**
* @brief Function for enabling the specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be enabled.
*/
NRF_STATIC_INLINE void nrf_spi_int_enable(NRF_SPI_Type * p_reg,
uint32_t mask);
/**
* @brief Function for disabling the specified interrupts.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be disabled.
*/
NRF_STATIC_INLINE void nrf_spi_int_disable(NRF_SPI_Type * p_reg,
uint32_t mask);
/**
* @brief Function for checking if the specified interrupts are enabled.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] mask Mask of interrupts to be checked.
*
* @return Mask of enabled interrupts.
*/
NRF_STATIC_INLINE uint32_t nrf_spi_int_enable_check(NRF_SPI_Type const * p_reg, uint32_t mask);
/**
* @brief Function for enabling the SPI peripheral.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spi_enable(NRF_SPI_Type * p_reg);
/**
* @brief Function for disabling the SPI peripheral.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*/
NRF_STATIC_INLINE void nrf_spi_disable(NRF_SPI_Type * p_reg);
/**
* @brief Function for configuring SPI pins.
*
* If a given signal is not needed, pass the @ref NRF_SPI_PIN_NOT_CONNECTED
* value instead of its pin number.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] sck_pin SCK pin number.
* @param[in] mosi_pin MOSI pin number.
* @param[in] miso_pin MISO pin number.
*/
NRF_STATIC_INLINE void nrf_spi_pins_set(NRF_SPI_Type * p_reg,
uint32_t sck_pin,
uint32_t mosi_pin,
uint32_t miso_pin);
/**
* @brief Function for getting the SCK pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return SCK pin selection;
*/
NRF_STATIC_INLINE uint32_t nrf_spi_sck_pin_get(NRF_SPI_Type const * p_reg);
/**
* @brief Function for getting the MOSI pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return MOSI pin selection;
*/
NRF_STATIC_INLINE uint32_t nrf_spi_mosi_pin_get(NRF_SPI_Type const * p_reg);
/**
* @brief Function for getting the MISO pin selection.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return MISO pin selection;
*/
NRF_STATIC_INLINE uint32_t nrf_spi_miso_pin_get(NRF_SPI_Type const * p_reg);
/**
* @brief Function for writing data to the SPI transmitter register.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] data TX data to send.
*/
NRF_STATIC_INLINE void nrf_spi_txd_set(NRF_SPI_Type * p_reg, uint8_t data);
/**
* @brief Function for reading data from the SPI receiver register.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
*
* @return RX data received.
*/
NRF_STATIC_INLINE uint8_t nrf_spi_rxd_get(NRF_SPI_Type const * p_reg);
/**
* @brief Function for setting the SPI master data rate.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] frequency SPI frequency.
*/
NRF_STATIC_INLINE void nrf_spi_frequency_set(NRF_SPI_Type * p_reg,
nrf_spi_frequency_t frequency);
/**
* @brief Function for setting the SPI configuration.
*
* @param[in] p_reg Pointer to the structure of registers of the peripheral.
* @param[in] spi_mode SPI mode.
* @param[in] spi_bit_order SPI bit order.
*/
NRF_STATIC_INLINE void nrf_spi_configure(NRF_SPI_Type * p_reg,
nrf_spi_mode_t spi_mode,
nrf_spi_bit_order_t spi_bit_order);
#ifndef NRF_DECLARE_ONLY
NRF_STATIC_INLINE void nrf_spi_event_clear(NRF_SPI_Type * p_reg,
nrf_spi_event_t event)
{
*((volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event)) = 0x0UL;
nrf_event_readback((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE bool nrf_spi_event_check(NRF_SPI_Type const * p_reg,
nrf_spi_event_t event)
{
return (bool)*(volatile uint32_t *)((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE uint32_t nrf_spi_event_address_get(NRF_SPI_Type const * p_reg,
nrf_spi_event_t event)
{
return (uint32_t)((uint8_t *)p_reg + (uint32_t)event);
}
NRF_STATIC_INLINE void nrf_spi_int_enable(NRF_SPI_Type * p_reg,
uint32_t mask)
{
p_reg->INTENSET = mask;
}
NRF_STATIC_INLINE void nrf_spi_int_disable(NRF_SPI_Type * p_reg,
uint32_t mask)
{
p_reg->INTENCLR = mask;
}
NRF_STATIC_INLINE uint32_t nrf_spi_int_enable_check(NRF_SPI_Type const * p_reg, uint32_t mask)
{
return p_reg->INTENSET & mask;
}
NRF_STATIC_INLINE void nrf_spi_enable(NRF_SPI_Type * p_reg)
{
p_reg->ENABLE = (SPI_ENABLE_ENABLE_Enabled << SPI_ENABLE_ENABLE_Pos);
}
NRF_STATIC_INLINE void nrf_spi_disable(NRF_SPI_Type * p_reg)
{
p_reg->ENABLE = (SPI_ENABLE_ENABLE_Disabled << SPI_ENABLE_ENABLE_Pos);
}
NRF_STATIC_INLINE void nrf_spi_pins_set(NRF_SPI_Type * p_reg,
uint32_t sck_pin,
uint32_t mosi_pin,
uint32_t miso_pin)
{
#if defined(SPI_PSEL_SCK_CONNECT_Pos)
p_reg->PSEL.SCK = sck_pin;
#else
p_reg->PSELSCK = sck_pin;
#endif
#if defined(SPI_PSEL_MOSI_CONNECT_Pos)
p_reg->PSEL.MOSI = mosi_pin;
#else
p_reg->PSELMOSI = mosi_pin;
#endif
#if defined(SPI_PSEL_MISO_CONNECT_Pos)
p_reg->PSEL.MISO = miso_pin;
#else
p_reg->PSELMISO = miso_pin;
#endif
}
NRF_STATIC_INLINE uint32_t nrf_spi_sck_pin_get(NRF_SPI_Type const * p_reg)
{
#if defined(SPI_PSEL_SCK_CONNECT_Pos)
return p_reg->PSEL.SCK;
#else
return p_reg->PSELSCK;
#endif
}
NRF_STATIC_INLINE uint32_t nrf_spi_mosi_pin_get(NRF_SPI_Type const * p_reg)
{
#if defined(SPI_PSEL_MOSI_CONNECT_Pos)
return p_reg->PSEL.MOSI;
#else
return p_reg->PSELMOSI;
#endif
}
NRF_STATIC_INLINE uint32_t nrf_spi_miso_pin_get(NRF_SPI_Type const * p_reg)
{
#if defined(SPI_PSEL_MISO_CONNECT_Pos)
return p_reg->PSEL.MISO;
#else
return p_reg->PSELMISO;
#endif
}
NRF_STATIC_INLINE void nrf_spi_txd_set(NRF_SPI_Type * p_reg, uint8_t data)
{
p_reg->TXD = data;
}
NRF_STATIC_INLINE uint8_t nrf_spi_rxd_get(NRF_SPI_Type const * p_reg)
{
return p_reg->RXD;
}
NRF_STATIC_INLINE void nrf_spi_frequency_set(NRF_SPI_Type * p_reg,
nrf_spi_frequency_t frequency)
{
p_reg->FREQUENCY = (uint32_t)frequency;
}
NRF_STATIC_INLINE void nrf_spi_configure(NRF_SPI_Type * p_reg,
nrf_spi_mode_t spi_mode,
nrf_spi_bit_order_t spi_bit_order)
{
uint32_t config = (spi_bit_order == NRF_SPI_BIT_ORDER_MSB_FIRST ?
SPI_CONFIG_ORDER_MsbFirst : SPI_CONFIG_ORDER_LsbFirst);
switch (spi_mode)
{
default:
case NRF_SPI_MODE_0:
config |= (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos) |
(SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos);
break;
case NRF_SPI_MODE_1:
config |= (SPI_CONFIG_CPOL_ActiveHigh << SPI_CONFIG_CPOL_Pos) |
(SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos);
break;
case NRF_SPI_MODE_2:
config |= (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos) |
(SPI_CONFIG_CPHA_Leading << SPI_CONFIG_CPHA_Pos);
break;
case NRF_SPI_MODE_3:
config |= (SPI_CONFIG_CPOL_ActiveLow << SPI_CONFIG_CPOL_Pos) |
(SPI_CONFIG_CPHA_Trailing << SPI_CONFIG_CPHA_Pos);
break;
}
p_reg->CONFIG = config;
}
#endif // NRF_DECLARE_ONLY
/** @} */
#ifdef __cplusplus
}
#endif
#endif // NRF_SPI_H__