hal_nordic/nrfx/drivers/src/nrfx_spis.c

537 lines
19 KiB
C

/*
* Copyright (c) 2013 - 2022, Nordic Semiconductor ASA
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* 3. Neither the name of the copyright holder nor the names of its
* contributors may be used to endorse or promote products derived from this
* software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <nrfx.h>
#if NRFX_CHECK(NRFX_SPIS_ENABLED)
#if !(NRFX_CHECK(NRFX_SPIS0_ENABLED) || \
NRFX_CHECK(NRFX_SPIS1_ENABLED) || \
NRFX_CHECK(NRFX_SPIS2_ENABLED) || \
NRFX_CHECK(NRFX_SPIS3_ENABLED))
#error "No enabled SPIS instances. Check <nrfx_config.h>."
#endif
#include <nrfx_spis.h>
#include "prs/nrfx_prs.h"
#define NRFX_LOG_MODULE SPIS
#include <nrfx_log.h>
#define EVT_TO_STR(event) \
(event == NRF_SPIS_EVENT_ACQUIRED ? "NRF_SPIS_EVENT_ACQUIRED" : \
(event == NRF_SPIS_EVENT_END ? "NRF_SPIS_EVENT_END" : \
"UNKNOWN ERROR"))
#define SPISX_LENGTH_VALIDATE(peripheral, drv_inst_idx, rx_len, tx_len) \
(((drv_inst_idx) == NRFX_CONCAT_3(NRFX_, peripheral, _INST_IDX)) && \
NRFX_EASYDMA_LENGTH_VALIDATE(peripheral, rx_len, tx_len))
#if NRFX_CHECK(NRFX_SPIS0_ENABLED)
#define SPIS0_LENGTH_VALIDATE(...) SPISX_LENGTH_VALIDATE(SPIS0, __VA_ARGS__)
#else
#define SPIS0_LENGTH_VALIDATE(...) 0
#endif
#if NRFX_CHECK(NRFX_SPIS1_ENABLED)
#define SPIS1_LENGTH_VALIDATE(...) SPISX_LENGTH_VALIDATE(SPIS1, __VA_ARGS__)
#else
#define SPIS1_LENGTH_VALIDATE(...) 0
#endif
#if NRFX_CHECK(NRFX_SPIS2_ENABLED)
#define SPIS2_LENGTH_VALIDATE(...) SPISX_LENGTH_VALIDATE(SPIS2, __VA_ARGS__)
#else
#define SPIS2_LENGTH_VALIDATE(...) 0
#endif
#if NRFX_CHECK(NRFX_SPIS3_ENABLED)
#define SPIS3_LENGTH_VALIDATE(...) SPISX_LENGTH_VALIDATE(SPIS3, __VA_ARGS__)
#else
#define SPIS3_LENGTH_VALIDATE(...) 0
#endif
#define SPIS_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) \
(SPIS0_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) || \
SPIS1_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) || \
SPIS2_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len) || \
SPIS3_LENGTH_VALIDATE(drv_inst_idx, rx_len, tx_len))
#if NRFX_CHECK(NRFX_SPIS_NRF52_ANOMALY_109_WORKAROUND_ENABLED)
#include <nrfx_gpiote.h>
#define USE_DMA_ISSUE_WORKAROUND
// This handler is called by the GPIOTE driver when a falling edge is detected
// on the CSN line. There is no need to do anything here. The handling of the
// interrupt itself provides a protection for DMA transfers.
static void csn_event_handler(nrfx_gpiote_pin_t pin,
nrf_gpiote_polarity_t action)
{
}
#endif
/** @brief States of the SPI transaction state machine. */
typedef enum
{
SPIS_STATE_INIT, /**< Initialization state. In this state the module waits for a call to @ref spi_slave_buffers_set. */
SPIS_BUFFER_RESOURCE_REQUESTED, /**< State where the configuration of the memory buffers, which are to be used in SPI transaction, has started. */
SPIS_BUFFER_RESOURCE_CONFIGURED, /**< State where the configuration of the memory buffers, which are to be used in SPI transaction, has completed. */
SPIS_XFER_COMPLETED /**< State where SPI transaction has been completed. */
} nrfx_spis_state_t;
/** @brief SPIS control block - driver instance local data. */
typedef struct
{
volatile uint32_t tx_buffer_size; //!< SPI slave TX buffer size in bytes.
volatile uint32_t rx_buffer_size; //!< SPI slave RX buffer size in bytes.
nrfx_spis_event_handler_t handler; //!< SPI event handler.
volatile const uint8_t * tx_buffer; //!< SPI slave TX buffer.
volatile uint8_t * rx_buffer; //!< SPI slave RX buffer.
nrfx_drv_state_t state; //!< driver initialization state.
volatile nrfx_spis_state_t spi_state; //!< SPI slave state.
void * p_context; //!< Context set on initialization.
bool skip_gpio_cfg;
} spis_cb_t;
static spis_cb_t m_cb[NRFX_SPIS_ENABLED_COUNT];
static void configure_pins(NRF_SPIS_Type * p_spis,
nrfx_spis_config_t const * p_config)
{
if (!p_config->skip_gpio_cfg)
{
nrf_gpio_cfg(p_config->sck_pin,
NRF_GPIO_PIN_DIR_INPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_NOPULL,
NRF_GPIO_PIN_S0S1,
NRF_GPIO_PIN_NOSENSE);
if (p_config->mosi_pin != NRFX_SPIS_PIN_NOT_USED)
{
nrf_gpio_cfg(p_config->mosi_pin,
NRF_GPIO_PIN_DIR_INPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_NOPULL,
NRF_GPIO_PIN_S0S1,
NRF_GPIO_PIN_NOSENSE);
}
if (p_config->miso_pin != NRFX_SPIS_PIN_NOT_USED)
{
nrf_gpio_cfg(p_config->miso_pin,
NRF_GPIO_PIN_DIR_INPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
NRF_GPIO_PIN_NOPULL,
p_config->miso_drive,
NRF_GPIO_PIN_NOSENSE);
}
nrf_gpio_cfg(p_config->csn_pin,
NRF_GPIO_PIN_DIR_INPUT,
NRF_GPIO_PIN_INPUT_CONNECT,
p_config->csn_pullup,
NRF_GPIO_PIN_S0S1,
NRF_GPIO_PIN_NOSENSE);
}
if (!p_config->skip_psel_cfg)
{
uint32_t mosi_pin = (p_config->mosi_pin != NRFX_SPIS_PIN_NOT_USED)
? p_config->mosi_pin
: NRF_SPIS_PIN_NOT_CONNECTED;
uint32_t miso_pin = (p_config->miso_pin != NRFX_SPIS_PIN_NOT_USED)
? p_config->miso_pin
: NRF_SPIS_PIN_NOT_CONNECTED;
nrf_spis_pins_set(p_spis,
p_config->sck_pin,
mosi_pin,
miso_pin,
p_config->csn_pin);
}
}
nrfx_err_t nrfx_spis_init(nrfx_spis_t const * p_instance,
nrfx_spis_config_t const * p_config,
nrfx_spis_event_handler_t event_handler,
void * p_context)
{
NRFX_ASSERT(p_config);
NRFX_ASSERT(event_handler);
spis_cb_t * p_cb = &m_cb[p_instance->drv_inst_idx];
nrfx_err_t err_code;
NRF_SPIS_Type * p_spis = p_instance->p_reg;
if (p_cb->state != NRFX_DRV_STATE_UNINITIALIZED)
{
err_code = NRFX_ERROR_INVALID_STATE;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
if ((uint32_t)p_config->mode > (uint32_t)NRF_SPIS_MODE_3)
{
err_code = NRFX_ERROR_INVALID_PARAM;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#if NRFX_CHECK(NRFX_PRS_ENABLED)
static nrfx_irq_handler_t const irq_handlers[NRFX_SPIS_ENABLED_COUNT] = {
#if NRFX_CHECK(NRFX_SPIS0_ENABLED)
nrfx_spis_0_irq_handler,
#endif
#if NRFX_CHECK(NRFX_SPIS1_ENABLED)
nrfx_spis_1_irq_handler,
#endif
#if NRFX_CHECK(NRFX_SPIS2_ENABLED)
nrfx_spis_2_irq_handler,
#endif
#if NRFX_CHECK(NRFX_SPIS3_ENABLED)
nrfx_spis_3_irq_handler,
#endif
};
if (nrfx_prs_acquire(p_spis,
irq_handlers[p_instance->drv_inst_idx]) != NRFX_SUCCESS)
{
err_code = NRFX_ERROR_BUSY;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
#endif // NRFX_CHECK(NRFX_PRS_ENABLED)
p_cb->skip_gpio_cfg = p_config->skip_gpio_cfg;
configure_pins(p_spis, p_config);
nrf_spis_rx_buffer_set(p_spis, NULL, 0);
nrf_spis_tx_buffer_set(p_spis, NULL, 0);
// Configure SPI mode.
nrf_spis_configure(p_spis, p_config->mode, p_config->bit_order);
// Configure DEF and ORC characters.
nrf_spis_def_set(p_spis, p_config->def);
nrf_spis_orc_set(p_spis, p_config->orc);
// Clear possible pending events.
nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_END);
nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_ACQUIRED);
// Enable END_ACQUIRE shortcut.
nrf_spis_shorts_enable(p_spis, NRF_SPIS_SHORT_END_ACQUIRE);
p_cb->spi_state = SPIS_STATE_INIT;
p_cb->handler = event_handler;
p_cb->p_context = p_context;
#if defined(USE_DMA_ISSUE_WORKAROUND)
// Configure a GPIOTE channel to generate interrupts on each falling edge
// on the CSN line. Handling of these interrupts will make the CPU active,
// and thus will protect the DMA transfers started by SPIS right after it
// is selected for communication.
// [the GPIOTE driver may be already initialized at this point (by this
// driver when another SPIS instance is used, or by an application code),
// so just ignore the returned value]
(void)nrfx_gpiote_init(NRFX_GPIOTE_DEFAULT_CONFIG_IRQ_PRIORITY);
static nrfx_gpiote_in_config_t const csn_gpiote_config =
NRFX_GPIOTE_CONFIG_IN_SENSE_HITOLO(true);
nrfx_err_t gpiote_err_code = nrfx_gpiote_in_init(p_config->csn_pin,
&csn_gpiote_config, csn_event_handler);
if (gpiote_err_code != NRFX_SUCCESS)
{
err_code = NRFX_ERROR_INTERNAL;
NRFX_LOG_INFO("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
nrfx_gpiote_in_event_enable(p_config->csn_pin, true);
#endif
// Enable IRQ.
nrf_spis_int_enable(p_spis, NRF_SPIS_INT_ACQUIRED_MASK |
NRF_SPIS_INT_END_MASK);
NRFX_IRQ_PRIORITY_SET(nrfx_get_irq_number(p_instance->p_reg),
p_config->irq_priority);
NRFX_IRQ_ENABLE(nrfx_get_irq_number(p_instance->p_reg));
p_cb->state = NRFX_DRV_STATE_INITIALIZED;
// Enable SPI slave device.
nrf_spis_enable(p_spis);
NRFX_LOG_INFO("Initialized.");
return NRFX_SUCCESS;
}
void nrfx_spis_uninit(nrfx_spis_t const * p_instance)
{
spis_cb_t * p_cb = &m_cb[p_instance->drv_inst_idx];
NRFX_ASSERT(p_cb->state != NRFX_DRV_STATE_UNINITIALIZED);
NRF_SPIS_Type * p_spis = p_instance->p_reg;
#define DISABLE_ALL 0xFFFFFFFF
nrf_spis_disable(p_spis);
NRFX_IRQ_DISABLE(nrfx_get_irq_number(p_instance->p_reg));
nrf_spis_int_disable(p_spis, DISABLE_ALL);
#undef DISABLE_ALL
if (!p_cb->skip_gpio_cfg)
{
nrf_gpio_cfg_default(nrf_spis_sck_pin_get(p_spis));
nrf_gpio_cfg_default(nrf_spis_csn_pin_get(p_spis));
uint32_t miso_pin = nrf_spis_miso_pin_get(p_spis);
if (miso_pin != NRF_SPIS_PIN_NOT_CONNECTED)
{
nrf_gpio_cfg_default(miso_pin);
}
uint32_t mosi_pin = nrf_spis_mosi_pin_get(p_spis);
if (mosi_pin != NRF_SPIS_PIN_NOT_CONNECTED)
{
nrf_gpio_cfg_default(mosi_pin);
}
}
#if NRFX_CHECK(NRFX_PRS_ENABLED)
nrfx_prs_release(p_spis);
#endif
p_cb->state = NRFX_DRV_STATE_UNINITIALIZED;
NRFX_LOG_INFO("Uninitialized.");
}
/** @brief Function for executing the state entry action. */
static void spis_state_entry_action_execute(NRF_SPIS_Type * p_spis,
spis_cb_t * p_cb)
{
nrfx_spis_evt_t event;
switch (p_cb->spi_state)
{
case SPIS_BUFFER_RESOURCE_REQUESTED:
nrf_spis_task_trigger(p_spis, NRF_SPIS_TASK_ACQUIRE);
break;
case SPIS_BUFFER_RESOURCE_CONFIGURED:
event.evt_type = NRFX_SPIS_BUFFERS_SET_DONE;
event.rx_amount = 0;
event.tx_amount = 0;
NRFX_ASSERT(p_cb->handler != NULL);
p_cb->handler(&event, p_cb->p_context);
break;
case SPIS_XFER_COMPLETED:
event.evt_type = NRFX_SPIS_XFER_DONE;
event.rx_amount = nrf_spis_rx_amount_get(p_spis);
event.tx_amount = nrf_spis_tx_amount_get(p_spis);
NRFX_LOG_INFO("Transfer rx_len:%d.", event.rx_amount);
NRFX_LOG_DEBUG("Rx data:");
NRFX_LOG_HEXDUMP_DEBUG((uint8_t const *)p_cb->rx_buffer,
event.rx_amount * sizeof(p_cb->rx_buffer[0]));
NRFX_ASSERT(p_cb->handler != NULL);
p_cb->handler(&event, p_cb->p_context);
break;
default:
// No implementation required.
break;
}
}
/** @brief Function for changing the state of the SPI state machine.
*
* @param[in] p_spis SPIS instance register.
* @param[in] p_cb SPIS instance control block.
* @param[in] new_state State where the state machine transits to.
*/
static void spis_state_change(NRF_SPIS_Type * p_spis,
spis_cb_t * p_cb,
nrfx_spis_state_t new_state)
{
p_cb->spi_state = new_state;
spis_state_entry_action_execute(p_spis, p_cb);
}
nrfx_err_t nrfx_spis_buffers_set(nrfx_spis_t const * p_instance,
uint8_t const * p_tx_buffer,
size_t tx_buffer_length,
uint8_t * p_rx_buffer,
size_t rx_buffer_length)
{
NRFX_ASSERT(p_tx_buffer != NULL || tx_buffer_length == 0);
NRFX_ASSERT(p_rx_buffer != NULL || rx_buffer_length == 0);
spis_cb_t * p_cb = &m_cb[p_instance->drv_inst_idx];
nrfx_err_t err_code;
if (!SPIS_LENGTH_VALIDATE(p_instance->drv_inst_idx,
rx_buffer_length,
tx_buffer_length))
{
return NRFX_ERROR_INVALID_LENGTH;
}
// EasyDMA requires that transfer buffers are placed in Data RAM region;
// signal error if they are not.
if ((p_tx_buffer != NULL && !nrfx_is_in_ram(p_tx_buffer)) ||
(p_rx_buffer != NULL && !nrfx_is_in_ram(p_rx_buffer)))
{
err_code = NRFX_ERROR_INVALID_ADDR;
NRFX_LOG_WARNING("Function: %s, error code: %s.",
__func__,
NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
switch (p_cb->spi_state)
{
case SPIS_STATE_INIT:
case SPIS_XFER_COMPLETED:
case SPIS_BUFFER_RESOURCE_CONFIGURED:
p_cb->tx_buffer = p_tx_buffer;
p_cb->rx_buffer = p_rx_buffer;
p_cb->tx_buffer_size = tx_buffer_length;
p_cb->rx_buffer_size = rx_buffer_length;
err_code = NRFX_SUCCESS;
spis_state_change(p_instance->p_reg, p_cb, SPIS_BUFFER_RESOURCE_REQUESTED);
break;
case SPIS_BUFFER_RESOURCE_REQUESTED:
err_code = NRFX_ERROR_INVALID_STATE;
break;
default:
// @note: execution of this code path would imply internal error in the design.
err_code = NRFX_ERROR_INTERNAL;
break;
}
NRFX_LOG_INFO("Function: %s, error code: %s.", __func__, NRFX_LOG_ERROR_STRING_GET(err_code));
return err_code;
}
static void spis_irq_handler(NRF_SPIS_Type * p_spis, spis_cb_t * p_cb)
{
// @note: as multiple events can be pending for processing, the correct event processing order
// is as follows:
// - SPI semaphore acquired event.
// - SPI transaction complete event.
// Check for SPI semaphore acquired event.
if (nrf_spis_event_check(p_spis, NRF_SPIS_EVENT_ACQUIRED))
{
nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_ACQUIRED);
NRFX_LOG_DEBUG("SPIS: Event: %s.", EVT_TO_STR(NRF_SPIS_EVENT_ACQUIRED));
switch (p_cb->spi_state)
{
case SPIS_BUFFER_RESOURCE_REQUESTED:
nrf_spis_tx_buffer_set(p_spis, (uint8_t *)p_cb->tx_buffer, p_cb->tx_buffer_size);
nrf_spis_rx_buffer_set(p_spis, (uint8_t *)p_cb->rx_buffer, p_cb->rx_buffer_size);
nrf_spis_task_trigger(p_spis, NRF_SPIS_TASK_RELEASE);
spis_state_change(p_spis, p_cb, SPIS_BUFFER_RESOURCE_CONFIGURED);
break;
default:
// No implementation required.
break;
}
}
// Check for SPI transaction complete event.
if (nrf_spis_event_check(p_spis, NRF_SPIS_EVENT_END))
{
nrf_spis_event_clear(p_spis, NRF_SPIS_EVENT_END);
NRFX_LOG_DEBUG("SPIS: Event: %s.", EVT_TO_STR(NRF_SPIS_EVENT_END));
switch (p_cb->spi_state)
{
case SPIS_BUFFER_RESOURCE_CONFIGURED:
spis_state_change(p_spis, p_cb, SPIS_XFER_COMPLETED);
break;
default:
// No implementation required.
break;
}
}
}
#if NRFX_CHECK(NRFX_SPIS0_ENABLED)
void nrfx_spis_0_irq_handler(void)
{
spis_irq_handler(NRF_SPIS0, &m_cb[NRFX_SPIS0_INST_IDX]);
}
#endif
#if NRFX_CHECK(NRFX_SPIS1_ENABLED)
void nrfx_spis_1_irq_handler(void)
{
spis_irq_handler(NRF_SPIS1, &m_cb[NRFX_SPIS1_INST_IDX]);
}
#endif
#if NRFX_CHECK(NRFX_SPIS2_ENABLED)
void nrfx_spis_2_irq_handler(void)
{
spis_irq_handler(NRF_SPIS2, &m_cb[NRFX_SPIS2_INST_IDX]);
}
#endif
#if NRFX_CHECK(NRFX_SPIS3_ENABLED)
void nrfx_spis_3_irq_handler(void)
{
spis_irq_handler(NRF_SPIS3, &m_cb[NRFX_SPIS3_INST_IDX]);
}
#endif
#endif // NRFX_CHECK(NRFX_SPIS_ENABLED)