redis/include/jemalloc/internal/hpa.h

183 lines
4.9 KiB
C

#ifndef JEMALLOC_INTERNAL_HPA_H
#define JEMALLOC_INTERNAL_HPA_H
#include "jemalloc/internal/exp_grow.h"
#include "jemalloc/internal/hpa_hooks.h"
#include "jemalloc/internal/hpa_opts.h"
#include "jemalloc/internal/pai.h"
#include "jemalloc/internal/psset.h"
typedef struct hpa_central_s hpa_central_t;
struct hpa_central_s {
/*
* The mutex guarding most of the operations on the central data
* structure.
*/
malloc_mutex_t mtx;
/*
* Guards expansion of eden. We separate this from the regular mutex so
* that cheaper operations can still continue while we're doing the OS
* call.
*/
malloc_mutex_t grow_mtx;
/*
* Either NULL (if empty), or some integer multiple of a
* hugepage-aligned number of hugepages. We carve them off one at a
* time to satisfy new pageslab requests.
*
* Guarded by grow_mtx.
*/
void *eden;
size_t eden_len;
/* Source for metadata. */
base_t *base;
/* Number of grow operations done on this hpa_central_t. */
uint64_t age_counter;
/* The HPA hooks. */
hpa_hooks_t hooks;
};
typedef struct hpa_shard_nonderived_stats_s hpa_shard_nonderived_stats_t;
struct hpa_shard_nonderived_stats_s {
/*
* The number of times we've purged within a hugepage.
*
* Guarded by mtx.
*/
uint64_t npurge_passes;
/*
* The number of individual purge calls we perform (which should always
* be bigger than npurge_passes, since each pass purges at least one
* extent within a hugepage.
*
* Guarded by mtx.
*/
uint64_t npurges;
/*
* The number of times we've hugified a pageslab.
*
* Guarded by mtx.
*/
uint64_t nhugifies;
/*
* The number of times we've dehugified a pageslab.
*
* Guarded by mtx.
*/
uint64_t ndehugifies;
};
/* Completely derived; only used by CTL. */
typedef struct hpa_shard_stats_s hpa_shard_stats_t;
struct hpa_shard_stats_s {
psset_stats_t psset_stats;
hpa_shard_nonderived_stats_t nonderived_stats;
};
typedef struct hpa_shard_s hpa_shard_t;
struct hpa_shard_s {
/*
* pai must be the first member; we cast from a pointer to it to a
* pointer to the hpa_shard_t.
*/
pai_t pai;
/* The central allocator we get our hugepages from. */
hpa_central_t *central;
/* Protects most of this shard's state. */
malloc_mutex_t mtx;
/*
* Guards the shard's access to the central allocator (preventing
* multiple threads operating on this shard from accessing the central
* allocator).
*/
malloc_mutex_t grow_mtx;
/* The base metadata allocator. */
base_t *base;
/*
* This edata cache is the one we use when allocating a small extent
* from a pageslab. The pageslab itself comes from the centralized
* allocator, and so will use its edata_cache.
*/
edata_cache_fast_t ecf;
psset_t psset;
/*
* How many grow operations have occurred.
*
* Guarded by grow_mtx.
*/
uint64_t age_counter;
/* The arena ind we're associated with. */
unsigned ind;
/*
* Our emap. This is just a cache of the emap pointer in the associated
* hpa_central.
*/
emap_t *emap;
/* The configuration choices for this hpa shard. */
hpa_shard_opts_t opts;
/*
* How many pages have we started but not yet finished purging in this
* hpa shard.
*/
size_t npending_purge;
/*
* Those stats which are copied directly into the CTL-centric hpa shard
* stats.
*/
hpa_shard_nonderived_stats_t stats;
/*
* Last time we performed purge on this shard.
*/
nstime_t last_purge;
};
/*
* Whether or not the HPA can be used given the current configuration. This is
* is not necessarily a guarantee that it backs its allocations by hugepages,
* just that it can function properly given the system it's running on.
*/
bool hpa_supported();
bool hpa_central_init(hpa_central_t *central, base_t *base, const hpa_hooks_t *hooks);
bool hpa_shard_init(hpa_shard_t *shard, hpa_central_t *central, emap_t *emap,
base_t *base, edata_cache_t *edata_cache, unsigned ind,
const hpa_shard_opts_t *opts);
void hpa_shard_stats_accum(hpa_shard_stats_t *dst, hpa_shard_stats_t *src);
void hpa_shard_stats_merge(tsdn_t *tsdn, hpa_shard_t *shard,
hpa_shard_stats_t *dst);
/*
* Notify the shard that we won't use it for allocations much longer. Due to
* the possibility of races, we don't actually prevent allocations; just flush
* and disable the embedded edata_cache_small.
*/
void hpa_shard_disable(tsdn_t *tsdn, hpa_shard_t *shard);
void hpa_shard_destroy(tsdn_t *tsdn, hpa_shard_t *shard);
void hpa_shard_set_deferral_allowed(tsdn_t *tsdn, hpa_shard_t *shard,
bool deferral_allowed);
void hpa_shard_do_deferred_work(tsdn_t *tsdn, hpa_shard_t *shard);
/*
* We share the fork ordering with the PA and arena prefork handling; that's why
* these are 3 and 4 rather than 0 and 1.
*/
void hpa_shard_prefork3(tsdn_t *tsdn, hpa_shard_t *shard);
void hpa_shard_prefork4(tsdn_t *tsdn, hpa_shard_t *shard);
void hpa_shard_postfork_parent(tsdn_t *tsdn, hpa_shard_t *shard);
void hpa_shard_postfork_child(tsdn_t *tsdn, hpa_shard_t *shard);
#endif /* JEMALLOC_INTERNAL_HPA_H */