redis/src/t_zset.c

2924 lines
94 KiB
C

/*
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
* Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-----------------------------------------------------------------------------
* Sorted set API
*----------------------------------------------------------------------------*/
/* ZSETs are ordered sets using two data structures to hold the same elements
* in order to get O(log(N)) INSERT and REMOVE operations into a sorted
* data structure.
*
* The elements are added to a hash table mapping Redis objects to scores.
* At the same time the elements are added to a skip list mapping scores
* to Redis objects (so objects are sorted by scores in this "view"). */
/* This skiplist implementation is almost a C translation of the original
* algorithm described by William Pugh in "Skip Lists: A Probabilistic
* Alternative to Balanced Trees", modified in three ways:
* a) this implementation allows for repeated scores.
* b) the comparison is not just by key (our 'score') but by satellite data.
* c) there is a back pointer, so it's a doubly linked list with the back
* pointers being only at "level 1". This allows to traverse the list
* from tail to head, useful for ZREVRANGE. */
#include "server.h"
#include <math.h>
static int zslLexValueGteMin(robj *value, zlexrangespec *spec);
static int zslLexValueLteMax(robj *value, zlexrangespec *spec);
zskiplistNode *zslCreateNode(int level, double score, robj *obj) {
zskiplistNode *zn = zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));
zn->score = score;
zn->obj = obj;
return zn;
}
zskiplist *zslCreate(void) {
int j;
zskiplist *zsl;
zsl = zmalloc(sizeof(*zsl));
zsl->level = 1;
zsl->length = 0;
zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
zsl->header->level[j].forward = NULL;
zsl->header->level[j].span = 0;
}
zsl->header->backward = NULL;
zsl->tail = NULL;
return zsl;
}
void zslFreeNode(zskiplistNode *node) {
decrRefCount(node->obj);
zfree(node);
}
void zslFree(zskiplist *zsl) {
zskiplistNode *node = zsl->header->level[0].forward, *next;
zfree(zsl->header);
while(node) {
next = node->level[0].forward;
zslFreeNode(node);
node = next;
}
zfree(zsl);
}
/* Returns a random level for the new skiplist node we are going to create.
* The return value of this function is between 1 and ZSKIPLIST_MAXLEVEL
* (both inclusive), with a powerlaw-alike distribution where higher
* levels are less likely to be returned. */
int zslRandomLevel(void) {
int level = 1;
while ((random()&0xFFFF) < (ZSKIPLIST_P * 0xFFFF))
level += 1;
return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}
zskiplistNode *zslInsert(zskiplist *zsl, double score, robj *obj) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned int rank[ZSKIPLIST_MAXLEVEL];
int i, level;
redisAssert(!isnan(score));
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* store rank that is crossed to reach the insert position */
rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
compareStringObjects(x->level[i].forward->obj,obj) < 0))) {
rank[i] += x->level[i].span;
x = x->level[i].forward;
}
update[i] = x;
}
/* we assume the key is not already inside, since we allow duplicated
* scores, and the re-insertion of score and redis object should never
* happen since the caller of zslInsert() should test in the hash table
* if the element is already inside or not. */
level = zslRandomLevel();
if (level > zsl->level) {
for (i = zsl->level; i < level; i++) {
rank[i] = 0;
update[i] = zsl->header;
update[i]->level[i].span = zsl->length;
}
zsl->level = level;
}
x = zslCreateNode(level,score,obj);
for (i = 0; i < level; i++) {
x->level[i].forward = update[i]->level[i].forward;
update[i]->level[i].forward = x;
/* update span covered by update[i] as x is inserted here */
x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
update[i]->level[i].span = (rank[0] - rank[i]) + 1;
}
/* increment span for untouched levels */
for (i = level; i < zsl->level; i++) {
update[i]->level[i].span++;
}
x->backward = (update[0] == zsl->header) ? NULL : update[0];
if (x->level[0].forward)
x->level[0].forward->backward = x;
else
zsl->tail = x;
zsl->length++;
return x;
}
/* Internal function used by zslDelete, zslDeleteByScore and zslDeleteByRank */
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
int i;
for (i = 0; i < zsl->level; i++) {
if (update[i]->level[i].forward == x) {
update[i]->level[i].span += x->level[i].span - 1;
update[i]->level[i].forward = x->level[i].forward;
} else {
update[i]->level[i].span -= 1;
}
}
if (x->level[0].forward) {
x->level[0].forward->backward = x->backward;
} else {
zsl->tail = x->backward;
}
while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)
zsl->level--;
zsl->length--;
}
/* Delete an element with matching score/object from the skiplist. */
int zslDelete(zskiplist *zsl, double score, robj *obj) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
compareStringObjects(x->level[i].forward->obj,obj) < 0)))
x = x->level[i].forward;
update[i] = x;
}
/* We may have multiple elements with the same score, what we need
* is to find the element with both the right score and object. */
x = x->level[0].forward;
if (x && score == x->score && equalStringObjects(x->obj,obj)) {
zslDeleteNode(zsl, x, update);
zslFreeNode(x);
return 1;
}
return 0; /* not found */
}
static int zslValueGteMin(double value, zrangespec *spec) {
return spec->minex ? (value > spec->min) : (value >= spec->min);
}
int zslValueLteMax(double value, zrangespec *spec) {
return spec->maxex ? (value < spec->max) : (value <= spec->max);
}
/* Returns if there is a part of the zset is in range. */
int zslIsInRange(zskiplist *zsl, zrangespec *range) {
zskiplistNode *x;
/* Test for ranges that will always be empty. */
if (range->min > range->max ||
(range->min == range->max && (range->minex || range->maxex)))
return 0;
x = zsl->tail;
if (x == NULL || !zslValueGteMin(x->score,range))
return 0;
x = zsl->header->level[0].forward;
if (x == NULL || !zslValueLteMax(x->score,range))
return 0;
return 1;
}
/* Find the first node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *OUT* of range. */
while (x->level[i].forward &&
!zslValueGteMin(x->level[i].forward->score,range))
x = x->level[i].forward;
}
/* This is an inner range, so the next node cannot be NULL. */
x = x->level[0].forward;
redisAssert(x != NULL);
/* Check if score <= max. */
if (!zslValueLteMax(x->score,range)) return NULL;
return x;
}
/* Find the last node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *IN* range. */
while (x->level[i].forward &&
zslValueLteMax(x->level[i].forward->score,range))
x = x->level[i].forward;
}
/* This is an inner range, so this node cannot be NULL. */
redisAssert(x != NULL);
/* Check if score >= min. */
if (!zslValueGteMin(x->score,range)) return NULL;
return x;
}
/* Delete all the elements with score between min and max from the skiplist.
* Min and max are inclusive, so a score >= min || score <= max is deleted.
* Note that this function takes the reference to the hash table view of the
* sorted set, in order to remove the elements from the hash table too. */
unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec *range, dict *dict) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long removed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward && (range->minex ?
x->level[i].forward->score <= range->min :
x->level[i].forward->score < range->min))
x = x->level[i].forward;
update[i] = x;
}
/* Current node is the last with score < or <= min. */
x = x->level[0].forward;
/* Delete nodes while in range. */
while (x &&
(range->maxex ? x->score < range->max : x->score <= range->max))
{
zskiplistNode *next = x->level[0].forward;
zslDeleteNode(zsl,x,update);
dictDelete(dict,x->obj);
zslFreeNode(x);
removed++;
x = next;
}
return removed;
}
unsigned long zslDeleteRangeByLex(zskiplist *zsl, zlexrangespec *range, dict *dict) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long removed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
!zslLexValueGteMin(x->level[i].forward->obj,range))
x = x->level[i].forward;
update[i] = x;
}
/* Current node is the last with score < or <= min. */
x = x->level[0].forward;
/* Delete nodes while in range. */
while (x && zslLexValueLteMax(x->obj,range)) {
zskiplistNode *next = x->level[0].forward;
zslDeleteNode(zsl,x,update);
dictDelete(dict,x->obj);
zslFreeNode(x);
removed++;
x = next;
}
return removed;
}
/* Delete all the elements with rank between start and end from the skiplist.
* Start and end are inclusive. Note that start and end need to be 1-based */
unsigned long zslDeleteRangeByRank(zskiplist *zsl, unsigned int start, unsigned int end, dict *dict) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long traversed = 0, removed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward && (traversed + x->level[i].span) < start) {
traversed += x->level[i].span;
x = x->level[i].forward;
}
update[i] = x;
}
traversed++;
x = x->level[0].forward;
while (x && traversed <= end) {
zskiplistNode *next = x->level[0].forward;
zslDeleteNode(zsl,x,update);
dictDelete(dict,x->obj);
zslFreeNode(x);
removed++;
traversed++;
x = next;
}
return removed;
}
/* Find the rank for an element by both score and key.
* Returns 0 when the element cannot be found, rank otherwise.
* Note that the rank is 1-based due to the span of zsl->header to the
* first element. */
unsigned long zslGetRank(zskiplist *zsl, double score, robj *o) {
zskiplistNode *x;
unsigned long rank = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
compareStringObjects(x->level[i].forward->obj,o) <= 0))) {
rank += x->level[i].span;
x = x->level[i].forward;
}
/* x might be equal to zsl->header, so test if obj is non-NULL */
if (x->obj && equalStringObjects(x->obj,o)) {
return rank;
}
}
return 0;
}
/* Finds an element by its rank. The rank argument needs to be 1-based. */
zskiplistNode* zslGetElementByRank(zskiplist *zsl, unsigned long rank) {
zskiplistNode *x;
unsigned long traversed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward && (traversed + x->level[i].span) <= rank)
{
traversed += x->level[i].span;
x = x->level[i].forward;
}
if (traversed == rank) {
return x;
}
}
return NULL;
}
/* Populate the rangespec according to the objects min and max. */
static int zslParseRange(robj *min, robj *max, zrangespec *spec) {
char *eptr;
spec->minex = spec->maxex = 0;
/* Parse the min-max interval. If one of the values is prefixed
* by the "(" character, it's considered "open". For instance
* ZRANGEBYSCORE zset (1.5 (2.5 will match min < x < max
* ZRANGEBYSCORE zset 1.5 2.5 will instead match min <= x <= max */
if (min->encoding == REDIS_ENCODING_INT) {
spec->min = (long)min->ptr;
} else {
if (((char*)min->ptr)[0] == '(') {
spec->min = strtod((char*)min->ptr+1,&eptr);
if (eptr[0] != '\0' || isnan(spec->min)) return REDIS_ERR;
spec->minex = 1;
} else {
spec->min = strtod((char*)min->ptr,&eptr);
if (eptr[0] != '\0' || isnan(spec->min)) return REDIS_ERR;
}
}
if (max->encoding == REDIS_ENCODING_INT) {
spec->max = (long)max->ptr;
} else {
if (((char*)max->ptr)[0] == '(') {
spec->max = strtod((char*)max->ptr+1,&eptr);
if (eptr[0] != '\0' || isnan(spec->max)) return REDIS_ERR;
spec->maxex = 1;
} else {
spec->max = strtod((char*)max->ptr,&eptr);
if (eptr[0] != '\0' || isnan(spec->max)) return REDIS_ERR;
}
}
return REDIS_OK;
}
/* ------------------------ Lexicographic ranges ---------------------------- */
/* Parse max or min argument of ZRANGEBYLEX.
* (foo means foo (open interval)
* [foo means foo (closed interval)
* - means the min string possible
* + means the max string possible
*
* If the string is valid the *dest pointer is set to the redis object
* that will be used for the comparision, and ex will be set to 0 or 1
* respectively if the item is exclusive or inclusive. REDIS_OK will be
* returned.
*
* If the string is not a valid range REDIS_ERR is returned, and the value
* of *dest and *ex is undefined. */
int zslParseLexRangeItem(robj *item, robj **dest, int *ex) {
char *c = item->ptr;
switch(c[0]) {
case '+':
if (c[1] != '\0') return REDIS_ERR;
*ex = 0;
*dest = shared.maxstring;
incrRefCount(shared.maxstring);
return REDIS_OK;
case '-':
if (c[1] != '\0') return REDIS_ERR;
*ex = 0;
*dest = shared.minstring;
incrRefCount(shared.minstring);
return REDIS_OK;
case '(':
*ex = 1;
*dest = createStringObject(c+1,sdslen(c)-1);
return REDIS_OK;
case '[':
*ex = 0;
*dest = createStringObject(c+1,sdslen(c)-1);
return REDIS_OK;
default:
return REDIS_ERR;
}
}
/* Populate the rangespec according to the objects min and max.
*
* Return REDIS_OK on success. On error REDIS_ERR is returned.
* When OK is returned the structure must be freed with zslFreeLexRange(),
* otherwise no release is needed. */
static int zslParseLexRange(robj *min, robj *max, zlexrangespec *spec) {
/* The range can't be valid if objects are integer encoded.
* Every item must start with ( or [. */
if (min->encoding == REDIS_ENCODING_INT ||
max->encoding == REDIS_ENCODING_INT) return REDIS_ERR;
spec->min = spec->max = NULL;
if (zslParseLexRangeItem(min, &spec->min, &spec->minex) == REDIS_ERR ||
zslParseLexRangeItem(max, &spec->max, &spec->maxex) == REDIS_ERR) {
if (spec->min) decrRefCount(spec->min);
if (spec->max) decrRefCount(spec->max);
return REDIS_ERR;
} else {
return REDIS_OK;
}
}
/* Free a lex range structure, must be called only after zelParseLexRange()
* populated the structure with success (REDIS_OK returned). */
void zslFreeLexRange(zlexrangespec *spec) {
decrRefCount(spec->min);
decrRefCount(spec->max);
}
/* This is just a wrapper to compareStringObjects() that is able to
* handle shared.minstring and shared.maxstring as the equivalent of
* -inf and +inf for strings */
int compareStringObjectsForLexRange(robj *a, robj *b) {
if (a == b) return 0; /* This makes sure that we handle inf,inf and
-inf,-inf ASAP. One special case less. */
if (a == shared.minstring || b == shared.maxstring) return -1;
if (a == shared.maxstring || b == shared.minstring) return 1;
return compareStringObjects(a,b);
}
static int zslLexValueGteMin(robj *value, zlexrangespec *spec) {
return spec->minex ?
(compareStringObjectsForLexRange(value,spec->min) > 0) :
(compareStringObjectsForLexRange(value,spec->min) >= 0);
}
static int zslLexValueLteMax(robj *value, zlexrangespec *spec) {
return spec->maxex ?
(compareStringObjectsForLexRange(value,spec->max) < 0) :
(compareStringObjectsForLexRange(value,spec->max) <= 0);
}
/* Returns if there is a part of the zset is in the lex range. */
int zslIsInLexRange(zskiplist *zsl, zlexrangespec *range) {
zskiplistNode *x;
/* Test for ranges that will always be empty. */
if (compareStringObjectsForLexRange(range->min,range->max) > 1 ||
(compareStringObjects(range->min,range->max) == 0 &&
(range->minex || range->maxex)))
return 0;
x = zsl->tail;
if (x == NULL || !zslLexValueGteMin(x->obj,range))
return 0;
x = zsl->header->level[0].forward;
if (x == NULL || !zslLexValueLteMax(x->obj,range))
return 0;
return 1;
}
/* Find the first node that is contained in the specified lex range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslFirstInLexRange(zskiplist *zsl, zlexrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInLexRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *OUT* of range. */
while (x->level[i].forward &&
!zslLexValueGteMin(x->level[i].forward->obj,range))
x = x->level[i].forward;
}
/* This is an inner range, so the next node cannot be NULL. */
x = x->level[0].forward;
redisAssert(x != NULL);
/* Check if score <= max. */
if (!zslLexValueLteMax(x->obj,range)) return NULL;
return x;
}
/* Find the last node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslLastInLexRange(zskiplist *zsl, zlexrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInLexRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *IN* range. */
while (x->level[i].forward &&
zslLexValueLteMax(x->level[i].forward->obj,range))
x = x->level[i].forward;
}
/* This is an inner range, so this node cannot be NULL. */
redisAssert(x != NULL);
/* Check if score >= min. */
if (!zslLexValueGteMin(x->obj,range)) return NULL;
return x;
}
/*-----------------------------------------------------------------------------
* Ziplist-backed sorted set API
*----------------------------------------------------------------------------*/
double zzlGetScore(unsigned char *sptr) {
unsigned char *vstr;
unsigned int vlen;
long long vlong;
char buf[128];
double score;
redisAssert(sptr != NULL);
redisAssert(ziplistGet(sptr,&vstr,&vlen,&vlong));
if (vstr) {
memcpy(buf,vstr,vlen);
buf[vlen] = '\0';
score = strtod(buf,NULL);
} else {
score = vlong;
}
return score;
}
/* Return a ziplist element as a Redis string object.
* This simple abstraction can be used to simplifies some code at the
* cost of some performance. */
robj *ziplistGetObject(unsigned char *sptr) {
unsigned char *vstr;
unsigned int vlen;
long long vlong;
redisAssert(sptr != NULL);
redisAssert(ziplistGet(sptr,&vstr,&vlen,&vlong));
if (vstr) {
return createStringObject((char*)vstr,vlen);
} else {
return createStringObjectFromLongLong(vlong);
}
}
/* Compare element in sorted set with given element. */
int zzlCompareElements(unsigned char *eptr, unsigned char *cstr, unsigned int clen) {
unsigned char *vstr;
unsigned int vlen;
long long vlong;
unsigned char vbuf[32];
int minlen, cmp;
redisAssert(ziplistGet(eptr,&vstr,&vlen,&vlong));
if (vstr == NULL) {
/* Store string representation of long long in buf. */
vlen = ll2string((char*)vbuf,sizeof(vbuf),vlong);
vstr = vbuf;
}
minlen = (vlen < clen) ? vlen : clen;
cmp = memcmp(vstr,cstr,minlen);
if (cmp == 0) return vlen-clen;
return cmp;
}
unsigned int zzlLength(unsigned char *zl) {
return ziplistLen(zl)/2;
}
/* Move to next entry based on the values in eptr and sptr. Both are set to
* NULL when there is no next entry. */
void zzlNext(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
unsigned char *_eptr, *_sptr;
redisAssert(*eptr != NULL && *sptr != NULL);
_eptr = ziplistNext(zl,*sptr);
if (_eptr != NULL) {
_sptr = ziplistNext(zl,_eptr);
redisAssert(_sptr != NULL);
} else {
/* No next entry. */
_sptr = NULL;
}
*eptr = _eptr;
*sptr = _sptr;
}
/* Move to the previous entry based on the values in eptr and sptr. Both are
* set to NULL when there is no next entry. */
void zzlPrev(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
unsigned char *_eptr, *_sptr;
redisAssert(*eptr != NULL && *sptr != NULL);
_sptr = ziplistPrev(zl,*eptr);
if (_sptr != NULL) {
_eptr = ziplistPrev(zl,_sptr);
redisAssert(_eptr != NULL);
} else {
/* No previous entry. */
_eptr = NULL;
}
*eptr = _eptr;
*sptr = _sptr;
}
/* Returns if there is a part of the zset is in range. Should only be used
* internally by zzlFirstInRange and zzlLastInRange. */
int zzlIsInRange(unsigned char *zl, zrangespec *range) {
unsigned char *p;
double score;
/* Test for ranges that will always be empty. */
if (range->min > range->max ||
(range->min == range->max && (range->minex || range->maxex)))
return 0;
p = ziplistIndex(zl,-1); /* Last score. */
if (p == NULL) return 0; /* Empty sorted set */
score = zzlGetScore(p);
if (!zslValueGteMin(score,range))
return 0;
p = ziplistIndex(zl,1); /* First score. */
redisAssert(p != NULL);
score = zzlGetScore(p);
if (!zslValueLteMax(score,range))
return 0;
return 1;
}
/* Find pointer to the first element contained in the specified range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlFirstInRange(unsigned char *zl, zrangespec *range) {
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
double score;
/* If everything is out of range, return early. */
if (!zzlIsInRange(zl,range)) return NULL;
while (eptr != NULL) {
sptr = ziplistNext(zl,eptr);
redisAssert(sptr != NULL);
score = zzlGetScore(sptr);
if (zslValueGteMin(score,range)) {
/* Check if score <= max. */
if (zslValueLteMax(score,range))
return eptr;
return NULL;
}
/* Move to next element. */
eptr = ziplistNext(zl,sptr);
}
return NULL;
}
/* Find pointer to the last element contained in the specified range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlLastInRange(unsigned char *zl, zrangespec *range) {
unsigned char *eptr = ziplistIndex(zl,-2), *sptr;
double score;
/* If everything is out of range, return early. */
if (!zzlIsInRange(zl,range)) return NULL;
while (eptr != NULL) {
sptr = ziplistNext(zl,eptr);
redisAssert(sptr != NULL);
score = zzlGetScore(sptr);
if (zslValueLteMax(score,range)) {
/* Check if score >= min. */
if (zslValueGteMin(score,range))
return eptr;
return NULL;
}
/* Move to previous element by moving to the score of previous element.
* When this returns NULL, we know there also is no element. */
sptr = ziplistPrev(zl,eptr);
if (sptr != NULL)
redisAssert((eptr = ziplistPrev(zl,sptr)) != NULL);
else
eptr = NULL;
}
return NULL;
}
static int zzlLexValueGteMin(unsigned char *p, zlexrangespec *spec) {
robj *value = ziplistGetObject(p);
int res = zslLexValueGteMin(value,spec);
decrRefCount(value);
return res;
}
static int zzlLexValueLteMax(unsigned char *p, zlexrangespec *spec) {
robj *value = ziplistGetObject(p);
int res = zslLexValueLteMax(value,spec);
decrRefCount(value);
return res;
}
/* Returns if there is a part of the zset is in range. Should only be used
* internally by zzlFirstInRange and zzlLastInRange. */
int zzlIsInLexRange(unsigned char *zl, zlexrangespec *range) {
unsigned char *p;
/* Test for ranges that will always be empty. */
if (compareStringObjectsForLexRange(range->min,range->max) > 1 ||
(compareStringObjects(range->min,range->max) == 0 &&
(range->minex || range->maxex)))
return 0;
p = ziplistIndex(zl,-2); /* Last element. */
if (p == NULL) return 0;
if (!zzlLexValueGteMin(p,range))
return 0;
p = ziplistIndex(zl,0); /* First element. */
redisAssert(p != NULL);
if (!zzlLexValueLteMax(p,range))
return 0;
return 1;
}
/* Find pointer to the first element contained in the specified lex range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlFirstInLexRange(unsigned char *zl, zlexrangespec *range) {
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
/* If everything is out of range, return early. */
if (!zzlIsInLexRange(zl,range)) return NULL;
while (eptr != NULL) {
if (zzlLexValueGteMin(eptr,range)) {
/* Check if score <= max. */
if (zzlLexValueLteMax(eptr,range))
return eptr;
return NULL;
}
/* Move to next element. */
sptr = ziplistNext(zl,eptr); /* This element score. Skip it. */
redisAssert(sptr != NULL);
eptr = ziplistNext(zl,sptr); /* Next element. */
}
return NULL;
}
/* Find pointer to the last element contained in the specified lex range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlLastInLexRange(unsigned char *zl, zlexrangespec *range) {
unsigned char *eptr = ziplistIndex(zl,-2), *sptr;
/* If everything is out of range, return early. */
if (!zzlIsInLexRange(zl,range)) return NULL;
while (eptr != NULL) {
if (zzlLexValueLteMax(eptr,range)) {
/* Check if score >= min. */
if (zzlLexValueGteMin(eptr,range))
return eptr;
return NULL;
}
/* Move to previous element by moving to the score of previous element.
* When this returns NULL, we know there also is no element. */
sptr = ziplistPrev(zl,eptr);
if (sptr != NULL)
redisAssert((eptr = ziplistPrev(zl,sptr)) != NULL);
else
eptr = NULL;
}
return NULL;
}
unsigned char *zzlFind(unsigned char *zl, robj *ele, double *score) {
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
ele = getDecodedObject(ele);
while (eptr != NULL) {
sptr = ziplistNext(zl,eptr);
redisAssertWithInfo(NULL,ele,sptr != NULL);
if (ziplistCompare(eptr,ele->ptr,sdslen(ele->ptr))) {
/* Matching element, pull out score. */
if (score != NULL) *score = zzlGetScore(sptr);
decrRefCount(ele);
return eptr;
}
/* Move to next element. */
eptr = ziplistNext(zl,sptr);
}
decrRefCount(ele);
return NULL;
}
/* Delete (element,score) pair from ziplist. Use local copy of eptr because we
* don't want to modify the one given as argument. */
unsigned char *zzlDelete(unsigned char *zl, unsigned char *eptr) {
unsigned char *p = eptr;
/* TODO: add function to ziplist API to delete N elements from offset. */
zl = ziplistDelete(zl,&p);
zl = ziplistDelete(zl,&p);
return zl;
}
unsigned char *zzlInsertAt(unsigned char *zl, unsigned char *eptr, robj *ele, double score) {
unsigned char *sptr;
char scorebuf[128];
int scorelen;
size_t offset;
redisAssertWithInfo(NULL,ele,sdsEncodedObject(ele));
scorelen = d2string(scorebuf,sizeof(scorebuf),score);
if (eptr == NULL) {
zl = ziplistPush(zl,ele->ptr,sdslen(ele->ptr),ZIPLIST_TAIL);
zl = ziplistPush(zl,(unsigned char*)scorebuf,scorelen,ZIPLIST_TAIL);
} else {
/* Keep offset relative to zl, as it might be re-allocated. */
offset = eptr-zl;
zl = ziplistInsert(zl,eptr,ele->ptr,sdslen(ele->ptr));
eptr = zl+offset;
/* Insert score after the element. */
redisAssertWithInfo(NULL,ele,(sptr = ziplistNext(zl,eptr)) != NULL);
zl = ziplistInsert(zl,sptr,(unsigned char*)scorebuf,scorelen);
}
return zl;
}
/* Insert (element,score) pair in ziplist. This function assumes the element is
* not yet present in the list. */
unsigned char *zzlInsert(unsigned char *zl, robj *ele, double score) {
unsigned char *eptr = ziplistIndex(zl,0), *sptr;
double s;
ele = getDecodedObject(ele);
while (eptr != NULL) {
sptr = ziplistNext(zl,eptr);
redisAssertWithInfo(NULL,ele,sptr != NULL);
s = zzlGetScore(sptr);
if (s > score) {
/* First element with score larger than score for element to be
* inserted. This means we should take its spot in the list to
* maintain ordering. */
zl = zzlInsertAt(zl,eptr,ele,score);
break;
} else if (s == score) {
/* Ensure lexicographical ordering for elements. */
if (zzlCompareElements(eptr,ele->ptr,sdslen(ele->ptr)) > 0) {
zl = zzlInsertAt(zl,eptr,ele,score);
break;
}
}
/* Move to next element. */
eptr = ziplistNext(zl,sptr);
}
/* Push on tail of list when it was not yet inserted. */
if (eptr == NULL)
zl = zzlInsertAt(zl,NULL,ele,score);
decrRefCount(ele);
return zl;
}
unsigned char *zzlDeleteRangeByScore(unsigned char *zl, zrangespec *range, unsigned long *deleted) {
unsigned char *eptr, *sptr;
double score;
unsigned long num = 0;
if (deleted != NULL) *deleted = 0;
eptr = zzlFirstInRange(zl,range);
if (eptr == NULL) return zl;
/* When the tail of the ziplist is deleted, eptr will point to the sentinel
* byte and ziplistNext will return NULL. */
while ((sptr = ziplistNext(zl,eptr)) != NULL) {
score = zzlGetScore(sptr);
if (zslValueLteMax(score,range)) {
/* Delete both the element and the score. */
zl = ziplistDelete(zl,&eptr);
zl = ziplistDelete(zl,&eptr);
num++;
} else {
/* No longer in range. */
break;
}
}
if (deleted != NULL) *deleted = num;
return zl;
}
unsigned char *zzlDeleteRangeByLex(unsigned char *zl, zlexrangespec *range, unsigned long *deleted) {
unsigned char *eptr, *sptr;
unsigned long num = 0;
if (deleted != NULL) *deleted = 0;
eptr = zzlFirstInLexRange(zl,range);
if (eptr == NULL) return zl;
/* When the tail of the ziplist is deleted, eptr will point to the sentinel
* byte and ziplistNext will return NULL. */
while ((sptr = ziplistNext(zl,eptr)) != NULL) {
if (zzlLexValueLteMax(eptr,range)) {
/* Delete both the element and the score. */
zl = ziplistDelete(zl,&eptr);
zl = ziplistDelete(zl,&eptr);
num++;
} else {
/* No longer in range. */
break;
}
}
if (deleted != NULL) *deleted = num;
return zl;
}
/* Delete all the elements with rank between start and end from the skiplist.
* Start and end are inclusive. Note that start and end need to be 1-based */
unsigned char *zzlDeleteRangeByRank(unsigned char *zl, unsigned int start, unsigned int end, unsigned long *deleted) {
unsigned int num = (end-start)+1;
if (deleted) *deleted = num;
zl = ziplistDeleteRange(zl,2*(start-1),2*num);
return zl;
}
/*-----------------------------------------------------------------------------
* Common sorted set API
*----------------------------------------------------------------------------*/
unsigned int zsetLength(robj *zobj) {
int length = -1;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
length = zzlLength(zobj->ptr);
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
length = ((zset*)zobj->ptr)->zsl->length;
} else {
redisPanic("Unknown sorted set encoding");
}
return length;
}
void zsetConvert(robj *zobj, int encoding) {
zset *zs;
zskiplistNode *node, *next;
robj *ele;
double score;
if (zobj->encoding == encoding) return;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
if (encoding != REDIS_ENCODING_SKIPLIST)
redisPanic("Unknown target encoding");
zs = zmalloc(sizeof(*zs));
zs->dict = dictCreate(&zsetDictType,NULL);
zs->zsl = zslCreate();
eptr = ziplistIndex(zl,0);
redisAssertWithInfo(NULL,zobj,eptr != NULL);
sptr = ziplistNext(zl,eptr);
redisAssertWithInfo(NULL,zobj,sptr != NULL);
while (eptr != NULL) {
score = zzlGetScore(sptr);
redisAssertWithInfo(NULL,zobj,ziplistGet(eptr,&vstr,&vlen,&vlong));
if (vstr == NULL)
ele = createStringObjectFromLongLong(vlong);
else
ele = createStringObject((char*)vstr,vlen);
/* Has incremented refcount since it was just created. */
node = zslInsert(zs->zsl,score,ele);
redisAssertWithInfo(NULL,zobj,dictAdd(zs->dict,ele,&node->score) == DICT_OK);
incrRefCount(ele); /* Added to dictionary. */
zzlNext(zl,&eptr,&sptr);
}
zfree(zobj->ptr);
zobj->ptr = zs;
zobj->encoding = REDIS_ENCODING_SKIPLIST;
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
unsigned char *zl = ziplistNew();
if (encoding != REDIS_ENCODING_ZIPLIST)
redisPanic("Unknown target encoding");
/* Approach similar to zslFree(), since we want to free the skiplist at
* the same time as creating the ziplist. */
zs = zobj->ptr;
dictRelease(zs->dict);
node = zs->zsl->header->level[0].forward;
zfree(zs->zsl->header);
zfree(zs->zsl);
while (node) {
ele = getDecodedObject(node->obj);
zl = zzlInsertAt(zl,NULL,ele,node->score);
decrRefCount(ele);
next = node->level[0].forward;
zslFreeNode(node);
node = next;
}
zfree(zs);
zobj->ptr = zl;
zobj->encoding = REDIS_ENCODING_ZIPLIST;
} else {
redisPanic("Unknown sorted set encoding");
}
}
/* Return (by reference) the score of the specified member of the sorted set
* storing it into *score. If the element does not exist REDIS_ERR is returned
* otherwise REDIS_OK is returned and *score is correctly populated.
* If 'zobj' or 'member' is NULL, REDIS_ERR is returned. */
int zsetScore(robj *zobj, robj *member, double *score) {
if (!zobj || !member) return REDIS_ERR;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
if (zzlFind(zobj->ptr, member, score) == NULL) return REDIS_ERR;
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
dictEntry *de = dictFind(zs->dict, member);
if (de == NULL) return REDIS_ERR;
*score = *(double*)dictGetVal(de);
} else {
redisPanic("Unknown sorted set encoding");
}
return REDIS_OK;
}
/*-----------------------------------------------------------------------------
* Sorted set commands
*----------------------------------------------------------------------------*/
/* This generic command implements both ZADD and ZINCRBY. */
#define ZADD_NONE 0
#define ZADD_INCR (1<<0) /* Increment the score instead of setting it. */
#define ZADD_NX (1<<1) /* Don't touch elements not already existing. */
#define ZADD_XX (1<<2) /* Only touch elements already exisitng. */
#define ZADD_CH (1<<3) /* Return num of elements added or updated. */
void zaddGenericCommand(redisClient *c, int flags) {
static char *nanerr = "resulting score is not a number (NaN)";
robj *key = c->argv[1];
robj *ele;
robj *zobj;
robj *curobj;
double score = 0, *scores = NULL, curscore = 0.0;
int j, elements;
int scoreidx = 0;
/* The following vars are used in order to track what the command actually
* did during the execution, to reply to the client and to trigger the
* notification of keyspace change. */
int added = 0; /* Number of new elements added. */
int updated = 0; /* Number of elements with updated score. */
int processed = 0; /* Number of elements processed, may remain zero with
options like XX. */
/* Parse options. At the end 'scoreidx' is set to the argument position
* of the score of the first score-element pair. */
scoreidx = 2;
while(scoreidx < c->argc) {
char *opt = c->argv[scoreidx]->ptr;
if (!strcasecmp(opt,"nx")) flags |= ZADD_NX;
else if (!strcasecmp(opt,"xx")) flags |= ZADD_XX;
else if (!strcasecmp(opt,"ch")) flags |= ZADD_CH;
else if (!strcasecmp(opt,"incr")) flags |= ZADD_INCR;
else break;
scoreidx++;
}
/* Turn options into simple to check vars. */
int incr = (flags & ZADD_INCR) != 0;
int nx = (flags & ZADD_NX) != 0;
int xx = (flags & ZADD_XX) != 0;
int ch = (flags & ZADD_CH) != 0;
/* After the options, we expect to have an even number of args, since
* we expect any number of score-element pairs. */
elements = c->argc-scoreidx;
if (elements % 2) {
addReply(c,shared.syntaxerr);
return;
}
elements /= 2; /* Now this holds the number of score-element pairs. */
/* Check for incompatible options. */
if (nx && xx) {
addReplyError(c,
"XX and NX options at the same time are not compatible");
return;
}
if (incr && elements > 1) {
addReplyError(c,
"INCR option supports a single increment-element pair");
return;
}
/* Start parsing all the scores, we need to emit any syntax error
* before executing additions to the sorted set, as the command should
* either execute fully or nothing at all. */
scores = zmalloc(sizeof(double)*elements);
for (j = 0; j < elements; j++) {
if (getDoubleFromObjectOrReply(c,c->argv[scoreidx+j*2],&scores[j],NULL)
!= REDIS_OK) goto cleanup;
}
/* Lookup the key and create the sorted set if does not exist. */
zobj = lookupKeyWrite(c->db,key);
if (zobj == NULL) {
if (xx) goto reply_to_client; /* No key + XX option: nothing to do. */
if (server.zset_max_ziplist_entries == 0 ||
server.zset_max_ziplist_value < sdslen(c->argv[scoreidx+1]->ptr))
{
zobj = createZsetObject();
} else {
zobj = createZsetZiplistObject();
}
dbAdd(c->db,key,zobj);
} else {
if (zobj->type != REDIS_ZSET) {
addReply(c,shared.wrongtypeerr);
goto cleanup;
}
}
for (j = 0; j < elements; j++) {
score = scores[j];
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *eptr;
/* Prefer non-encoded element when dealing with ziplists. */
ele = c->argv[scoreidx+1+j*2];
if ((eptr = zzlFind(zobj->ptr,ele,&curscore)) != NULL) {
if (nx) continue;
if (incr) {
score += curscore;
if (isnan(score)) {
addReplyError(c,nanerr);
goto cleanup;
}
}
/* Remove and re-insert when score changed. */
if (score != curscore) {
zobj->ptr = zzlDelete(zobj->ptr,eptr);
zobj->ptr = zzlInsert(zobj->ptr,ele,score);
server.dirty++;
updated++;
}
processed++;
} else if (!xx) {
/* Optimize: check if the element is too large or the list
* becomes too long *before* executing zzlInsert. */
zobj->ptr = zzlInsert(zobj->ptr,ele,score);
if (zzlLength(zobj->ptr) > server.zset_max_ziplist_entries)
zsetConvert(zobj,REDIS_ENCODING_SKIPLIST);
if (sdslen(ele->ptr) > server.zset_max_ziplist_value)
zsetConvert(zobj,REDIS_ENCODING_SKIPLIST);
server.dirty++;
added++;
processed++;
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplistNode *znode;
dictEntry *de;
ele = c->argv[scoreidx+1+j*2] =
tryObjectEncoding(c->argv[scoreidx+1+j*2]);
de = dictFind(zs->dict,ele);
if (de != NULL) {
if (nx) continue;
curobj = dictGetKey(de);
curscore = *(double*)dictGetVal(de);
if (incr) {
score += curscore;
if (isnan(score)) {
addReplyError(c,nanerr);
/* Don't need to check if the sorted set is empty
* because we know it has at least one element. */
goto cleanup;
}
}
/* Remove and re-insert when score changed. We can safely
* delete the key object from the skiplist, since the
* dictionary still has a reference to it. */
if (score != curscore) {
redisAssertWithInfo(c,curobj,zslDelete(zs->zsl,curscore,curobj));
znode = zslInsert(zs->zsl,score,curobj);
incrRefCount(curobj); /* Re-inserted in skiplist. */
dictGetVal(de) = &znode->score; /* Update score ptr. */
server.dirty++;
updated++;
}
processed++;
} else if (!xx) {
znode = zslInsert(zs->zsl,score,ele);
incrRefCount(ele); /* Inserted in skiplist. */
redisAssertWithInfo(c,NULL,dictAdd(zs->dict,ele,&znode->score) == DICT_OK);
incrRefCount(ele); /* Added to dictionary. */
server.dirty++;
added++;
processed++;
}
} else {
redisPanic("Unknown sorted set encoding");
}
}
reply_to_client:
if (incr) { /* ZINCRBY or INCR option. */
if (processed)
addReplyDouble(c,score);
else
addReply(c,shared.nullbulk);
} else { /* ZADD. */
addReplyLongLong(c,ch ? added+updated : added);
}
cleanup:
zfree(scores);
if (added || updated) {
signalModifiedKey(c->db,key);
notifyKeyspaceEvent(REDIS_NOTIFY_ZSET,
incr ? "zincr" : "zadd", key, c->db->id);
}
}
void zaddCommand(redisClient *c) {
zaddGenericCommand(c,ZADD_NONE);
}
void zincrbyCommand(redisClient *c) {
zaddGenericCommand(c,ZADD_INCR);
}
void zremCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
int deleted = 0, keyremoved = 0, j;
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *eptr;
for (j = 2; j < c->argc; j++) {
if ((eptr = zzlFind(zobj->ptr,c->argv[j],NULL)) != NULL) {
deleted++;
zobj->ptr = zzlDelete(zobj->ptr,eptr);
if (zzlLength(zobj->ptr) == 0) {
dbDelete(c->db,key);
keyremoved = 1;
break;
}
}
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
dictEntry *de;
double score;
for (j = 2; j < c->argc; j++) {
de = dictFind(zs->dict,c->argv[j]);
if (de != NULL) {
deleted++;
/* Delete from the skiplist */
score = *(double*)dictGetVal(de);
redisAssertWithInfo(c,c->argv[j],zslDelete(zs->zsl,score,c->argv[j]));
/* Delete from the hash table */
dictDelete(zs->dict,c->argv[j]);
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
if (dictSize(zs->dict) == 0) {
dbDelete(c->db,key);
keyremoved = 1;
break;
}
}
}
} else {
redisPanic("Unknown sorted set encoding");
}
if (deleted) {
notifyKeyspaceEvent(REDIS_NOTIFY_ZSET,"zrem",key,c->db->id);
if (keyremoved)
notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",key,c->db->id);
signalModifiedKey(c->db,key);
server.dirty += deleted;
}
addReplyLongLong(c,deleted);
}
/* Implements ZREMRANGEBYRANK, ZREMRANGEBYSCORE, ZREMRANGEBYLEX commands. */
#define ZRANGE_RANK 0
#define ZRANGE_SCORE 1
#define ZRANGE_LEX 2
void zremrangeGenericCommand(redisClient *c, int rangetype) {
robj *key = c->argv[1];
robj *zobj;
int keyremoved = 0;
unsigned long deleted = 0;
zrangespec range;
zlexrangespec lexrange;
long start, end, llen;
/* Step 1: Parse the range. */
if (rangetype == ZRANGE_RANK) {
if ((getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != REDIS_OK) ||
(getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != REDIS_OK))
return;
} else if (rangetype == ZRANGE_SCORE) {
if (zslParseRange(c->argv[2],c->argv[3],&range) != REDIS_OK) {
addReplyError(c,"min or max is not a float");
return;
}
} else if (rangetype == ZRANGE_LEX) {
if (zslParseLexRange(c->argv[2],c->argv[3],&lexrange) != REDIS_OK) {
addReplyError(c,"min or max not valid string range item");
return;
}
}
/* Step 2: Lookup & range sanity checks if needed. */
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) goto cleanup;
if (rangetype == ZRANGE_RANK) {
/* Sanitize indexes. */
llen = zsetLength(zobj);
if (start < 0) start = llen+start;
if (end < 0) end = llen+end;
if (start < 0) start = 0;
/* Invariant: start >= 0, so this test will be true when end < 0.
* The range is empty when start > end or start >= length. */
if (start > end || start >= llen) {
addReply(c,shared.czero);
goto cleanup;
}
if (end >= llen) end = llen-1;
}
/* Step 3: Perform the range deletion operation. */
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
switch(rangetype) {
case ZRANGE_RANK:
zobj->ptr = zzlDeleteRangeByRank(zobj->ptr,start+1,end+1,&deleted);
break;
case ZRANGE_SCORE:
zobj->ptr = zzlDeleteRangeByScore(zobj->ptr,&range,&deleted);
break;
case ZRANGE_LEX:
zobj->ptr = zzlDeleteRangeByLex(zobj->ptr,&lexrange,&deleted);
break;
}
if (zzlLength(zobj->ptr) == 0) {
dbDelete(c->db,key);
keyremoved = 1;
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
switch(rangetype) {
case ZRANGE_RANK:
deleted = zslDeleteRangeByRank(zs->zsl,start+1,end+1,zs->dict);
break;
case ZRANGE_SCORE:
deleted = zslDeleteRangeByScore(zs->zsl,&range,zs->dict);
break;
case ZRANGE_LEX:
deleted = zslDeleteRangeByLex(zs->zsl,&lexrange,zs->dict);
break;
}
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
if (dictSize(zs->dict) == 0) {
dbDelete(c->db,key);
keyremoved = 1;
}
} else {
redisPanic("Unknown sorted set encoding");
}
/* Step 4: Notifications and reply. */
if (deleted) {
char *event[3] = {"zremrangebyrank","zremrangebyscore","zremrangebylex"};
signalModifiedKey(c->db,key);
notifyKeyspaceEvent(REDIS_NOTIFY_ZSET,event[rangetype],key,c->db->id);
if (keyremoved)
notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",key,c->db->id);
}
server.dirty += deleted;
addReplyLongLong(c,deleted);
cleanup:
if (rangetype == ZRANGE_LEX) zslFreeLexRange(&lexrange);
}
void zremrangebyrankCommand(redisClient *c) {
zremrangeGenericCommand(c,ZRANGE_RANK);
}
void zremrangebyscoreCommand(redisClient *c) {
zremrangeGenericCommand(c,ZRANGE_SCORE);
}
void zremrangebylexCommand(redisClient *c) {
zremrangeGenericCommand(c,ZRANGE_LEX);
}
typedef struct {
robj *subject;
int type; /* Set, sorted set */
int encoding;
double weight;
union {
/* Set iterators. */
union _iterset {
struct {
intset *is;
int ii;
} is;
struct {
dict *dict;
dictIterator *di;
dictEntry *de;
} ht;
} set;
/* Sorted set iterators. */
union _iterzset {
struct {
unsigned char *zl;
unsigned char *eptr, *sptr;
} zl;
struct {
zset *zs;
zskiplistNode *node;
} sl;
} zset;
} iter;
} zsetopsrc;
/* Use dirty flags for pointers that need to be cleaned up in the next
* iteration over the zsetopval. The dirty flag for the long long value is
* special, since long long values don't need cleanup. Instead, it means that
* we already checked that "ell" holds a long long, or tried to convert another
* representation into a long long value. When this was successful,
* OPVAL_VALID_LL is set as well. */
#define OPVAL_DIRTY_ROBJ 1
#define OPVAL_DIRTY_LL 2
#define OPVAL_VALID_LL 4
/* Store value retrieved from the iterator. */
typedef struct {
int flags;
unsigned char _buf[32]; /* Private buffer. */
robj *ele;
unsigned char *estr;
unsigned int elen;
long long ell;
double score;
} zsetopval;
typedef union _iterset iterset;
typedef union _iterzset iterzset;
void zuiInitIterator(zsetopsrc *op) {
if (op->subject == NULL)
return;
if (op->type == REDIS_SET) {
iterset *it = &op->iter.set;
if (op->encoding == REDIS_ENCODING_INTSET) {
it->is.is = op->subject->ptr;
it->is.ii = 0;
} else if (op->encoding == REDIS_ENCODING_HT) {
it->ht.dict = op->subject->ptr;
it->ht.di = dictGetIterator(op->subject->ptr);
it->ht.de = dictNext(it->ht.di);
} else {
redisPanic("Unknown set encoding");
}
} else if (op->type == REDIS_ZSET) {
iterzset *it = &op->iter.zset;
if (op->encoding == REDIS_ENCODING_ZIPLIST) {
it->zl.zl = op->subject->ptr;
it->zl.eptr = ziplistIndex(it->zl.zl,0);
if (it->zl.eptr != NULL) {
it->zl.sptr = ziplistNext(it->zl.zl,it->zl.eptr);
redisAssert(it->zl.sptr != NULL);
}
} else if (op->encoding == REDIS_ENCODING_SKIPLIST) {
it->sl.zs = op->subject->ptr;
it->sl.node = it->sl.zs->zsl->header->level[0].forward;
} else {
redisPanic("Unknown sorted set encoding");
}
} else {
redisPanic("Unsupported type");
}
}
void zuiClearIterator(zsetopsrc *op) {
if (op->subject == NULL)
return;
if (op->type == REDIS_SET) {
iterset *it = &op->iter.set;
if (op->encoding == REDIS_ENCODING_INTSET) {
REDIS_NOTUSED(it); /* skip */
} else if (op->encoding == REDIS_ENCODING_HT) {
dictReleaseIterator(it->ht.di);
} else {
redisPanic("Unknown set encoding");
}
} else if (op->type == REDIS_ZSET) {
iterzset *it = &op->iter.zset;
if (op->encoding == REDIS_ENCODING_ZIPLIST) {
REDIS_NOTUSED(it); /* skip */
} else if (op->encoding == REDIS_ENCODING_SKIPLIST) {
REDIS_NOTUSED(it); /* skip */
} else {
redisPanic("Unknown sorted set encoding");
}
} else {
redisPanic("Unsupported type");
}
}
int zuiLength(zsetopsrc *op) {
if (op->subject == NULL)
return 0;
if (op->type == REDIS_SET) {
if (op->encoding == REDIS_ENCODING_INTSET) {
return intsetLen(op->subject->ptr);
} else if (op->encoding == REDIS_ENCODING_HT) {
dict *ht = op->subject->ptr;
return dictSize(ht);
} else {
redisPanic("Unknown set encoding");
}
} else if (op->type == REDIS_ZSET) {
if (op->encoding == REDIS_ENCODING_ZIPLIST) {
return zzlLength(op->subject->ptr);
} else if (op->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = op->subject->ptr;
return zs->zsl->length;
} else {
redisPanic("Unknown sorted set encoding");
}
} else {
redisPanic("Unsupported type");
}
}
/* Check if the current value is valid. If so, store it in the passed structure
* and move to the next element. If not valid, this means we have reached the
* end of the structure and can abort. */
int zuiNext(zsetopsrc *op, zsetopval *val) {
if (op->subject == NULL)
return 0;
if (val->flags & OPVAL_DIRTY_ROBJ)
decrRefCount(val->ele);
memset(val,0,sizeof(zsetopval));
if (op->type == REDIS_SET) {
iterset *it = &op->iter.set;
if (op->encoding == REDIS_ENCODING_INTSET) {
int64_t ell;
if (!intsetGet(it->is.is,it->is.ii,&ell))
return 0;
val->ell = ell;
val->score = 1.0;
/* Move to next element. */
it->is.ii++;
} else if (op->encoding == REDIS_ENCODING_HT) {
if (it->ht.de == NULL)
return 0;
val->ele = dictGetKey(it->ht.de);
val->score = 1.0;
/* Move to next element. */
it->ht.de = dictNext(it->ht.di);
} else {
redisPanic("Unknown set encoding");
}
} else if (op->type == REDIS_ZSET) {
iterzset *it = &op->iter.zset;
if (op->encoding == REDIS_ENCODING_ZIPLIST) {
/* No need to check both, but better be explicit. */
if (it->zl.eptr == NULL || it->zl.sptr == NULL)
return 0;
redisAssert(ziplistGet(it->zl.eptr,&val->estr,&val->elen,&val->ell));
val->score = zzlGetScore(it->zl.sptr);
/* Move to next element. */
zzlNext(it->zl.zl,&it->zl.eptr,&it->zl.sptr);
} else if (op->encoding == REDIS_ENCODING_SKIPLIST) {
if (it->sl.node == NULL)
return 0;
val->ele = it->sl.node->obj;
val->score = it->sl.node->score;
/* Move to next element. */
it->sl.node = it->sl.node->level[0].forward;
} else {
redisPanic("Unknown sorted set encoding");
}
} else {
redisPanic("Unsupported type");
}
return 1;
}
int zuiLongLongFromValue(zsetopval *val) {
if (!(val->flags & OPVAL_DIRTY_LL)) {
val->flags |= OPVAL_DIRTY_LL;
if (val->ele != NULL) {
if (val->ele->encoding == REDIS_ENCODING_INT) {
val->ell = (long)val->ele->ptr;
val->flags |= OPVAL_VALID_LL;
} else if (sdsEncodedObject(val->ele)) {
if (string2ll(val->ele->ptr,sdslen(val->ele->ptr),&val->ell))
val->flags |= OPVAL_VALID_LL;
} else {
redisPanic("Unsupported element encoding");
}
} else if (val->estr != NULL) {
if (string2ll((char*)val->estr,val->elen,&val->ell))
val->flags |= OPVAL_VALID_LL;
} else {
/* The long long was already set, flag as valid. */
val->flags |= OPVAL_VALID_LL;
}
}
return val->flags & OPVAL_VALID_LL;
}
robj *zuiObjectFromValue(zsetopval *val) {
if (val->ele == NULL) {
if (val->estr != NULL) {
val->ele = createStringObject((char*)val->estr,val->elen);
} else {
val->ele = createStringObjectFromLongLong(val->ell);
}
val->flags |= OPVAL_DIRTY_ROBJ;
}
return val->ele;
}
int zuiBufferFromValue(zsetopval *val) {
if (val->estr == NULL) {
if (val->ele != NULL) {
if (val->ele->encoding == REDIS_ENCODING_INT) {
val->elen = ll2string((char*)val->_buf,sizeof(val->_buf),(long)val->ele->ptr);
val->estr = val->_buf;
} else if (sdsEncodedObject(val->ele)) {
val->elen = sdslen(val->ele->ptr);
val->estr = val->ele->ptr;
} else {
redisPanic("Unsupported element encoding");
}
} else {
val->elen = ll2string((char*)val->_buf,sizeof(val->_buf),val->ell);
val->estr = val->_buf;
}
}
return 1;
}
/* Find value pointed to by val in the source pointer to by op. When found,
* return 1 and store its score in target. Return 0 otherwise. */
int zuiFind(zsetopsrc *op, zsetopval *val, double *score) {
if (op->subject == NULL)
return 0;
if (op->type == REDIS_SET) {
if (op->encoding == REDIS_ENCODING_INTSET) {
if (zuiLongLongFromValue(val) &&
intsetFind(op->subject->ptr,val->ell))
{
*score = 1.0;
return 1;
} else {
return 0;
}
} else if (op->encoding == REDIS_ENCODING_HT) {
dict *ht = op->subject->ptr;
zuiObjectFromValue(val);
if (dictFind(ht,val->ele) != NULL) {
*score = 1.0;
return 1;
} else {
return 0;
}
} else {
redisPanic("Unknown set encoding");
}
} else if (op->type == REDIS_ZSET) {
zuiObjectFromValue(val);
if (op->encoding == REDIS_ENCODING_ZIPLIST) {
if (zzlFind(op->subject->ptr,val->ele,score) != NULL) {
/* Score is already set by zzlFind. */
return 1;
} else {
return 0;
}
} else if (op->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = op->subject->ptr;
dictEntry *de;
if ((de = dictFind(zs->dict,val->ele)) != NULL) {
*score = *(double*)dictGetVal(de);
return 1;
} else {
return 0;
}
} else {
redisPanic("Unknown sorted set encoding");
}
} else {
redisPanic("Unsupported type");
}
}
int zuiCompareByCardinality(const void *s1, const void *s2) {
return zuiLength((zsetopsrc*)s1) - zuiLength((zsetopsrc*)s2);
}
#define REDIS_AGGR_SUM 1
#define REDIS_AGGR_MIN 2
#define REDIS_AGGR_MAX 3
#define zunionInterDictValue(_e) (dictGetVal(_e) == NULL ? 1.0 : *(double*)dictGetVal(_e))
inline static void zunionInterAggregate(double *target, double val, int aggregate) {
if (aggregate == REDIS_AGGR_SUM) {
*target = *target + val;
/* The result of adding two doubles is NaN when one variable
* is +inf and the other is -inf. When these numbers are added,
* we maintain the convention of the result being 0.0. */
if (isnan(*target)) *target = 0.0;
} else if (aggregate == REDIS_AGGR_MIN) {
*target = val < *target ? val : *target;
} else if (aggregate == REDIS_AGGR_MAX) {
*target = val > *target ? val : *target;
} else {
/* safety net */
redisPanic("Unknown ZUNION/INTER aggregate type");
}
}
void zunionInterGenericCommand(redisClient *c, robj *dstkey, int op) {
int i, j;
long setnum;
int aggregate = REDIS_AGGR_SUM;
zsetopsrc *src;
zsetopval zval;
robj *tmp;
unsigned int maxelelen = 0;
robj *dstobj;
zset *dstzset;
zskiplistNode *znode;
int touched = 0;
/* expect setnum input keys to be given */
if ((getLongFromObjectOrReply(c, c->argv[2], &setnum, NULL) != REDIS_OK))
return;
if (setnum < 1) {
addReplyError(c,
"at least 1 input key is needed for ZUNIONSTORE/ZINTERSTORE");
return;
}
/* test if the expected number of keys would overflow */
if (setnum > c->argc-3) {
addReply(c,shared.syntaxerr);
return;
}
/* read keys to be used for input */
src = zcalloc(sizeof(zsetopsrc) * setnum);
for (i = 0, j = 3; i < setnum; i++, j++) {
robj *obj = lookupKeyWrite(c->db,c->argv[j]);
if (obj != NULL) {
if (obj->type != REDIS_ZSET && obj->type != REDIS_SET) {
zfree(src);
addReply(c,shared.wrongtypeerr);
return;
}
src[i].subject = obj;
src[i].type = obj->type;
src[i].encoding = obj->encoding;
} else {
src[i].subject = NULL;
}
/* Default all weights to 1. */
src[i].weight = 1.0;
}
/* parse optional extra arguments */
if (j < c->argc) {
int remaining = c->argc - j;
while (remaining) {
if (remaining >= (setnum + 1) && !strcasecmp(c->argv[j]->ptr,"weights")) {
j++; remaining--;
for (i = 0; i < setnum; i++, j++, remaining--) {
if (getDoubleFromObjectOrReply(c,c->argv[j],&src[i].weight,
"weight value is not a float") != REDIS_OK)
{
zfree(src);
return;
}
}
} else if (remaining >= 2 && !strcasecmp(c->argv[j]->ptr,"aggregate")) {
j++; remaining--;
if (!strcasecmp(c->argv[j]->ptr,"sum")) {
aggregate = REDIS_AGGR_SUM;
} else if (!strcasecmp(c->argv[j]->ptr,"min")) {
aggregate = REDIS_AGGR_MIN;
} else if (!strcasecmp(c->argv[j]->ptr,"max")) {
aggregate = REDIS_AGGR_MAX;
} else {
zfree(src);
addReply(c,shared.syntaxerr);
return;
}
j++; remaining--;
} else {
zfree(src);
addReply(c,shared.syntaxerr);
return;
}
}
}
/* sort sets from the smallest to largest, this will improve our
* algorithm's performance */
qsort(src,setnum,sizeof(zsetopsrc),zuiCompareByCardinality);
dstobj = createZsetObject();
dstzset = dstobj->ptr;
memset(&zval, 0, sizeof(zval));
if (op == REDIS_OP_INTER) {
/* Skip everything if the smallest input is empty. */
if (zuiLength(&src[0]) > 0) {
/* Precondition: as src[0] is non-empty and the inputs are ordered
* by size, all src[i > 0] are non-empty too. */
zuiInitIterator(&src[0]);
while (zuiNext(&src[0],&zval)) {
double score, value;
score = src[0].weight * zval.score;
if (isnan(score)) score = 0;
for (j = 1; j < setnum; j++) {
/* It is not safe to access the zset we are
* iterating, so explicitly check for equal object. */
if (src[j].subject == src[0].subject) {
value = zval.score*src[j].weight;
zunionInterAggregate(&score,value,aggregate);
} else if (zuiFind(&src[j],&zval,&value)) {
value *= src[j].weight;
zunionInterAggregate(&score,value,aggregate);
} else {
break;
}
}
/* Only continue when present in every input. */
if (j == setnum) {
tmp = zuiObjectFromValue(&zval);
znode = zslInsert(dstzset->zsl,score,tmp);
incrRefCount(tmp); /* added to skiplist */
dictAdd(dstzset->dict,tmp,&znode->score);
incrRefCount(tmp); /* added to dictionary */
if (sdsEncodedObject(tmp)) {
if (sdslen(tmp->ptr) > maxelelen)
maxelelen = sdslen(tmp->ptr);
}
}
}
zuiClearIterator(&src[0]);
}
} else if (op == REDIS_OP_UNION) {
dict *accumulator = dictCreate(&setDictType,NULL);
dictIterator *di;
dictEntry *de;
double score;
if (setnum) {
/* Our union is at least as large as the largest set.
* Resize the dictionary ASAP to avoid useless rehashing. */
dictExpand(accumulator,zuiLength(&src[setnum-1]));
}
/* Step 1: Create a dictionary of elements -> aggregated-scores
* by iterating one sorted set after the other. */
for (i = 0; i < setnum; i++) {
if (zuiLength(&src[i]) == 0) continue;
zuiInitIterator(&src[i]);
while (zuiNext(&src[i],&zval)) {
/* Initialize value */
score = src[i].weight * zval.score;
if (isnan(score)) score = 0;
/* Search for this element in the accumulating dictionary. */
de = dictFind(accumulator,zuiObjectFromValue(&zval));
/* If we don't have it, we need to create a new entry. */
if (de == NULL) {
tmp = zuiObjectFromValue(&zval);
/* Remember the longest single element encountered,
* to understand if it's possible to convert to ziplist
* at the end. */
if (sdsEncodedObject(tmp)) {
if (sdslen(tmp->ptr) > maxelelen)
maxelelen = sdslen(tmp->ptr);
}
/* Add the element with its initial score. */
de = dictAddRaw(accumulator,tmp);
incrRefCount(tmp);
dictSetDoubleVal(de,score);
} else {
/* Update the score with the score of the new instance
* of the element found in the current sorted set.
*
* Here we access directly the dictEntry double
* value inside the union as it is a big speedup
* compared to using the getDouble/setDouble API. */
zunionInterAggregate(&de->v.d,score,aggregate);
}
}
zuiClearIterator(&src[i]);
}
/* Step 2: convert the dictionary into the final sorted set. */
di = dictGetIterator(accumulator);
/* We now are aware of the final size of the resulting sorted set,
* let's resize the dictionary embedded inside the sorted set to the
* right size, in order to save rehashing time. */
dictExpand(dstzset->dict,dictSize(accumulator));
while((de = dictNext(di)) != NULL) {
robj *ele = dictGetKey(de);
score = dictGetDoubleVal(de);
znode = zslInsert(dstzset->zsl,score,ele);
incrRefCount(ele); /* added to skiplist */
dictAdd(dstzset->dict,ele,&znode->score);
incrRefCount(ele); /* added to dictionary */
}
dictReleaseIterator(di);
/* We can free the accumulator dictionary now. */
dictRelease(accumulator);
} else {
redisPanic("Unknown operator");
}
if (dbDelete(c->db,dstkey)) {
signalModifiedKey(c->db,dstkey);
touched = 1;
server.dirty++;
}
if (dstzset->zsl->length) {
/* Convert to ziplist when in limits. */
if (dstzset->zsl->length <= server.zset_max_ziplist_entries &&
maxelelen <= server.zset_max_ziplist_value)
zsetConvert(dstobj,REDIS_ENCODING_ZIPLIST);
dbAdd(c->db,dstkey,dstobj);
addReplyLongLong(c,zsetLength(dstobj));
if (!touched) signalModifiedKey(c->db,dstkey);
notifyKeyspaceEvent(REDIS_NOTIFY_ZSET,
(op == REDIS_OP_UNION) ? "zunionstore" : "zinterstore",
dstkey,c->db->id);
server.dirty++;
} else {
decrRefCount(dstobj);
addReply(c,shared.czero);
if (touched)
notifyKeyspaceEvent(REDIS_NOTIFY_GENERIC,"del",dstkey,c->db->id);
}
zfree(src);
}
void zunionstoreCommand(redisClient *c) {
zunionInterGenericCommand(c,c->argv[1], REDIS_OP_UNION);
}
void zinterstoreCommand(redisClient *c) {
zunionInterGenericCommand(c,c->argv[1], REDIS_OP_INTER);
}
void zrangeGenericCommand(redisClient *c, int reverse) {
robj *key = c->argv[1];
robj *zobj;
int withscores = 0;
long start;
long end;
int llen;
int rangelen;
if ((getLongFromObjectOrReply(c, c->argv[2], &start, NULL) != REDIS_OK) ||
(getLongFromObjectOrReply(c, c->argv[3], &end, NULL) != REDIS_OK)) return;
if (c->argc == 5 && !strcasecmp(c->argv[4]->ptr,"withscores")) {
withscores = 1;
} else if (c->argc >= 5) {
addReply(c,shared.syntaxerr);
return;
}
if ((zobj = lookupKeyReadOrReply(c,key,shared.emptymultibulk)) == NULL
|| checkType(c,zobj,REDIS_ZSET)) return;
/* Sanitize indexes. */
llen = zsetLength(zobj);
if (start < 0) start = llen+start;
if (end < 0) end = llen+end;
if (start < 0) start = 0;
/* Invariant: start >= 0, so this test will be true when end < 0.
* The range is empty when start > end or start >= length. */
if (start > end || start >= llen) {
addReply(c,shared.emptymultibulk);
return;
}
if (end >= llen) end = llen-1;
rangelen = (end-start)+1;
/* Return the result in form of a multi-bulk reply */
addReplyMultiBulkLen(c, withscores ? (rangelen*2) : rangelen);
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
if (reverse)
eptr = ziplistIndex(zl,-2-(2*start));
else
eptr = ziplistIndex(zl,2*start);
redisAssertWithInfo(c,zobj,eptr != NULL);
sptr = ziplistNext(zl,eptr);
while (rangelen--) {
redisAssertWithInfo(c,zobj,eptr != NULL && sptr != NULL);
redisAssertWithInfo(c,zobj,ziplistGet(eptr,&vstr,&vlen,&vlong));
if (vstr == NULL)
addReplyBulkLongLong(c,vlong);
else
addReplyBulkCBuffer(c,vstr,vlen);
if (withscores)
addReplyDouble(c,zzlGetScore(sptr));
if (reverse)
zzlPrev(zl,&eptr,&sptr);
else
zzlNext(zl,&eptr,&sptr);
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *ln;
robj *ele;
/* Check if starting point is trivial, before doing log(N) lookup. */
if (reverse) {
ln = zsl->tail;
if (start > 0)
ln = zslGetElementByRank(zsl,llen-start);
} else {
ln = zsl->header->level[0].forward;
if (start > 0)
ln = zslGetElementByRank(zsl,start+1);
}
while(rangelen--) {
redisAssertWithInfo(c,zobj,ln != NULL);
ele = ln->obj;
addReplyBulk(c,ele);
if (withscores)
addReplyDouble(c,ln->score);
ln = reverse ? ln->backward : ln->level[0].forward;
}
} else {
redisPanic("Unknown sorted set encoding");
}
}
void zrangeCommand(redisClient *c) {
zrangeGenericCommand(c,0);
}
void zrevrangeCommand(redisClient *c) {
zrangeGenericCommand(c,1);
}
/* This command implements ZRANGEBYSCORE, ZREVRANGEBYSCORE. */
void genericZrangebyscoreCommand(redisClient *c, int reverse) {
zrangespec range;
robj *key = c->argv[1];
robj *zobj;
long offset = 0, limit = -1;
int withscores = 0;
unsigned long rangelen = 0;
void *replylen = NULL;
int minidx, maxidx;
/* Parse the range arguments. */
if (reverse) {
/* Range is given as [max,min] */
maxidx = 2; minidx = 3;
} else {
/* Range is given as [min,max] */
minidx = 2; maxidx = 3;
}
if (zslParseRange(c->argv[minidx],c->argv[maxidx],&range) != REDIS_OK) {
addReplyError(c,"min or max is not a float");
return;
}
/* Parse optional extra arguments. Note that ZCOUNT will exactly have
* 4 arguments, so we'll never enter the following code path. */
if (c->argc > 4) {
int remaining = c->argc - 4;
int pos = 4;
while (remaining) {
if (remaining >= 1 && !strcasecmp(c->argv[pos]->ptr,"withscores")) {
pos++; remaining--;
withscores = 1;
} else if (remaining >= 3 && !strcasecmp(c->argv[pos]->ptr,"limit")) {
if ((getLongFromObjectOrReply(c, c->argv[pos+1], &offset, NULL) != REDIS_OK) ||
(getLongFromObjectOrReply(c, c->argv[pos+2], &limit, NULL) != REDIS_OK)) return;
pos += 3; remaining -= 3;
} else {
addReply(c,shared.syntaxerr);
return;
}
}
}
/* Ok, lookup the key and get the range */
if ((zobj = lookupKeyReadOrReply(c,key,shared.emptymultibulk)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
double score;
/* If reversed, get the last node in range as starting point. */
if (reverse) {
eptr = zzlLastInRange(zl,&range);
} else {
eptr = zzlFirstInRange(zl,&range);
}
/* No "first" element in the specified interval. */
if (eptr == NULL) {
addReply(c, shared.emptymultibulk);
return;
}
/* Get score pointer for the first element. */
redisAssertWithInfo(c,zobj,eptr != NULL);
sptr = ziplistNext(zl,eptr);
/* We don't know in advance how many matching elements there are in the
* list, so we push this object that will represent the multi-bulk
* length in the output buffer, and will "fix" it later */
replylen = addDeferredMultiBulkLength(c);
/* If there is an offset, just traverse the number of elements without
* checking the score because that is done in the next loop. */
while (eptr && offset--) {
if (reverse) {
zzlPrev(zl,&eptr,&sptr);
} else {
zzlNext(zl,&eptr,&sptr);
}
}
while (eptr && limit--) {
score = zzlGetScore(sptr);
/* Abort when the node is no longer in range. */
if (reverse) {
if (!zslValueGteMin(score,&range)) break;
} else {
if (!zslValueLteMax(score,&range)) break;
}
/* We know the element exists, so ziplistGet should always succeed */
redisAssertWithInfo(c,zobj,ziplistGet(eptr,&vstr,&vlen,&vlong));
rangelen++;
if (vstr == NULL) {
addReplyBulkLongLong(c,vlong);
} else {
addReplyBulkCBuffer(c,vstr,vlen);
}
if (withscores) {
addReplyDouble(c,score);
}
/* Move to next node */
if (reverse) {
zzlPrev(zl,&eptr,&sptr);
} else {
zzlNext(zl,&eptr,&sptr);
}
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *ln;
/* If reversed, get the last node in range as starting point. */
if (reverse) {
ln = zslLastInRange(zsl,&range);
} else {
ln = zslFirstInRange(zsl,&range);
}
/* No "first" element in the specified interval. */
if (ln == NULL) {
addReply(c, shared.emptymultibulk);
return;
}
/* We don't know in advance how many matching elements there are in the
* list, so we push this object that will represent the multi-bulk
* length in the output buffer, and will "fix" it later */
replylen = addDeferredMultiBulkLength(c);
/* If there is an offset, just traverse the number of elements without
* checking the score because that is done in the next loop. */
while (ln && offset--) {
if (reverse) {
ln = ln->backward;
} else {
ln = ln->level[0].forward;
}
}
while (ln && limit--) {
/* Abort when the node is no longer in range. */
if (reverse) {
if (!zslValueGteMin(ln->score,&range)) break;
} else {
if (!zslValueLteMax(ln->score,&range)) break;
}
rangelen++;
addReplyBulk(c,ln->obj);
if (withscores) {
addReplyDouble(c,ln->score);
}
/* Move to next node */
if (reverse) {
ln = ln->backward;
} else {
ln = ln->level[0].forward;
}
}
} else {
redisPanic("Unknown sorted set encoding");
}
if (withscores) {
rangelen *= 2;
}
setDeferredMultiBulkLength(c, replylen, rangelen);
}
void zrangebyscoreCommand(redisClient *c) {
genericZrangebyscoreCommand(c,0);
}
void zrevrangebyscoreCommand(redisClient *c) {
genericZrangebyscoreCommand(c,1);
}
void zcountCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
zrangespec range;
int count = 0;
/* Parse the range arguments */
if (zslParseRange(c->argv[2],c->argv[3],&range) != REDIS_OK) {
addReplyError(c,"min or max is not a float");
return;
}
/* Lookup the sorted set */
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL ||
checkType(c, zobj, REDIS_ZSET)) return;
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
double score;
/* Use the first element in range as the starting point */
eptr = zzlFirstInRange(zl,&range);
/* No "first" element */
if (eptr == NULL) {
addReply(c, shared.czero);
return;
}
/* First element is in range */
sptr = ziplistNext(zl,eptr);
score = zzlGetScore(sptr);
redisAssertWithInfo(c,zobj,zslValueLteMax(score,&range));
/* Iterate over elements in range */
while (eptr) {
score = zzlGetScore(sptr);
/* Abort when the node is no longer in range. */
if (!zslValueLteMax(score,&range)) {
break;
} else {
count++;
zzlNext(zl,&eptr,&sptr);
}
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *zn;
unsigned long rank;
/* Find first element in range */
zn = zslFirstInRange(zsl, &range);
/* Use rank of first element, if any, to determine preliminary count */
if (zn != NULL) {
rank = zslGetRank(zsl, zn->score, zn->obj);
count = (zsl->length - (rank - 1));
/* Find last element in range */
zn = zslLastInRange(zsl, &range);
/* Use rank of last element, if any, to determine the actual count */
if (zn != NULL) {
rank = zslGetRank(zsl, zn->score, zn->obj);
count -= (zsl->length - rank);
}
}
} else {
redisPanic("Unknown sorted set encoding");
}
addReplyLongLong(c, count);
}
void zlexcountCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
zlexrangespec range;
int count = 0;
/* Parse the range arguments */
if (zslParseLexRange(c->argv[2],c->argv[3],&range) != REDIS_OK) {
addReplyError(c,"min or max not valid string range item");
return;
}
/* Lookup the sorted set */
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL ||
checkType(c, zobj, REDIS_ZSET))
{
zslFreeLexRange(&range);
return;
}
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
/* Use the first element in range as the starting point */
eptr = zzlFirstInLexRange(zl,&range);
/* No "first" element */
if (eptr == NULL) {
zslFreeLexRange(&range);
addReply(c, shared.czero);
return;
}
/* First element is in range */
sptr = ziplistNext(zl,eptr);
redisAssertWithInfo(c,zobj,zzlLexValueLteMax(eptr,&range));
/* Iterate over elements in range */
while (eptr) {
/* Abort when the node is no longer in range. */
if (!zzlLexValueLteMax(eptr,&range)) {
break;
} else {
count++;
zzlNext(zl,&eptr,&sptr);
}
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *zn;
unsigned long rank;
/* Find first element in range */
zn = zslFirstInLexRange(zsl, &range);
/* Use rank of first element, if any, to determine preliminary count */
if (zn != NULL) {
rank = zslGetRank(zsl, zn->score, zn->obj);
count = (zsl->length - (rank - 1));
/* Find last element in range */
zn = zslLastInLexRange(zsl, &range);
/* Use rank of last element, if any, to determine the actual count */
if (zn != NULL) {
rank = zslGetRank(zsl, zn->score, zn->obj);
count -= (zsl->length - rank);
}
}
} else {
redisPanic("Unknown sorted set encoding");
}
zslFreeLexRange(&range);
addReplyLongLong(c, count);
}
/* This command implements ZRANGEBYLEX, ZREVRANGEBYLEX. */
void genericZrangebylexCommand(redisClient *c, int reverse) {
zlexrangespec range;
robj *key = c->argv[1];
robj *zobj;
long offset = 0, limit = -1;
unsigned long rangelen = 0;
void *replylen = NULL;
int minidx, maxidx;
/* Parse the range arguments. */
if (reverse) {
/* Range is given as [max,min] */
maxidx = 2; minidx = 3;
} else {
/* Range is given as [min,max] */
minidx = 2; maxidx = 3;
}
if (zslParseLexRange(c->argv[minidx],c->argv[maxidx],&range) != REDIS_OK) {
addReplyError(c,"min or max not valid string range item");
return;
}
/* Parse optional extra arguments. Note that ZCOUNT will exactly have
* 4 arguments, so we'll never enter the following code path. */
if (c->argc > 4) {
int remaining = c->argc - 4;
int pos = 4;
while (remaining) {
if (remaining >= 3 && !strcasecmp(c->argv[pos]->ptr,"limit")) {
if ((getLongFromObjectOrReply(c, c->argv[pos+1], &offset, NULL) != REDIS_OK) ||
(getLongFromObjectOrReply(c, c->argv[pos+2], &limit, NULL) != REDIS_OK)) return;
pos += 3; remaining -= 3;
} else {
zslFreeLexRange(&range);
addReply(c,shared.syntaxerr);
return;
}
}
}
/* Ok, lookup the key and get the range */
if ((zobj = lookupKeyReadOrReply(c,key,shared.emptymultibulk)) == NULL ||
checkType(c,zobj,REDIS_ZSET))
{
zslFreeLexRange(&range);
return;
}
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
/* If reversed, get the last node in range as starting point. */
if (reverse) {
eptr = zzlLastInLexRange(zl,&range);
} else {
eptr = zzlFirstInLexRange(zl,&range);
}
/* No "first" element in the specified interval. */
if (eptr == NULL) {
addReply(c, shared.emptymultibulk);
zslFreeLexRange(&range);
return;
}
/* Get score pointer for the first element. */
redisAssertWithInfo(c,zobj,eptr != NULL);
sptr = ziplistNext(zl,eptr);
/* We don't know in advance how many matching elements there are in the
* list, so we push this object that will represent the multi-bulk
* length in the output buffer, and will "fix" it later */
replylen = addDeferredMultiBulkLength(c);
/* If there is an offset, just traverse the number of elements without
* checking the score because that is done in the next loop. */
while (eptr && offset--) {
if (reverse) {
zzlPrev(zl,&eptr,&sptr);
} else {
zzlNext(zl,&eptr,&sptr);
}
}
while (eptr && limit--) {
/* Abort when the node is no longer in range. */
if (reverse) {
if (!zzlLexValueGteMin(eptr,&range)) break;
} else {
if (!zzlLexValueLteMax(eptr,&range)) break;
}
/* We know the element exists, so ziplistGet should always
* succeed. */
redisAssertWithInfo(c,zobj,ziplistGet(eptr,&vstr,&vlen,&vlong));
rangelen++;
if (vstr == NULL) {
addReplyBulkLongLong(c,vlong);
} else {
addReplyBulkCBuffer(c,vstr,vlen);
}
/* Move to next node */
if (reverse) {
zzlPrev(zl,&eptr,&sptr);
} else {
zzlNext(zl,&eptr,&sptr);
}
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *ln;
/* If reversed, get the last node in range as starting point. */
if (reverse) {
ln = zslLastInLexRange(zsl,&range);
} else {
ln = zslFirstInLexRange(zsl,&range);
}
/* No "first" element in the specified interval. */
if (ln == NULL) {
addReply(c, shared.emptymultibulk);
zslFreeLexRange(&range);
return;
}
/* We don't know in advance how many matching elements there are in the
* list, so we push this object that will represent the multi-bulk
* length in the output buffer, and will "fix" it later */
replylen = addDeferredMultiBulkLength(c);
/* If there is an offset, just traverse the number of elements without
* checking the score because that is done in the next loop. */
while (ln && offset--) {
if (reverse) {
ln = ln->backward;
} else {
ln = ln->level[0].forward;
}
}
while (ln && limit--) {
/* Abort when the node is no longer in range. */
if (reverse) {
if (!zslLexValueGteMin(ln->obj,&range)) break;
} else {
if (!zslLexValueLteMax(ln->obj,&range)) break;
}
rangelen++;
addReplyBulk(c,ln->obj);
/* Move to next node */
if (reverse) {
ln = ln->backward;
} else {
ln = ln->level[0].forward;
}
}
} else {
redisPanic("Unknown sorted set encoding");
}
zslFreeLexRange(&range);
setDeferredMultiBulkLength(c, replylen, rangelen);
}
void zrangebylexCommand(redisClient *c) {
genericZrangebylexCommand(c,0);
}
void zrevrangebylexCommand(redisClient *c) {
genericZrangebylexCommand(c,1);
}
void zcardCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
if ((zobj = lookupKeyReadOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
addReplyLongLong(c,zsetLength(zobj));
}
void zscoreCommand(redisClient *c) {
robj *key = c->argv[1];
robj *zobj;
double score;
if ((zobj = lookupKeyReadOrReply(c,key,shared.nullbulk)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
if (zsetScore(zobj,c->argv[2],&score) == REDIS_ERR) {
addReply(c,shared.nullbulk);
} else {
addReplyDouble(c,score);
}
}
void zrankGenericCommand(redisClient *c, int reverse) {
robj *key = c->argv[1];
robj *ele = c->argv[2];
robj *zobj;
unsigned long llen;
unsigned long rank;
if ((zobj = lookupKeyReadOrReply(c,key,shared.nullbulk)) == NULL ||
checkType(c,zobj,REDIS_ZSET)) return;
llen = zsetLength(zobj);
redisAssertWithInfo(c,ele,sdsEncodedObject(ele));
if (zobj->encoding == REDIS_ENCODING_ZIPLIST) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
eptr = ziplistIndex(zl,0);
redisAssertWithInfo(c,zobj,eptr != NULL);
sptr = ziplistNext(zl,eptr);
redisAssertWithInfo(c,zobj,sptr != NULL);
rank = 1;
while(eptr != NULL) {
if (ziplistCompare(eptr,ele->ptr,sdslen(ele->ptr)))
break;
rank++;
zzlNext(zl,&eptr,&sptr);
}
if (eptr != NULL) {
if (reverse)
addReplyLongLong(c,llen-rank);
else
addReplyLongLong(c,rank-1);
} else {
addReply(c,shared.nullbulk);
}
} else if (zobj->encoding == REDIS_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
dictEntry *de;
double score;
ele = c->argv[2];
de = dictFind(zs->dict,ele);
if (de != NULL) {
score = *(double*)dictGetVal(de);
rank = zslGetRank(zsl,score,ele);
redisAssertWithInfo(c,ele,rank); /* Existing elements always have a rank. */
if (reverse)
addReplyLongLong(c,llen-rank);
else
addReplyLongLong(c,rank-1);
} else {
addReply(c,shared.nullbulk);
}
} else {
redisPanic("Unknown sorted set encoding");
}
}
void zrankCommand(redisClient *c) {
zrankGenericCommand(c, 0);
}
void zrevrankCommand(redisClient *c) {
zrankGenericCommand(c, 1);
}
void zscanCommand(redisClient *c) {
robj *o;
unsigned long cursor;
if (parseScanCursorOrReply(c,c->argv[2],&cursor) == REDIS_ERR) return;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.emptyscan)) == NULL ||
checkType(c,o,REDIS_ZSET)) return;
scanGenericCommand(c,o,cursor);
}