redis/tests/unit/type/set.tcl

673 lines
23 KiB
Tcl

start_server {
tags {"set"}
overrides {
"set-max-intset-entries" 512
}
} {
proc create_set {key entries} {
r del $key
foreach entry $entries { r sadd $key $entry }
}
test {SADD, SCARD, SISMEMBER, SMISMEMBER, SMEMBERS basics - regular set} {
create_set myset {foo}
assert_encoding hashtable myset
assert_equal 1 [r sadd myset bar]
assert_equal 0 [r sadd myset bar]
assert_equal 2 [r scard myset]
assert_equal 1 [r sismember myset foo]
assert_equal 1 [r sismember myset bar]
assert_equal 0 [r sismember myset bla]
assert_equal {1} [r smismember myset foo]
assert_equal {1 1} [r smismember myset foo bar]
assert_equal {1 0} [r smismember myset foo bla]
assert_equal {0 1} [r smismember myset bla foo]
assert_equal {0} [r smismember myset bla]
assert_equal {bar foo} [lsort [r smembers myset]]
}
test {SADD, SCARD, SISMEMBER, SMISMEMBER, SMEMBERS basics - intset} {
create_set myset {17}
assert_encoding intset myset
assert_equal 1 [r sadd myset 16]
assert_equal 0 [r sadd myset 16]
assert_equal 2 [r scard myset]
assert_equal 1 [r sismember myset 16]
assert_equal 1 [r sismember myset 17]
assert_equal 0 [r sismember myset 18]
assert_equal {1} [r smismember myset 16]
assert_equal {1 1} [r smismember myset 16 17]
assert_equal {1 0} [r smismember myset 16 18]
assert_equal {0 1} [r smismember myset 18 16]
assert_equal {0} [r smismember myset 18]
assert_equal {16 17} [lsort [r smembers myset]]
}
test {SMISMEMBER against non set} {
r lpush mylist foo
assert_error WRONGTYPE* {r smismember mylist bar}
}
test {SMISMEMBER non existing key} {
assert_equal {0} [r smismember myset1 foo]
assert_equal {0 0} [r smismember myset1 foo bar]
}
test {SMISMEMBER requires one or more members} {
r del zmscoretest
r zadd zmscoretest 10 x
r zadd zmscoretest 20 y
catch {r smismember zmscoretest} e
assert_match {*ERR*wrong*number*arg*} $e
}
test {SADD against non set} {
r lpush mylist foo
assert_error WRONGTYPE* {r sadd mylist bar}
}
test "SADD a non-integer against an intset" {
create_set myset {1 2 3}
assert_encoding intset myset
assert_equal 1 [r sadd myset a]
assert_encoding hashtable myset
}
test "SADD an integer larger than 64 bits" {
create_set myset {213244124402402314402033402}
assert_encoding hashtable myset
assert_equal 1 [r sismember myset 213244124402402314402033402]
assert_equal {1} [r smismember myset 213244124402402314402033402]
}
test "SADD overflows the maximum allowed integers in an intset" {
r del myset
for {set i 0} {$i < 512} {incr i} { r sadd myset $i }
assert_encoding intset myset
assert_equal 1 [r sadd myset 512]
assert_encoding hashtable myset
}
test {Variadic SADD} {
r del myset
assert_equal 3 [r sadd myset a b c]
assert_equal 2 [r sadd myset A a b c B]
assert_equal [lsort {A a b c B}] [lsort [r smembers myset]]
}
test "Set encoding after DEBUG RELOAD" {
r del myintset
r del myhashset
r del mylargeintset
for {set i 0} {$i < 100} {incr i} { r sadd myintset $i }
for {set i 0} {$i < 1280} {incr i} { r sadd mylargeintset $i }
for {set i 0} {$i < 256} {incr i} { r sadd myhashset [format "i%03d" $i] }
assert_encoding intset myintset
assert_encoding hashtable mylargeintset
assert_encoding hashtable myhashset
r debug reload
assert_encoding intset myintset
assert_encoding hashtable mylargeintset
assert_encoding hashtable myhashset
} {} {needs:debug}
test {SREM basics - regular set} {
create_set myset {foo bar ciao}
assert_encoding hashtable myset
assert_equal 0 [r srem myset qux]
assert_equal 1 [r srem myset foo]
assert_equal {bar ciao} [lsort [r smembers myset]]
}
test {SREM basics - intset} {
create_set myset {3 4 5}
assert_encoding intset myset
assert_equal 0 [r srem myset 6]
assert_equal 1 [r srem myset 4]
assert_equal {3 5} [lsort [r smembers myset]]
}
test {SREM with multiple arguments} {
r del myset
r sadd myset a b c d
assert_equal 0 [r srem myset k k k]
assert_equal 2 [r srem myset b d x y]
lsort [r smembers myset]
} {a c}
test {SREM variadic version with more args needed to destroy the key} {
r del myset
r sadd myset 1 2 3
r srem myset 1 2 3 4 5 6 7 8
} {3}
foreach {type} {hashtable intset} {
for {set i 1} {$i <= 5} {incr i} {
r del [format "set%d{t}" $i]
}
for {set i 0} {$i < 200} {incr i} {
r sadd set1{t} $i
r sadd set2{t} [expr $i+195]
}
foreach i {199 195 1000 2000} {
r sadd set3{t} $i
}
for {set i 5} {$i < 200} {incr i} {
r sadd set4{t} $i
}
r sadd set5{t} 0
# To make sure the sets are encoded as the type we are testing -- also
# when the VM is enabled and the values may be swapped in and out
# while the tests are running -- an extra element is added to every
# set that determines its encoding.
set large 200
if {$type eq "hashtable"} {
set large foo
}
for {set i 1} {$i <= 5} {incr i} {
r sadd [format "set%d{t}" $i] $large
}
test "Generated sets must be encoded as $type" {
for {set i 1} {$i <= 5} {incr i} {
assert_encoding $type [format "set%d{t}" $i]
}
}
test "SINTER with two sets - $type" {
assert_equal [list 195 196 197 198 199 $large] [lsort [r sinter set1{t} set2{t}]]
}
test "SINTERSTORE with two sets - $type" {
r sinterstore setres{t} set1{t} set2{t}
assert_encoding $type setres{t}
assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres{t}]]
}
test "SINTERSTORE with two sets, after a DEBUG RELOAD - $type" {
r debug reload
r sinterstore setres{t} set1{t} set2{t}
assert_encoding $type setres{t}
assert_equal [list 195 196 197 198 199 $large] [lsort [r smembers setres{t}]]
} {} {needs:debug}
test "SUNION with two sets - $type" {
set expected [lsort -uniq "[r smembers set1{t}] [r smembers set2{t}]"]
assert_equal $expected [lsort [r sunion set1{t} set2{t}]]
}
test "SUNIONSTORE with two sets - $type" {
r sunionstore setres{t} set1{t} set2{t}
assert_encoding $type setres{t}
set expected [lsort -uniq "[r smembers set1{t}] [r smembers set2{t}]"]
assert_equal $expected [lsort [r smembers setres{t}]]
}
test "SINTER against three sets - $type" {
assert_equal [list 195 199 $large] [lsort [r sinter set1{t} set2{t} set3{t}]]
}
test "SINTERSTORE with three sets - $type" {
r sinterstore setres{t} set1{t} set2{t} set3{t}
assert_equal [list 195 199 $large] [lsort [r smembers setres{t}]]
}
test "SUNION with non existing keys - $type" {
set expected [lsort -uniq "[r smembers set1{t}] [r smembers set2{t}]"]
assert_equal $expected [lsort [r sunion nokey1{t} set1{t} set2{t} nokey2{t}]]
}
test "SDIFF with two sets - $type" {
assert_equal {0 1 2 3 4} [lsort [r sdiff set1{t} set4{t}]]
}
test "SDIFF with three sets - $type" {
assert_equal {1 2 3 4} [lsort [r sdiff set1{t} set4{t} set5{t}]]
}
test "SDIFFSTORE with three sets - $type" {
r sdiffstore setres{t} set1{t} set4{t} set5{t}
# When we start with intsets, we should always end with intsets.
if {$type eq {intset}} {
assert_encoding intset setres{t}
}
assert_equal {1 2 3 4} [lsort [r smembers setres{t}]]
}
}
test "SDIFF with first set empty" {
r del set1{t} set2{t} set3{t}
r sadd set2{t} 1 2 3 4
r sadd set3{t} a b c d
r sdiff set1{t} set2{t} set3{t}
} {}
test "SDIFF with same set two times" {
r del set1
r sadd set1 a b c 1 2 3 4 5 6
r sdiff set1 set1
} {}
test "SDIFF fuzzing" {
for {set j 0} {$j < 100} {incr j} {
unset -nocomplain s
array set s {}
set args {}
set num_sets [expr {[randomInt 10]+1}]
for {set i 0} {$i < $num_sets} {incr i} {
set num_elements [randomInt 100]
r del set_$i{t}
lappend args set_$i{t}
while {$num_elements} {
set ele [randomValue]
r sadd set_$i{t} $ele
if {$i == 0} {
set s($ele) x
} else {
unset -nocomplain s($ele)
}
incr num_elements -1
}
}
set result [lsort [r sdiff {*}$args]]
assert_equal $result [lsort [array names s]]
}
}
test "SINTER against non-set should throw error" {
r set key1{t} x
assert_error "WRONGTYPE*" {r sinter key1{t} noset{t}}
}
test "SUNION against non-set should throw error" {
r set key1{t} x
assert_error "WRONGTYPE*" {r sunion key1{t} noset{t}}
}
test "SINTER should handle non existing key as empty" {
r del set1{t} set2{t} set3{t}
r sadd set1{t} a b c
r sadd set2{t} b c d
r sinter set1{t} set2{t} set3{t}
} {}
test "SINTER with same integer elements but different encoding" {
r del set1{t} set2{t}
r sadd set1{t} 1 2 3
r sadd set2{t} 1 2 3 a
r srem set2{t} a
assert_encoding intset set1{t}
assert_encoding hashtable set2{t}
lsort [r sinter set1{t} set2{t}]
} {1 2 3}
test "SINTERSTORE against non existing keys should delete dstkey" {
r set setres{t} xxx
assert_equal 0 [r sinterstore setres{t} foo111{t} bar222{t}]
assert_equal 0 [r exists setres{t}]
}
test "SUNIONSTORE against non existing keys should delete dstkey" {
r set setres{t} xxx
assert_equal 0 [r sunionstore setres{t} foo111{t} bar222{t}]
assert_equal 0 [r exists setres{t}]
}
foreach {type contents} {hashtable {a b c} intset {1 2 3}} {
test "SPOP basics - $type" {
create_set myset $contents
assert_encoding $type myset
assert_equal $contents [lsort [list [r spop myset] [r spop myset] [r spop myset]]]
assert_equal 0 [r scard myset]
}
test "SPOP with <count>=1 - $type" {
create_set myset $contents
assert_encoding $type myset
assert_equal $contents [lsort [list [r spop myset 1] [r spop myset 1] [r spop myset 1]]]
assert_equal 0 [r scard myset]
}
test "SRANDMEMBER - $type" {
create_set myset $contents
unset -nocomplain myset
array set myset {}
for {set i 0} {$i < 100} {incr i} {
set myset([r srandmember myset]) 1
}
assert_equal $contents [lsort [array names myset]]
}
}
foreach {type contents} {
hashtable {a b c d e f g h i j k l m n o p q r s t u v w x y z}
intset {1 10 11 12 13 14 15 16 17 18 19 2 20 21 22 23 24 25 26 3 4 5 6 7 8 9}
} {
test "SPOP with <count>" {
create_set myset $contents
assert_encoding $type myset
assert_equal $contents [lsort [concat [r spop myset 11] [r spop myset 9] [r spop myset 0] [r spop myset 4] [r spop myset 1] [r spop myset 0] [r spop myset 1] [r spop myset 0]]]
assert_equal 0 [r scard myset]
}
}
# As seen in intsetRandomMembers
test "SPOP using integers, testing Knuth's and Floyd's algorithm" {
create_set myset {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
assert_encoding intset myset
assert_equal 20 [r scard myset]
r spop myset 1
assert_equal 19 [r scard myset]
r spop myset 2
assert_equal 17 [r scard myset]
r spop myset 3
assert_equal 14 [r scard myset]
r spop myset 10
assert_equal 4 [r scard myset]
r spop myset 10
assert_equal 0 [r scard myset]
r spop myset 1
assert_equal 0 [r scard myset]
} {}
test "SPOP using integers with Knuth's algorithm" {
r spop nonexisting_key 100
} {}
test "SPOP new implementation: code path #1" {
set content {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
create_set myset $content
set res [r spop myset 30]
assert {[lsort $content] eq [lsort $res]}
}
test "SPOP new implementation: code path #2" {
set content {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
create_set myset $content
set res [r spop myset 2]
assert {[llength $res] == 2}
assert {[r scard myset] == 18}
set union [concat [r smembers myset] $res]
assert {[lsort $union] eq [lsort $content]}
}
test "SPOP new implementation: code path #3" {
set content {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20}
create_set myset $content
set res [r spop myset 18]
assert {[llength $res] == 18}
assert {[r scard myset] == 2}
set union [concat [r smembers myset] $res]
assert {[lsort $union] eq [lsort $content]}
}
test "SRANDMEMBER with <count> against non existing key" {
r srandmember nonexisting_key 100
} {}
foreach {type contents} {
hashtable {
1 5 10 50 125 50000 33959417 4775547 65434162
12098459 427716 483706 2726473884 72615637475
MARY PATRICIA LINDA BARBARA ELIZABETH JENNIFER MARIA
SUSAN MARGARET DOROTHY LISA NANCY KAREN BETTY HELEN
SANDRA DONNA CAROL RUTH SHARON MICHELLE LAURA SARAH
KIMBERLY DEBORAH JESSICA SHIRLEY CYNTHIA ANGELA MELISSA
BRENDA AMY ANNA REBECCA VIRGINIA KATHLEEN
}
intset {
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
20 21 22 23 24 25 26 27 28 29
30 31 32 33 34 35 36 37 38 39
40 41 42 43 44 45 46 47 48 49
}
} {
test "SRANDMEMBER with <count> - $type" {
create_set myset $contents
unset -nocomplain myset
array set myset {}
foreach ele [r smembers myset] {
set myset($ele) 1
}
assert_equal [lsort $contents] [lsort [array names myset]]
# Make sure that a count of 0 is handled correctly.
assert_equal [r srandmember myset 0] {}
# We'll stress different parts of the code, see the implementation
# of SRANDMEMBER for more information, but basically there are
# four different code paths.
#
# PATH 1: Use negative count.
#
# 1) Check that it returns repeated elements.
set res [r srandmember myset -100]
assert_equal [llength $res] 100
# 2) Check that all the elements actually belong to the
# original set.
foreach ele $res {
assert {[info exists myset($ele)]}
}
# 3) Check that eventually all the elements are returned.
unset -nocomplain auxset
set iterations 1000
while {$iterations != 0} {
incr iterations -1
set res [r srandmember myset -10]
foreach ele $res {
set auxset($ele) 1
}
if {[lsort [array names myset]] eq
[lsort [array names auxset]]} {
break;
}
}
assert {$iterations != 0}
# PATH 2: positive count (unique behavior) with requested size
# equal or greater than set size.
foreach size {50 100} {
set res [r srandmember myset $size]
assert_equal [llength $res] 50
assert_equal [lsort $res] [lsort [array names myset]]
}
# PATH 3: Ask almost as elements as there are in the set.
# In this case the implementation will duplicate the original
# set and will remove random elements up to the requested size.
#
# PATH 4: Ask a number of elements definitely smaller than
# the set size.
#
# We can test both the code paths just changing the size but
# using the same code.
foreach size {45 5} {
set res [r srandmember myset $size]
assert_equal [llength $res] $size
# 1) Check that all the elements actually belong to the
# original set.
foreach ele $res {
assert {[info exists myset($ele)]}
}
# 2) Check that eventually all the elements are returned.
unset -nocomplain auxset
set iterations 1000
while {$iterations != 0} {
incr iterations -1
set res [r srandmember myset $size]
foreach ele $res {
set auxset($ele) 1
}
if {[lsort [array names myset]] eq
[lsort [array names auxset]]} {
break;
}
}
assert {$iterations != 0}
}
}
}
foreach {type contents} {
hashtable {
1 5 10 50 125
MARY PATRICIA LINDA BARBARA ELIZABETH
}
intset {
0 1 2 3 4 5 6 7 8 9
}
} {
test "SRANDMEMBER histogram distribution - $type" {
create_set myset $contents
unset -nocomplain myset
array set myset {}
foreach ele [r smembers myset] {
set myset($ele) 1
}
# Use negative count (PATH 1).
# df = 9, 40 means 0.00001 probability
set res [r srandmember myset -1000]
assert_lessthan [chi_square_value $res] 40
# Use positive count (both PATH 3 and PATH 4).
foreach size {8 2} {
unset -nocomplain allkey
set iterations [expr {1000 / $size}]
while {$iterations != 0} {
incr iterations -1
set res [r srandmember myset $size]
foreach ele $res {
lappend allkey $ele
}
}
# df = 9, 40 means 0.00001 probability
assert_lessthan [chi_square_value $allkey] 40
}
}
}
proc setup_move {} {
r del myset3{t} myset4{t}
create_set myset1{t} {1 a b}
create_set myset2{t} {2 3 4}
assert_encoding hashtable myset1{t}
assert_encoding intset myset2{t}
}
test "SMOVE basics - from regular set to intset" {
# move a non-integer element to an intset should convert encoding
setup_move
assert_equal 1 [r smove myset1{t} myset2{t} a]
assert_equal {1 b} [lsort [r smembers myset1{t}]]
assert_equal {2 3 4 a} [lsort [r smembers myset2{t}]]
assert_encoding hashtable myset2{t}
# move an integer element should not convert the encoding
setup_move
assert_equal 1 [r smove myset1{t} myset2{t} 1]
assert_equal {a b} [lsort [r smembers myset1{t}]]
assert_equal {1 2 3 4} [lsort [r smembers myset2{t}]]
assert_encoding intset myset2{t}
}
test "SMOVE basics - from intset to regular set" {
setup_move
assert_equal 1 [r smove myset2{t} myset1{t} 2]
assert_equal {1 2 a b} [lsort [r smembers myset1{t}]]
assert_equal {3 4} [lsort [r smembers myset2{t}]]
}
test "SMOVE non existing key" {
setup_move
assert_equal 0 [r smove myset1{t} myset2{t} foo]
assert_equal 0 [r smove myset1{t} myset1{t} foo]
assert_equal {1 a b} [lsort [r smembers myset1{t}]]
assert_equal {2 3 4} [lsort [r smembers myset2{t}]]
}
test "SMOVE non existing src set" {
setup_move
assert_equal 0 [r smove noset{t} myset2{t} foo]
assert_equal {2 3 4} [lsort [r smembers myset2{t}]]
}
test "SMOVE from regular set to non existing destination set" {
setup_move
assert_equal 1 [r smove myset1{t} myset3{t} a]
assert_equal {1 b} [lsort [r smembers myset1{t}]]
assert_equal {a} [lsort [r smembers myset3{t}]]
assert_encoding hashtable myset3{t}
}
test "SMOVE from intset to non existing destination set" {
setup_move
assert_equal 1 [r smove myset2{t} myset3{t} 2]
assert_equal {3 4} [lsort [r smembers myset2{t}]]
assert_equal {2} [lsort [r smembers myset3{t}]]
assert_encoding intset myset3{t}
}
test "SMOVE wrong src key type" {
r set x{t} 10
assert_error "WRONGTYPE*" {r smove x{t} myset2{t} foo}
}
test "SMOVE wrong dst key type" {
r set x{t} 10
assert_error "WRONGTYPE*" {r smove myset2{t} x{t} foo}
}
test "SMOVE with identical source and destination" {
r del set{t}
r sadd set{t} a b c
r smove set{t} set{t} b
lsort [r smembers set{t}]
} {a b c}
tags {slow} {
test {intsets implementation stress testing} {
for {set j 0} {$j < 20} {incr j} {
unset -nocomplain s
array set s {}
r del s
set len [randomInt 1024]
for {set i 0} {$i < $len} {incr i} {
randpath {
set data [randomInt 65536]
} {
set data [randomInt 4294967296]
} {
set data [randomInt 18446744073709551616]
}
set s($data) {}
r sadd s $data
}
assert_equal [lsort [r smembers s]] [lsort [array names s]]
set len [array size s]
for {set i 0} {$i < $len} {incr i} {
set e [r spop s]
if {![info exists s($e)]} {
puts "Can't find '$e' on local array"
puts "Local array: [lsort [r smembers s]]"
puts "Remote array: [lsort [array names s]]"
error "exception"
}
array unset s $e
}
assert_equal [r scard s] 0
assert_equal [array size s] 0
}
}
}
}