redis/deps/jemalloc/include/jemalloc/internal/jemalloc_internal_inlines_c.h

258 lines
8.2 KiB
C

#ifndef JEMALLOC_INTERNAL_INLINES_C_H
#define JEMALLOC_INTERNAL_INLINES_C_H
#include "jemalloc/internal/jemalloc_internal_types.h"
#include "jemalloc/internal/sz.h"
#include "jemalloc/internal/witness.h"
/*
* Translating the names of the 'i' functions:
* Abbreviations used in the first part of the function name (before
* alloc/dalloc) describe what that function accomplishes:
* a: arena (query)
* s: size (query, or sized deallocation)
* e: extent (query)
* p: aligned (allocates)
* vs: size (query, without knowing that the pointer is into the heap)
* r: rallocx implementation
* x: xallocx implementation
* Abbreviations used in the second part of the function name (after
* alloc/dalloc) describe the arguments it takes
* z: whether to return zeroed memory
* t: accepts a tcache_t * parameter
* m: accepts an arena_t * parameter
*/
JEMALLOC_ALWAYS_INLINE arena_t *
iaalloc(tsdn_t *tsdn, const void *ptr) {
assert(ptr != NULL);
return arena_aalloc(tsdn, ptr);
}
JEMALLOC_ALWAYS_INLINE size_t
isalloc(tsdn_t *tsdn, const void *ptr) {
assert(ptr != NULL);
return arena_salloc(tsdn, ptr);
}
JEMALLOC_ALWAYS_INLINE void *
iallocztm(tsdn_t *tsdn, size_t size, szind_t ind, bool zero, tcache_t *tcache,
bool is_internal, arena_t *arena, bool slow_path) {
void *ret;
assert(size != 0);
assert(!is_internal || tcache == NULL);
assert(!is_internal || arena == NULL || arena_is_auto(arena));
if (!tsdn_null(tsdn) && tsd_reentrancy_level_get(tsdn_tsd(tsdn)) == 0) {
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
}
ret = arena_malloc(tsdn, arena, size, ind, zero, tcache, slow_path);
if (config_stats && is_internal && likely(ret != NULL)) {
arena_internal_add(iaalloc(tsdn, ret), isalloc(tsdn, ret));
}
return ret;
}
JEMALLOC_ALWAYS_INLINE void *
ialloc(tsd_t *tsd, size_t size, szind_t ind, bool zero, bool slow_path) {
return iallocztm(tsd_tsdn(tsd), size, ind, zero, tcache_get(tsd), false,
NULL, slow_path);
}
JEMALLOC_ALWAYS_INLINE void *
ipallocztm(tsdn_t *tsdn, size_t usize, size_t alignment, bool zero,
tcache_t *tcache, bool is_internal, arena_t *arena) {
void *ret;
assert(usize != 0);
assert(usize == sz_sa2u(usize, alignment));
assert(!is_internal || tcache == NULL);
assert(!is_internal || arena == NULL || arena_is_auto(arena));
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
ret = arena_palloc(tsdn, arena, usize, alignment, zero, tcache);
assert(ALIGNMENT_ADDR2BASE(ret, alignment) == ret);
if (config_stats && is_internal && likely(ret != NULL)) {
arena_internal_add(iaalloc(tsdn, ret), isalloc(tsdn, ret));
}
return ret;
}
JEMALLOC_ALWAYS_INLINE void *
ipalloct(tsdn_t *tsdn, size_t usize, size_t alignment, bool zero,
tcache_t *tcache, arena_t *arena) {
return ipallocztm(tsdn, usize, alignment, zero, tcache, false, arena);
}
JEMALLOC_ALWAYS_INLINE void *
ipalloc(tsd_t *tsd, size_t usize, size_t alignment, bool zero) {
return ipallocztm(tsd_tsdn(tsd), usize, alignment, zero,
tcache_get(tsd), false, NULL);
}
JEMALLOC_ALWAYS_INLINE size_t
ivsalloc(tsdn_t *tsdn, const void *ptr) {
return arena_vsalloc(tsdn, ptr);
}
JEMALLOC_ALWAYS_INLINE void
idalloctm(tsdn_t *tsdn, void *ptr, tcache_t *tcache, alloc_ctx_t *alloc_ctx,
bool is_internal, bool slow_path) {
assert(ptr != NULL);
assert(!is_internal || tcache == NULL);
assert(!is_internal || arena_is_auto(iaalloc(tsdn, ptr)));
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
if (config_stats && is_internal) {
arena_internal_sub(iaalloc(tsdn, ptr), isalloc(tsdn, ptr));
}
if (!is_internal && !tsdn_null(tsdn) &&
tsd_reentrancy_level_get(tsdn_tsd(tsdn)) != 0) {
assert(tcache == NULL);
}
arena_dalloc(tsdn, ptr, tcache, alloc_ctx, slow_path);
}
JEMALLOC_ALWAYS_INLINE void
idalloc(tsd_t *tsd, void *ptr) {
idalloctm(tsd_tsdn(tsd), ptr, tcache_get(tsd), NULL, false, true);
}
JEMALLOC_ALWAYS_INLINE void
isdalloct(tsdn_t *tsdn, void *ptr, size_t size, tcache_t *tcache,
alloc_ctx_t *alloc_ctx, bool slow_path) {
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
arena_sdalloc(tsdn, ptr, size, tcache, alloc_ctx, slow_path);
}
JEMALLOC_ALWAYS_INLINE void *
iralloct_realign(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size,
size_t extra, size_t alignment, bool zero, tcache_t *tcache,
arena_t *arena) {
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
void *p;
size_t usize, copysize;
usize = sz_sa2u(size + extra, alignment);
if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
return NULL;
}
p = ipalloct(tsdn, usize, alignment, zero, tcache, arena);
if (p == NULL) {
if (extra == 0) {
return NULL;
}
/* Try again, without extra this time. */
usize = sz_sa2u(size, alignment);
if (unlikely(usize == 0 || usize > LARGE_MAXCLASS)) {
return NULL;
}
p = ipalloct(tsdn, usize, alignment, zero, tcache, arena);
if (p == NULL) {
return NULL;
}
}
/*
* Copy at most size bytes (not size+extra), since the caller has no
* expectation that the extra bytes will be reliably preserved.
*/
copysize = (size < oldsize) ? size : oldsize;
memcpy(p, ptr, copysize);
isdalloct(tsdn, ptr, oldsize, tcache, NULL, true);
return p;
}
JEMALLOC_ALWAYS_INLINE void *
iralloct(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size, size_t alignment,
bool zero, tcache_t *tcache, arena_t *arena) {
assert(ptr != NULL);
assert(size != 0);
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
if (alignment != 0 && ((uintptr_t)ptr & ((uintptr_t)alignment-1))
!= 0) {
/*
* Existing object alignment is inadequate; allocate new space
* and copy.
*/
return iralloct_realign(tsdn, ptr, oldsize, size, 0, alignment,
zero, tcache, arena);
}
return arena_ralloc(tsdn, arena, ptr, oldsize, size, alignment, zero,
tcache);
}
JEMALLOC_ALWAYS_INLINE void *
iralloc(tsd_t *tsd, void *ptr, size_t oldsize, size_t size, size_t alignment,
bool zero) {
return iralloct(tsd_tsdn(tsd), ptr, oldsize, size, alignment, zero,
tcache_get(tsd), NULL);
}
JEMALLOC_ALWAYS_INLINE bool
ixalloc(tsdn_t *tsdn, void *ptr, size_t oldsize, size_t size, size_t extra,
size_t alignment, bool zero) {
assert(ptr != NULL);
assert(size != 0);
witness_assert_depth_to_rank(tsdn_witness_tsdp_get(tsdn),
WITNESS_RANK_CORE, 0);
if (alignment != 0 && ((uintptr_t)ptr & ((uintptr_t)alignment-1))
!= 0) {
/* Existing object alignment is inadequate. */
return true;
}
return arena_ralloc_no_move(tsdn, ptr, oldsize, size, extra, zero);
}
JEMALLOC_ALWAYS_INLINE int
iget_defrag_hint(tsdn_t *tsdn, void* ptr) {
int defrag = 0;
rtree_ctx_t rtree_ctx_fallback;
rtree_ctx_t *rtree_ctx = tsdn_rtree_ctx(tsdn, &rtree_ctx_fallback);
szind_t szind;
bool is_slab;
rtree_szind_slab_read(tsdn, &extents_rtree, rtree_ctx, (uintptr_t)ptr, true, &szind, &is_slab);
if (likely(is_slab)) {
/* Small allocation. */
extent_t *slab = iealloc(tsdn, ptr);
arena_t *arena = extent_arena_get(slab);
szind_t binind = extent_szind_get(slab);
bin_t *bin = &arena->bins[binind];
malloc_mutex_lock(tsdn, &bin->lock);
/* don't bother moving allocations from the slab currently used for new allocations */
if (slab != bin->slabcur) {
int free_in_slab = extent_nfree_get(slab);
if (free_in_slab) {
const bin_info_t *bin_info = &bin_infos[binind];
int curslabs = bin->stats.curslabs;
size_t curregs = bin->stats.curregs;
if (bin->slabcur) {
/* remove slabcur from the overall utilization */
curregs -= bin_info->nregs - extent_nfree_get(bin->slabcur);
curslabs -= 1;
}
/* Compare the utilization ratio of the slab in question to the total average,
* to avoid precision lost and division, we do that by extrapolating the usage
* of the slab as if all slabs have the same usage. If this slab is less used
* than the average, we'll prefer to evict the data to hopefully more used ones */
defrag = (bin_info->nregs - free_in_slab) * curslabs <= curregs;
}
}
malloc_mutex_unlock(tsdn, &bin->lock);
}
return defrag;
}
#endif /* JEMALLOC_INTERNAL_INLINES_C_H */