redis/src/t_zset.c

4371 lines
145 KiB
C

/*
* Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
* Copyright (c) 2009-2012, Pieter Noordhuis <pcnoordhuis at gmail dot com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* * Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of Redis nor the names of its contributors may be used
* to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-----------------------------------------------------------------------------
* Sorted set API
*----------------------------------------------------------------------------*/
/* ZSETs are ordered sets using two data structures to hold the same elements
* in order to get O(log(N)) INSERT and REMOVE operations into a sorted
* data structure.
*
* The elements are added to a hash table mapping Redis objects to scores.
* At the same time the elements are added to a skip list mapping scores
* to Redis objects (so objects are sorted by scores in this "view").
*
* Note that the SDS string representing the element is the same in both
* the hash table and skiplist in order to save memory. What we do in order
* to manage the shared SDS string more easily is to free the SDS string
* only in zslFreeNode(). The dictionary has no value free method set.
* So we should always remove an element from the dictionary, and later from
* the skiplist.
*
* This skiplist implementation is almost a C translation of the original
* algorithm described by William Pugh in "Skip Lists: A Probabilistic
* Alternative to Balanced Trees", modified in three ways:
* a) this implementation allows for repeated scores.
* b) the comparison is not just by key (our 'score') but by satellite data.
* c) there is a back pointer, so it's a doubly linked list with the back
* pointers being only at "level 1". This allows to traverse the list
* from tail to head, useful for ZREVRANGE. */
#include "server.h"
#include <math.h>
/*-----------------------------------------------------------------------------
* Skiplist implementation of the low level API
*----------------------------------------------------------------------------*/
int zslLexValueGteMin(sds value, zlexrangespec *spec);
int zslLexValueLteMax(sds value, zlexrangespec *spec);
/* Create a skiplist node with the specified number of levels.
* The SDS string 'ele' is referenced by the node after the call. */
zskiplistNode *zslCreateNode(int level, double score, sds ele) {
zskiplistNode *zn =
zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));
zn->score = score;
zn->ele = ele;
return zn;
}
/* Create a new skiplist. */
zskiplist *zslCreate(void) {
int j;
zskiplist *zsl;
zsl = zmalloc(sizeof(*zsl));
zsl->level = 1;
zsl->length = 0;
zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
zsl->header->level[j].forward = NULL;
zsl->header->level[j].span = 0;
}
zsl->header->backward = NULL;
zsl->tail = NULL;
return zsl;
}
/* Free the specified skiplist node. The referenced SDS string representation
* of the element is freed too, unless node->ele is set to NULL before calling
* this function. */
void zslFreeNode(zskiplistNode *node) {
sdsfree(node->ele);
zfree(node);
}
/* Free a whole skiplist. */
void zslFree(zskiplist *zsl) {
zskiplistNode *node = zsl->header->level[0].forward, *next;
zfree(zsl->header);
while(node) {
next = node->level[0].forward;
zslFreeNode(node);
node = next;
}
zfree(zsl);
}
/* Returns a random level for the new skiplist node we are going to create.
* The return value of this function is between 1 and ZSKIPLIST_MAXLEVEL
* (both inclusive), with a powerlaw-alike distribution where higher
* levels are less likely to be returned. */
int zslRandomLevel(void) {
static const int threshold = ZSKIPLIST_P*RAND_MAX;
int level = 1;
while (random() < threshold)
level += 1;
return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}
/* Insert a new node in the skiplist. Assumes the element does not already
* exist (up to the caller to enforce that). The skiplist takes ownership
* of the passed SDS string 'ele'. */
zskiplistNode *zslInsert(zskiplist *zsl, double score, sds ele) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long rank[ZSKIPLIST_MAXLEVEL];
int i, level;
serverAssert(!isnan(score));
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* store rank that is crossed to reach the insert position */
rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
sdscmp(x->level[i].forward->ele,ele) < 0)))
{
rank[i] += x->level[i].span;
x = x->level[i].forward;
}
update[i] = x;
}
/* we assume the element is not already inside, since we allow duplicated
* scores, reinserting the same element should never happen since the
* caller of zslInsert() should test in the hash table if the element is
* already inside or not. */
level = zslRandomLevel();
if (level > zsl->level) {
for (i = zsl->level; i < level; i++) {
rank[i] = 0;
update[i] = zsl->header;
update[i]->level[i].span = zsl->length;
}
zsl->level = level;
}
x = zslCreateNode(level,score,ele);
for (i = 0; i < level; i++) {
x->level[i].forward = update[i]->level[i].forward;
update[i]->level[i].forward = x;
/* update span covered by update[i] as x is inserted here */
x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
update[i]->level[i].span = (rank[0] - rank[i]) + 1;
}
/* increment span for untouched levels */
for (i = level; i < zsl->level; i++) {
update[i]->level[i].span++;
}
x->backward = (update[0] == zsl->header) ? NULL : update[0];
if (x->level[0].forward)
x->level[0].forward->backward = x;
else
zsl->tail = x;
zsl->length++;
return x;
}
/* Internal function used by zslDelete, zslDeleteRangeByScore and
* zslDeleteRangeByRank. */
void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
int i;
for (i = 0; i < zsl->level; i++) {
if (update[i]->level[i].forward == x) {
update[i]->level[i].span += x->level[i].span - 1;
update[i]->level[i].forward = x->level[i].forward;
} else {
update[i]->level[i].span -= 1;
}
}
if (x->level[0].forward) {
x->level[0].forward->backward = x->backward;
} else {
zsl->tail = x->backward;
}
while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)
zsl->level--;
zsl->length--;
}
/* Delete an element with matching score/element from the skiplist.
* The function returns 1 if the node was found and deleted, otherwise
* 0 is returned.
*
* If 'node' is NULL the deleted node is freed by zslFreeNode(), otherwise
* it is not freed (but just unlinked) and *node is set to the node pointer,
* so that it is possible for the caller to reuse the node (including the
* referenced SDS string at node->ele). */
int zslDelete(zskiplist *zsl, double score, sds ele, zskiplistNode **node) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
sdscmp(x->level[i].forward->ele,ele) < 0)))
{
x = x->level[i].forward;
}
update[i] = x;
}
/* We may have multiple elements with the same score, what we need
* is to find the element with both the right score and object. */
x = x->level[0].forward;
if (x && score == x->score && sdscmp(x->ele,ele) == 0) {
zslDeleteNode(zsl, x, update);
if (!node)
zslFreeNode(x);
else
*node = x;
return 1;
}
return 0; /* not found */
}
/* Update the score of an element inside the sorted set skiplist.
* Note that the element must exist and must match 'score'.
* This function does not update the score in the hash table side, the
* caller should take care of it.
*
* Note that this function attempts to just update the node, in case after
* the score update, the node would be exactly at the same position.
* Otherwise the skiplist is modified by removing and re-adding a new
* element, which is more costly.
*
* The function returns the updated element skiplist node pointer. */
zskiplistNode *zslUpdateScore(zskiplist *zsl, double curscore, sds ele, double newscore) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
int i;
/* We need to seek to element to update to start: this is useful anyway,
* we'll have to update or remove it. */
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
(x->level[i].forward->score < curscore ||
(x->level[i].forward->score == curscore &&
sdscmp(x->level[i].forward->ele,ele) < 0)))
{
x = x->level[i].forward;
}
update[i] = x;
}
/* Jump to our element: note that this function assumes that the
* element with the matching score exists. */
x = x->level[0].forward;
serverAssert(x && curscore == x->score && sdscmp(x->ele,ele) == 0);
/* If the node, after the score update, would be still exactly
* at the same position, we can just update the score without
* actually removing and re-inserting the element in the skiplist. */
if ((x->backward == NULL || x->backward->score < newscore) &&
(x->level[0].forward == NULL || x->level[0].forward->score > newscore))
{
x->score = newscore;
return x;
}
/* No way to reuse the old node: we need to remove and insert a new
* one at a different place. */
zslDeleteNode(zsl, x, update);
zskiplistNode *newnode = zslInsert(zsl,newscore,x->ele);
/* We reused the old node x->ele SDS string, free the node now
* since zslInsert created a new one. */
x->ele = NULL;
zslFreeNode(x);
return newnode;
}
int zslValueGteMin(double value, zrangespec *spec) {
return spec->minex ? (value > spec->min) : (value >= spec->min);
}
int zslValueLteMax(double value, zrangespec *spec) {
return spec->maxex ? (value < spec->max) : (value <= spec->max);
}
/* Returns if there is a part of the zset is in range. */
int zslIsInRange(zskiplist *zsl, zrangespec *range) {
zskiplistNode *x;
/* Test for ranges that will always be empty. */
if (range->min > range->max ||
(range->min == range->max && (range->minex || range->maxex)))
return 0;
x = zsl->tail;
if (x == NULL || !zslValueGteMin(x->score,range))
return 0;
x = zsl->header->level[0].forward;
if (x == NULL || !zslValueLteMax(x->score,range))
return 0;
return 1;
}
/* Find the first node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *OUT* of range. */
while (x->level[i].forward &&
!zslValueGteMin(x->level[i].forward->score,range))
x = x->level[i].forward;
}
/* This is an inner range, so the next node cannot be NULL. */
x = x->level[0].forward;
serverAssert(x != NULL);
/* Check if score <= max. */
if (!zslValueLteMax(x->score,range)) return NULL;
return x;
}
/* Find the last node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslLastInRange(zskiplist *zsl, zrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *IN* range. */
while (x->level[i].forward &&
zslValueLteMax(x->level[i].forward->score,range))
x = x->level[i].forward;
}
/* This is an inner range, so this node cannot be NULL. */
serverAssert(x != NULL);
/* Check if score >= min. */
if (!zslValueGteMin(x->score,range)) return NULL;
return x;
}
/* Delete all the elements with score between min and max from the skiplist.
* Both min and max can be inclusive or exclusive (see range->minex and
* range->maxex). When inclusive a score >= min && score <= max is deleted.
* Note that this function takes the reference to the hash table view of the
* sorted set, in order to remove the elements from the hash table too. */
unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec *range, dict *dict) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long removed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
!zslValueGteMin(x->level[i].forward->score, range))
x = x->level[i].forward;
update[i] = x;
}
/* Current node is the last with score < or <= min. */
x = x->level[0].forward;
/* Delete nodes while in range. */
while (x && zslValueLteMax(x->score, range)) {
zskiplistNode *next = x->level[0].forward;
zslDeleteNode(zsl,x,update);
dictDelete(dict,x->ele);
zslFreeNode(x); /* Here is where x->ele is actually released. */
removed++;
x = next;
}
return removed;
}
unsigned long zslDeleteRangeByLex(zskiplist *zsl, zlexrangespec *range, dict *dict) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long removed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
!zslLexValueGteMin(x->level[i].forward->ele,range))
x = x->level[i].forward;
update[i] = x;
}
/* Current node is the last with score < or <= min. */
x = x->level[0].forward;
/* Delete nodes while in range. */
while (x && zslLexValueLteMax(x->ele,range)) {
zskiplistNode *next = x->level[0].forward;
zslDeleteNode(zsl,x,update);
dictDelete(dict,x->ele);
zslFreeNode(x); /* Here is where x->ele is actually released. */
removed++;
x = next;
}
return removed;
}
/* Delete all the elements with rank between start and end from the skiplist.
* Start and end are inclusive. Note that start and end need to be 1-based */
unsigned long zslDeleteRangeByRank(zskiplist *zsl, unsigned int start, unsigned int end, dict *dict) {
zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
unsigned long traversed = 0, removed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward && (traversed + x->level[i].span) < start) {
traversed += x->level[i].span;
x = x->level[i].forward;
}
update[i] = x;
}
traversed++;
x = x->level[0].forward;
while (x && traversed <= end) {
zskiplistNode *next = x->level[0].forward;
zslDeleteNode(zsl,x,update);
dictDelete(dict,x->ele);
zslFreeNode(x);
removed++;
traversed++;
x = next;
}
return removed;
}
/* Find the rank for an element by both score and key.
* Returns 0 when the element cannot be found, rank otherwise.
* Note that the rank is 1-based due to the span of zsl->header to the
* first element. */
unsigned long zslGetRank(zskiplist *zsl, double score, sds ele) {
zskiplistNode *x;
unsigned long rank = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward &&
(x->level[i].forward->score < score ||
(x->level[i].forward->score == score &&
sdscmp(x->level[i].forward->ele,ele) <= 0))) {
rank += x->level[i].span;
x = x->level[i].forward;
}
/* x might be equal to zsl->header, so test if obj is non-NULL */
if (x->ele && x->score == score && sdscmp(x->ele,ele) == 0) {
return rank;
}
}
return 0;
}
/* Finds an element by its rank. The rank argument needs to be 1-based. */
zskiplistNode* zslGetElementByRank(zskiplist *zsl, unsigned long rank) {
zskiplistNode *x;
unsigned long traversed = 0;
int i;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
while (x->level[i].forward && (traversed + x->level[i].span) <= rank)
{
traversed += x->level[i].span;
x = x->level[i].forward;
}
if (traversed == rank) {
return x;
}
}
return NULL;
}
/* Populate the rangespec according to the objects min and max. */
static int zslParseRange(robj *min, robj *max, zrangespec *spec) {
char *eptr;
spec->minex = spec->maxex = 0;
/* Parse the min-max interval. If one of the values is prefixed
* by the "(" character, it's considered "open". For instance
* ZRANGEBYSCORE zset (1.5 (2.5 will match min < x < max
* ZRANGEBYSCORE zset 1.5 2.5 will instead match min <= x <= max */
if (min->encoding == OBJ_ENCODING_INT) {
spec->min = (long)min->ptr;
} else {
if (((char*)min->ptr)[0] == '(') {
spec->min = strtod((char*)min->ptr+1,&eptr);
if (eptr[0] != '\0' || isnan(spec->min)) return C_ERR;
spec->minex = 1;
} else {
spec->min = strtod((char*)min->ptr,&eptr);
if (eptr[0] != '\0' || isnan(spec->min)) return C_ERR;
}
}
if (max->encoding == OBJ_ENCODING_INT) {
spec->max = (long)max->ptr;
} else {
if (((char*)max->ptr)[0] == '(') {
spec->max = strtod((char*)max->ptr+1,&eptr);
if (eptr[0] != '\0' || isnan(spec->max)) return C_ERR;
spec->maxex = 1;
} else {
spec->max = strtod((char*)max->ptr,&eptr);
if (eptr[0] != '\0' || isnan(spec->max)) return C_ERR;
}
}
return C_OK;
}
/* ------------------------ Lexicographic ranges ---------------------------- */
/* Parse max or min argument of ZRANGEBYLEX.
* (foo means foo (open interval)
* [foo means foo (closed interval)
* - means the min string possible
* + means the max string possible
*
* If the string is valid the *dest pointer is set to the redis object
* that will be used for the comparison, and ex will be set to 0 or 1
* respectively if the item is exclusive or inclusive. C_OK will be
* returned.
*
* If the string is not a valid range C_ERR is returned, and the value
* of *dest and *ex is undefined. */
int zslParseLexRangeItem(robj *item, sds *dest, int *ex) {
char *c = item->ptr;
switch(c[0]) {
case '+':
if (c[1] != '\0') return C_ERR;
*ex = 1;
*dest = shared.maxstring;
return C_OK;
case '-':
if (c[1] != '\0') return C_ERR;
*ex = 1;
*dest = shared.minstring;
return C_OK;
case '(':
*ex = 1;
*dest = sdsnewlen(c+1,sdslen(c)-1);
return C_OK;
case '[':
*ex = 0;
*dest = sdsnewlen(c+1,sdslen(c)-1);
return C_OK;
default:
return C_ERR;
}
}
/* Free a lex range structure, must be called only after zslParseLexRange()
* populated the structure with success (C_OK returned). */
void zslFreeLexRange(zlexrangespec *spec) {
if (spec->min != shared.minstring &&
spec->min != shared.maxstring) sdsfree(spec->min);
if (spec->max != shared.minstring &&
spec->max != shared.maxstring) sdsfree(spec->max);
}
/* Populate the lex rangespec according to the objects min and max.
*
* Return C_OK on success. On error C_ERR is returned.
* When OK is returned the structure must be freed with zslFreeLexRange(),
* otherwise no release is needed. */
int zslParseLexRange(robj *min, robj *max, zlexrangespec *spec) {
/* The range can't be valid if objects are integer encoded.
* Every item must start with ( or [. */
if (min->encoding == OBJ_ENCODING_INT ||
max->encoding == OBJ_ENCODING_INT) return C_ERR;
spec->min = spec->max = NULL;
if (zslParseLexRangeItem(min, &spec->min, &spec->minex) == C_ERR ||
zslParseLexRangeItem(max, &spec->max, &spec->maxex) == C_ERR) {
zslFreeLexRange(spec);
return C_ERR;
} else {
return C_OK;
}
}
/* This is just a wrapper to sdscmp() that is able to
* handle shared.minstring and shared.maxstring as the equivalent of
* -inf and +inf for strings */
int sdscmplex(sds a, sds b) {
if (a == b) return 0;
if (a == shared.minstring || b == shared.maxstring) return -1;
if (a == shared.maxstring || b == shared.minstring) return 1;
return sdscmp(a,b);
}
int zslLexValueGteMin(sds value, zlexrangespec *spec) {
return spec->minex ?
(sdscmplex(value,spec->min) > 0) :
(sdscmplex(value,spec->min) >= 0);
}
int zslLexValueLteMax(sds value, zlexrangespec *spec) {
return spec->maxex ?
(sdscmplex(value,spec->max) < 0) :
(sdscmplex(value,spec->max) <= 0);
}
/* Returns if there is a part of the zset is in the lex range. */
int zslIsInLexRange(zskiplist *zsl, zlexrangespec *range) {
zskiplistNode *x;
/* Test for ranges that will always be empty. */
int cmp = sdscmplex(range->min,range->max);
if (cmp > 0 || (cmp == 0 && (range->minex || range->maxex)))
return 0;
x = zsl->tail;
if (x == NULL || !zslLexValueGteMin(x->ele,range))
return 0;
x = zsl->header->level[0].forward;
if (x == NULL || !zslLexValueLteMax(x->ele,range))
return 0;
return 1;
}
/* Find the first node that is contained in the specified lex range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslFirstInLexRange(zskiplist *zsl, zlexrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInLexRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *OUT* of range. */
while (x->level[i].forward &&
!zslLexValueGteMin(x->level[i].forward->ele,range))
x = x->level[i].forward;
}
/* This is an inner range, so the next node cannot be NULL. */
x = x->level[0].forward;
serverAssert(x != NULL);
/* Check if score <= max. */
if (!zslLexValueLteMax(x->ele,range)) return NULL;
return x;
}
/* Find the last node that is contained in the specified range.
* Returns NULL when no element is contained in the range. */
zskiplistNode *zslLastInLexRange(zskiplist *zsl, zlexrangespec *range) {
zskiplistNode *x;
int i;
/* If everything is out of range, return early. */
if (!zslIsInLexRange(zsl,range)) return NULL;
x = zsl->header;
for (i = zsl->level-1; i >= 0; i--) {
/* Go forward while *IN* range. */
while (x->level[i].forward &&
zslLexValueLteMax(x->level[i].forward->ele,range))
x = x->level[i].forward;
}
/* This is an inner range, so this node cannot be NULL. */
serverAssert(x != NULL);
/* Check if score >= min. */
if (!zslLexValueGteMin(x->ele,range)) return NULL;
return x;
}
/*-----------------------------------------------------------------------------
* Listpack-backed sorted set API
*----------------------------------------------------------------------------*/
double zzlStrtod(unsigned char *vstr, unsigned int vlen) {
char buf[128];
if (vlen > sizeof(buf) - 1)
vlen = sizeof(buf) - 1;
memcpy(buf,vstr,vlen);
buf[vlen] = '\0';
return strtod(buf,NULL);
}
double zzlGetScore(unsigned char *sptr) {
unsigned char *vstr;
unsigned int vlen;
long long vlong;
double score;
serverAssert(sptr != NULL);
vstr = lpGetValue(sptr,&vlen,&vlong);
if (vstr) {
score = zzlStrtod(vstr,vlen);
} else {
score = vlong;
}
return score;
}
/* Return a listpack element as an SDS string. */
sds lpGetObject(unsigned char *sptr) {
unsigned char *vstr;
unsigned int vlen;
long long vlong;
serverAssert(sptr != NULL);
vstr = lpGetValue(sptr,&vlen,&vlong);
if (vstr) {
return sdsnewlen((char*)vstr,vlen);
} else {
return sdsfromlonglong(vlong);
}
}
/* Compare element in sorted set with given element. */
int zzlCompareElements(unsigned char *eptr, unsigned char *cstr, unsigned int clen) {
unsigned char *vstr;
unsigned int vlen;
long long vlong;
unsigned char vbuf[32];
int minlen, cmp;
vstr = lpGetValue(eptr,&vlen,&vlong);
if (vstr == NULL) {
/* Store string representation of long long in buf. */
vlen = ll2string((char*)vbuf,sizeof(vbuf),vlong);
vstr = vbuf;
}
minlen = (vlen < clen) ? vlen : clen;
cmp = memcmp(vstr,cstr,minlen);
if (cmp == 0) return vlen-clen;
return cmp;
}
unsigned int zzlLength(unsigned char *zl) {
return lpLength(zl)/2;
}
/* Move to next entry based on the values in eptr and sptr. Both are set to
* NULL when there is no next entry. */
void zzlNext(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
unsigned char *_eptr, *_sptr;
serverAssert(*eptr != NULL && *sptr != NULL);
_eptr = lpNext(zl,*sptr);
if (_eptr != NULL) {
_sptr = lpNext(zl,_eptr);
serverAssert(_sptr != NULL);
} else {
/* No next entry. */
_sptr = NULL;
}
*eptr = _eptr;
*sptr = _sptr;
}
/* Move to the previous entry based on the values in eptr and sptr. Both are
* set to NULL when there is no prev entry. */
void zzlPrev(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) {
unsigned char *_eptr, *_sptr;
serverAssert(*eptr != NULL && *sptr != NULL);
_sptr = lpPrev(zl,*eptr);
if (_sptr != NULL) {
_eptr = lpPrev(zl,_sptr);
serverAssert(_eptr != NULL);
} else {
/* No previous entry. */
_eptr = NULL;
}
*eptr = _eptr;
*sptr = _sptr;
}
/* Returns if there is a part of the zset is in range. Should only be used
* internally by zzlFirstInRange and zzlLastInRange. */
int zzlIsInRange(unsigned char *zl, zrangespec *range) {
unsigned char *p;
double score;
/* Test for ranges that will always be empty. */
if (range->min > range->max ||
(range->min == range->max && (range->minex || range->maxex)))
return 0;
p = lpSeek(zl,-1); /* Last score. */
if (p == NULL) return 0; /* Empty sorted set */
score = zzlGetScore(p);
if (!zslValueGteMin(score,range))
return 0;
p = lpSeek(zl,1); /* First score. */
serverAssert(p != NULL);
score = zzlGetScore(p);
if (!zslValueLteMax(score,range))
return 0;
return 1;
}
/* Find pointer to the first element contained in the specified range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlFirstInRange(unsigned char *zl, zrangespec *range) {
unsigned char *eptr = lpSeek(zl,0), *sptr;
double score;
/* If everything is out of range, return early. */
if (!zzlIsInRange(zl,range)) return NULL;
while (eptr != NULL) {
sptr = lpNext(zl,eptr);
serverAssert(sptr != NULL);
score = zzlGetScore(sptr);
if (zslValueGteMin(score,range)) {
/* Check if score <= max. */
if (zslValueLteMax(score,range))
return eptr;
return NULL;
}
/* Move to next element. */
eptr = lpNext(zl,sptr);
}
return NULL;
}
/* Find pointer to the last element contained in the specified range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlLastInRange(unsigned char *zl, zrangespec *range) {
unsigned char *eptr = lpSeek(zl,-2), *sptr;
double score;
/* If everything is out of range, return early. */
if (!zzlIsInRange(zl,range)) return NULL;
while (eptr != NULL) {
sptr = lpNext(zl,eptr);
serverAssert(sptr != NULL);
score = zzlGetScore(sptr);
if (zslValueLteMax(score,range)) {
/* Check if score >= min. */
if (zslValueGteMin(score,range))
return eptr;
return NULL;
}
/* Move to previous element by moving to the score of previous element.
* When this returns NULL, we know there also is no element. */
sptr = lpPrev(zl,eptr);
if (sptr != NULL)
serverAssert((eptr = lpPrev(zl,sptr)) != NULL);
else
eptr = NULL;
}
return NULL;
}
int zzlLexValueGteMin(unsigned char *p, zlexrangespec *spec) {
sds value = lpGetObject(p);
int res = zslLexValueGteMin(value,spec);
sdsfree(value);
return res;
}
int zzlLexValueLteMax(unsigned char *p, zlexrangespec *spec) {
sds value = lpGetObject(p);
int res = zslLexValueLteMax(value,spec);
sdsfree(value);
return res;
}
/* Returns if there is a part of the zset is in range. Should only be used
* internally by zzlFirstInRange and zzlLastInRange. */
int zzlIsInLexRange(unsigned char *zl, zlexrangespec *range) {
unsigned char *p;
/* Test for ranges that will always be empty. */
int cmp = sdscmplex(range->min,range->max);
if (cmp > 0 || (cmp == 0 && (range->minex || range->maxex)))
return 0;
p = lpSeek(zl,-2); /* Last element. */
if (p == NULL) return 0;
if (!zzlLexValueGteMin(p,range))
return 0;
p = lpSeek(zl,0); /* First element. */
serverAssert(p != NULL);
if (!zzlLexValueLteMax(p,range))
return 0;
return 1;
}
/* Find pointer to the first element contained in the specified lex range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlFirstInLexRange(unsigned char *zl, zlexrangespec *range) {
unsigned char *eptr = lpSeek(zl,0), *sptr;
/* If everything is out of range, return early. */
if (!zzlIsInLexRange(zl,range)) return NULL;
while (eptr != NULL) {
if (zzlLexValueGteMin(eptr,range)) {
/* Check if score <= max. */
if (zzlLexValueLteMax(eptr,range))
return eptr;
return NULL;
}
/* Move to next element. */
sptr = lpNext(zl,eptr); /* This element score. Skip it. */
serverAssert(sptr != NULL);
eptr = lpNext(zl,sptr); /* Next element. */
}
return NULL;
}
/* Find pointer to the last element contained in the specified lex range.
* Returns NULL when no element is contained in the range. */
unsigned char *zzlLastInLexRange(unsigned char *zl, zlexrangespec *range) {
unsigned char *eptr = lpSeek(zl,-2), *sptr;
/* If everything is out of range, return early. */
if (!zzlIsInLexRange(zl,range)) return NULL;
while (eptr != NULL) {
if (zzlLexValueLteMax(eptr,range)) {
/* Check if score >= min. */
if (zzlLexValueGteMin(eptr,range))
return eptr;
return NULL;
}
/* Move to previous element by moving to the score of previous element.
* When this returns NULL, we know there also is no element. */
sptr = lpPrev(zl,eptr);
if (sptr != NULL)
serverAssert((eptr = lpPrev(zl,sptr)) != NULL);
else
eptr = NULL;
}
return NULL;
}
unsigned char *zzlFind(unsigned char *lp, sds ele, double *score) {
unsigned char *eptr, *sptr;
if ((eptr = lpFirst(lp)) == NULL) return NULL;
eptr = lpFind(lp, eptr, (unsigned char*)ele, sdslen(ele), 1);
if (eptr) {
sptr = lpNext(lp,eptr);
serverAssert(sptr != NULL);
/* Matching element, pull out score. */
if (score != NULL) *score = zzlGetScore(sptr);
return eptr;
}
return NULL;
}
/* Delete (element,score) pair from listpack. Use local copy of eptr because we
* don't want to modify the one given as argument. */
unsigned char *zzlDelete(unsigned char *zl, unsigned char *eptr) {
return lpDeleteRangeWithEntry(zl,&eptr,2);
}
unsigned char *zzlInsertAt(unsigned char *zl, unsigned char *eptr, sds ele, double score) {
unsigned char *sptr;
char scorebuf[MAX_D2STRING_CHARS];
int scorelen;
long long lscore;
int score_is_long = double2ll(score, &lscore);
if (!score_is_long)
scorelen = d2string(scorebuf,sizeof(scorebuf),score);
if (eptr == NULL) {
zl = lpAppend(zl,(unsigned char*)ele,sdslen(ele));
if (score_is_long)
zl = lpAppendInteger(zl,lscore);
else
zl = lpAppend(zl,(unsigned char*)scorebuf,scorelen);
} else {
/* Insert member before the element 'eptr'. */
zl = lpInsertString(zl,(unsigned char*)ele,sdslen(ele),eptr,LP_BEFORE,&sptr);
/* Insert score after the member. */
if (score_is_long)
zl = lpInsertInteger(zl,lscore,sptr,LP_AFTER,NULL);
else
zl = lpInsertString(zl,(unsigned char*)scorebuf,scorelen,sptr,LP_AFTER,NULL);
}
return zl;
}
/* Insert (element,score) pair in listpack. This function assumes the element is
* not yet present in the list. */
unsigned char *zzlInsert(unsigned char *zl, sds ele, double score) {
unsigned char *eptr = lpSeek(zl,0), *sptr;
double s;
while (eptr != NULL) {
sptr = lpNext(zl,eptr);
serverAssert(sptr != NULL);
s = zzlGetScore(sptr);
if (s > score) {
/* First element with score larger than score for element to be
* inserted. This means we should take its spot in the list to
* maintain ordering. */
zl = zzlInsertAt(zl,eptr,ele,score);
break;
} else if (s == score) {
/* Ensure lexicographical ordering for elements. */
if (zzlCompareElements(eptr,(unsigned char*)ele,sdslen(ele)) > 0) {
zl = zzlInsertAt(zl,eptr,ele,score);
break;
}
}
/* Move to next element. */
eptr = lpNext(zl,sptr);
}
/* Push on tail of list when it was not yet inserted. */
if (eptr == NULL)
zl = zzlInsertAt(zl,NULL,ele,score);
return zl;
}
unsigned char *zzlDeleteRangeByScore(unsigned char *zl, zrangespec *range, unsigned long *deleted) {
unsigned char *eptr, *sptr;
double score;
unsigned long num = 0;
if (deleted != NULL) *deleted = 0;
eptr = zzlFirstInRange(zl,range);
if (eptr == NULL) return zl;
/* When the tail of the listpack is deleted, eptr will be NULL. */
while (eptr && (sptr = lpNext(zl,eptr)) != NULL) {
score = zzlGetScore(sptr);
if (zslValueLteMax(score,range)) {
/* Delete both the element and the score. */
zl = lpDeleteRangeWithEntry(zl,&eptr,2);
num++;
} else {
/* No longer in range. */
break;
}
}
if (deleted != NULL) *deleted = num;
return zl;
}
unsigned char *zzlDeleteRangeByLex(unsigned char *zl, zlexrangespec *range, unsigned long *deleted) {
unsigned char *eptr, *sptr;
unsigned long num = 0;
if (deleted != NULL) *deleted = 0;
eptr = zzlFirstInLexRange(zl,range);
if (eptr == NULL) return zl;
/* When the tail of the listpack is deleted, eptr will be NULL. */
while (eptr && (sptr = lpNext(zl,eptr)) != NULL) {
if (zzlLexValueLteMax(eptr,range)) {
/* Delete both the element and the score. */
zl = lpDeleteRangeWithEntry(zl,&eptr,2);
num++;
} else {
/* No longer in range. */
break;
}
}
if (deleted != NULL) *deleted = num;
return zl;
}
/* Delete all the elements with rank between start and end from the skiplist.
* Start and end are inclusive. Note that start and end need to be 1-based */
unsigned char *zzlDeleteRangeByRank(unsigned char *zl, unsigned int start, unsigned int end, unsigned long *deleted) {
unsigned int num = (end-start)+1;
if (deleted) *deleted = num;
zl = lpDeleteRange(zl,2*(start-1),2*num);
return zl;
}
/*-----------------------------------------------------------------------------
* Common sorted set API
*----------------------------------------------------------------------------*/
unsigned long zsetLength(const robj *zobj) {
unsigned long length = 0;
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
length = zzlLength(zobj->ptr);
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
length = ((const zset*)zobj->ptr)->zsl->length;
} else {
serverPanic("Unknown sorted set encoding");
}
return length;
}
void zsetConvert(robj *zobj, int encoding) {
zset *zs;
zskiplistNode *node, *next;
sds ele;
double score;
if (zobj->encoding == encoding) return;
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
if (encoding != OBJ_ENCODING_SKIPLIST)
serverPanic("Unknown target encoding");
zs = zmalloc(sizeof(*zs));
zs->dict = dictCreate(&zsetDictType);
zs->zsl = zslCreate();
eptr = lpSeek(zl,0);
serverAssertWithInfo(NULL,zobj,eptr != NULL);
sptr = lpNext(zl,eptr);
serverAssertWithInfo(NULL,zobj,sptr != NULL);
while (eptr != NULL) {
score = zzlGetScore(sptr);
vstr = lpGetValue(eptr,&vlen,&vlong);
if (vstr == NULL)
ele = sdsfromlonglong(vlong);
else
ele = sdsnewlen((char*)vstr,vlen);
node = zslInsert(zs->zsl,score,ele);
serverAssert(dictAdd(zs->dict,ele,&node->score) == DICT_OK);
zzlNext(zl,&eptr,&sptr);
}
zfree(zobj->ptr);
zobj->ptr = zs;
zobj->encoding = OBJ_ENCODING_SKIPLIST;
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
unsigned char *zl = lpNew(0);
if (encoding != OBJ_ENCODING_LISTPACK)
serverPanic("Unknown target encoding");
/* Approach similar to zslFree(), since we want to free the skiplist at
* the same time as creating the listpack. */
zs = zobj->ptr;
dictRelease(zs->dict);
node = zs->zsl->header->level[0].forward;
zfree(zs->zsl->header);
zfree(zs->zsl);
while (node) {
zl = zzlInsertAt(zl,NULL,node->ele,node->score);
next = node->level[0].forward;
zslFreeNode(node);
node = next;
}
zfree(zs);
zobj->ptr = zl;
zobj->encoding = OBJ_ENCODING_LISTPACK;
} else {
serverPanic("Unknown sorted set encoding");
}
}
/* Convert the sorted set object into a listpack if it is not already a listpack
* and if the number of elements and the maximum element size and total elements size
* are within the expected ranges. */
void zsetConvertToListpackIfNeeded(robj *zobj, size_t maxelelen, size_t totelelen) {
if (zobj->encoding == OBJ_ENCODING_LISTPACK) return;
zset *zset = zobj->ptr;
if (zset->zsl->length <= server.zset_max_listpack_entries &&
maxelelen <= server.zset_max_listpack_value &&
lpSafeToAdd(NULL, totelelen))
{
zsetConvert(zobj,OBJ_ENCODING_LISTPACK);
}
}
/* Return (by reference) the score of the specified member of the sorted set
* storing it into *score. If the element does not exist C_ERR is returned
* otherwise C_OK is returned and *score is correctly populated.
* If 'zobj' or 'member' is NULL, C_ERR is returned. */
int zsetScore(robj *zobj, sds member, double *score) {
if (!zobj || !member) return C_ERR;
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
if (zzlFind(zobj->ptr, member, score) == NULL) return C_ERR;
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
dictEntry *de = dictFind(zs->dict, member);
if (de == NULL) return C_ERR;
*score = *(double*)dictGetVal(de);
} else {
serverPanic("Unknown sorted set encoding");
}
return C_OK;
}
/* Add a new element or update the score of an existing element in a sorted
* set, regardless of its encoding.
*
* The set of flags change the command behavior.
*
* The input flags are the following:
*
* ZADD_INCR: Increment the current element score by 'score' instead of updating
* the current element score. If the element does not exist, we
* assume 0 as previous score.
* ZADD_NX: Perform the operation only if the element does not exist.
* ZADD_XX: Perform the operation only if the element already exist.
* ZADD_GT: Perform the operation on existing elements only if the new score is
* greater than the current score.
* ZADD_LT: Perform the operation on existing elements only if the new score is
* less than the current score.
*
* When ZADD_INCR is used, the new score of the element is stored in
* '*newscore' if 'newscore' is not NULL.
*
* The returned flags are the following:
*
* ZADD_NAN: The resulting score is not a number.
* ZADD_ADDED: The element was added (not present before the call).
* ZADD_UPDATED: The element score was updated.
* ZADD_NOP: No operation was performed because of NX or XX.
*
* Return value:
*
* The function returns 1 on success, and sets the appropriate flags
* ADDED or UPDATED to signal what happened during the operation (note that
* none could be set if we re-added an element using the same score it used
* to have, or in the case a zero increment is used).
*
* The function returns 0 on error, currently only when the increment
* produces a NAN condition, or when the 'score' value is NAN since the
* start.
*
* The command as a side effect of adding a new element may convert the sorted
* set internal encoding from listpack to hashtable+skiplist.
*
* Memory management of 'ele':
*
* The function does not take ownership of the 'ele' SDS string, but copies
* it if needed. */
int zsetAdd(robj *zobj, double score, sds ele, int in_flags, int *out_flags, double *newscore) {
/* Turn options into simple to check vars. */
int incr = (in_flags & ZADD_IN_INCR) != 0;
int nx = (in_flags & ZADD_IN_NX) != 0;
int xx = (in_flags & ZADD_IN_XX) != 0;
int gt = (in_flags & ZADD_IN_GT) != 0;
int lt = (in_flags & ZADD_IN_LT) != 0;
*out_flags = 0; /* We'll return our response flags. */
double curscore;
/* NaN as input is an error regardless of all the other parameters. */
if (isnan(score)) {
*out_flags = ZADD_OUT_NAN;
return 0;
}
/* Update the sorted set according to its encoding. */
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *eptr;
if ((eptr = zzlFind(zobj->ptr,ele,&curscore)) != NULL) {
/* NX? Return, same element already exists. */
if (nx) {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
/* Prepare the score for the increment if needed. */
if (incr) {
score += curscore;
if (isnan(score)) {
*out_flags |= ZADD_OUT_NAN;
return 0;
}
}
/* GT/LT? Only update if score is greater/less than current. */
if ((lt && score >= curscore) || (gt && score <= curscore)) {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
if (newscore) *newscore = score;
/* Remove and re-insert when score changed. */
if (score != curscore) {
zobj->ptr = zzlDelete(zobj->ptr,eptr);
zobj->ptr = zzlInsert(zobj->ptr,ele,score);
*out_flags |= ZADD_OUT_UPDATED;
}
return 1;
} else if (!xx) {
/* check if the element is too large or the list
* becomes too long *before* executing zzlInsert. */
if (zzlLength(zobj->ptr)+1 > server.zset_max_listpack_entries ||
sdslen(ele) > server.zset_max_listpack_value ||
!lpSafeToAdd(zobj->ptr, sdslen(ele)))
{
zsetConvert(zobj,OBJ_ENCODING_SKIPLIST);
} else {
zobj->ptr = zzlInsert(zobj->ptr,ele,score);
if (newscore) *newscore = score;
*out_flags |= ZADD_OUT_ADDED;
return 1;
}
} else {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
}
/* Note that the above block handling listpack would have either returned or
* converted the key to skiplist. */
if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplistNode *znode;
dictEntry *de;
de = dictFind(zs->dict,ele);
if (de != NULL) {
/* NX? Return, same element already exists. */
if (nx) {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
curscore = *(double*)dictGetVal(de);
/* Prepare the score for the increment if needed. */
if (incr) {
score += curscore;
if (isnan(score)) {
*out_flags |= ZADD_OUT_NAN;
return 0;
}
}
/* GT/LT? Only update if score is greater/less than current. */
if ((lt && score >= curscore) || (gt && score <= curscore)) {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
if (newscore) *newscore = score;
/* Remove and re-insert when score changes. */
if (score != curscore) {
znode = zslUpdateScore(zs->zsl,curscore,ele,score);
/* Note that we did not removed the original element from
* the hash table representing the sorted set, so we just
* update the score. */
dictGetVal(de) = &znode->score; /* Update score ptr. */
*out_flags |= ZADD_OUT_UPDATED;
}
return 1;
} else if (!xx) {
ele = sdsdup(ele);
znode = zslInsert(zs->zsl,score,ele);
serverAssert(dictAdd(zs->dict,ele,&znode->score) == DICT_OK);
*out_flags |= ZADD_OUT_ADDED;
if (newscore) *newscore = score;
return 1;
} else {
*out_flags |= ZADD_OUT_NOP;
return 1;
}
} else {
serverPanic("Unknown sorted set encoding");
}
return 0; /* Never reached. */
}
/* Deletes the element 'ele' from the sorted set encoded as a skiplist+dict,
* returning 1 if the element existed and was deleted, 0 otherwise (the
* element was not there). It does not resize the dict after deleting the
* element. */
static int zsetRemoveFromSkiplist(zset *zs, sds ele) {
dictEntry *de;
double score;
de = dictUnlink(zs->dict,ele);
if (de != NULL) {
/* Get the score in order to delete from the skiplist later. */
score = *(double*)dictGetVal(de);
/* Delete from the hash table and later from the skiplist.
* Note that the order is important: deleting from the skiplist
* actually releases the SDS string representing the element,
* which is shared between the skiplist and the hash table, so
* we need to delete from the skiplist as the final step. */
dictFreeUnlinkedEntry(zs->dict,de);
/* Delete from skiplist. */
int retval = zslDelete(zs->zsl,score,ele,NULL);
serverAssert(retval);
return 1;
}
return 0;
}
/* Delete the element 'ele' from the sorted set, returning 1 if the element
* existed and was deleted, 0 otherwise (the element was not there). */
int zsetDel(robj *zobj, sds ele) {
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *eptr;
if ((eptr = zzlFind(zobj->ptr,ele,NULL)) != NULL) {
zobj->ptr = zzlDelete(zobj->ptr,eptr);
return 1;
}
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
if (zsetRemoveFromSkiplist(zs, ele)) {
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
return 1;
}
} else {
serverPanic("Unknown sorted set encoding");
}
return 0; /* No such element found. */
}
/* Given a sorted set object returns the 0-based rank of the object or
* -1 if the object does not exist.
*
* For rank we mean the position of the element in the sorted collection
* of elements. So the first element has rank 0, the second rank 1, and so
* forth up to length-1 elements.
*
* If 'reverse' is false, the rank is returned considering as first element
* the one with the lowest score. Otherwise if 'reverse' is non-zero
* the rank is computed considering as element with rank 0 the one with
* the highest score. */
long zsetRank(robj *zobj, sds ele, int reverse) {
unsigned long llen;
unsigned long rank;
llen = zsetLength(zobj);
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
eptr = lpSeek(zl,0);
serverAssert(eptr != NULL);
sptr = lpNext(zl,eptr);
serverAssert(sptr != NULL);
rank = 1;
while(eptr != NULL) {
if (lpCompare(eptr,(unsigned char*)ele,sdslen(ele)))
break;
rank++;
zzlNext(zl,&eptr,&sptr);
}
if (eptr != NULL) {
if (reverse)
return llen-rank;
else
return rank-1;
} else {
return -1;
}
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
dictEntry *de;
double score;
de = dictFind(zs->dict,ele);
if (de != NULL) {
score = *(double*)dictGetVal(de);
rank = zslGetRank(zsl,score,ele);
/* Existing elements always have a rank. */
serverAssert(rank != 0);
if (reverse)
return llen-rank;
else
return rank-1;
} else {
return -1;
}
} else {
serverPanic("Unknown sorted set encoding");
}
}
/* This is a helper function for the COPY command.
* Duplicate a sorted set object, with the guarantee that the returned object
* has the same encoding as the original one.
*
* The resulting object always has refcount set to 1 */
robj *zsetDup(robj *o) {
robj *zobj;
zset *zs;
zset *new_zs;
serverAssert(o->type == OBJ_ZSET);
/* Create a new sorted set object that have the same encoding as the original object's encoding */
if (o->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = o->ptr;
size_t sz = lpBytes(zl);
unsigned char *new_zl = zmalloc(sz);
memcpy(new_zl, zl, sz);
zobj = createObject(OBJ_ZSET, new_zl);
zobj->encoding = OBJ_ENCODING_LISTPACK;
} else if (o->encoding == OBJ_ENCODING_SKIPLIST) {
zobj = createZsetObject();
zs = o->ptr;
new_zs = zobj->ptr;
dictExpand(new_zs->dict,dictSize(zs->dict));
zskiplist *zsl = zs->zsl;
zskiplistNode *ln;
sds ele;
long llen = zsetLength(o);
/* We copy the skiplist elements from the greatest to the
* smallest (that's trivial since the elements are already ordered in
* the skiplist): this improves the load process, since the next loaded
* element will always be the smaller, so adding to the skiplist
* will always immediately stop at the head, making the insertion
* O(1) instead of O(log(N)). */
ln = zsl->tail;
while (llen--) {
ele = ln->ele;
sds new_ele = sdsdup(ele);
zskiplistNode *znode = zslInsert(new_zs->zsl,ln->score,new_ele);
dictAdd(new_zs->dict,new_ele,&znode->score);
ln = ln->backward;
}
} else {
serverPanic("Unknown sorted set encoding");
}
return zobj;
}
/* Create a new sds string from the listpack entry. */
sds zsetSdsFromListpackEntry(listpackEntry *e) {
return e->sval ? sdsnewlen(e->sval, e->slen) : sdsfromlonglong(e->lval);
}
/* Reply with bulk string from the listpack entry. */
void zsetReplyFromListpackEntry(client *c, listpackEntry *e) {
if (e->sval)
addReplyBulkCBuffer(c, e->sval, e->slen);
else
addReplyBulkLongLong(c, e->lval);
}
/* Return random element from a non empty zset.
* 'key' and 'val' will be set to hold the element.
* The memory in `key` is not to be freed or modified by the caller.
* 'score' can be NULL in which case it's not extracted. */
void zsetTypeRandomElement(robj *zsetobj, unsigned long zsetsize, listpackEntry *key, double *score) {
if (zsetobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zsetobj->ptr;
dictEntry *de = dictGetFairRandomKey(zs->dict);
sds s = dictGetKey(de);
key->sval = (unsigned char*)s;
key->slen = sdslen(s);
if (score)
*score = *(double*)dictGetVal(de);
} else if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) {
listpackEntry val;
lpRandomPair(zsetobj->ptr, zsetsize, key, &val);
if (score) {
if (val.sval) {
*score = zzlStrtod(val.sval,val.slen);
} else {
*score = (double)val.lval;
}
}
} else {
serverPanic("Unknown zset encoding");
}
}
/*-----------------------------------------------------------------------------
* Sorted set commands
*----------------------------------------------------------------------------*/
/* This generic command implements both ZADD and ZINCRBY. */
void zaddGenericCommand(client *c, int flags) {
static char *nanerr = "resulting score is not a number (NaN)";
robj *key = c->argv[1];
robj *zobj;
sds ele;
double score = 0, *scores = NULL;
int j, elements, ch = 0;
int scoreidx = 0;
/* The following vars are used in order to track what the command actually
* did during the execution, to reply to the client and to trigger the
* notification of keyspace change. */
int added = 0; /* Number of new elements added. */
int updated = 0; /* Number of elements with updated score. */
int processed = 0; /* Number of elements processed, may remain zero with
options like XX. */
/* Parse options. At the end 'scoreidx' is set to the argument position
* of the score of the first score-element pair. */
scoreidx = 2;
while(scoreidx < c->argc) {
char *opt = c->argv[scoreidx]->ptr;
if (!strcasecmp(opt,"nx")) flags |= ZADD_IN_NX;
else if (!strcasecmp(opt,"xx")) flags |= ZADD_IN_XX;
else if (!strcasecmp(opt,"ch")) ch = 1; /* Return num of elements added or updated. */
else if (!strcasecmp(opt,"incr")) flags |= ZADD_IN_INCR;
else if (!strcasecmp(opt,"gt")) flags |= ZADD_IN_GT;
else if (!strcasecmp(opt,"lt")) flags |= ZADD_IN_LT;
else break;
scoreidx++;
}
/* Turn options into simple to check vars. */
int incr = (flags & ZADD_IN_INCR) != 0;
int nx = (flags & ZADD_IN_NX) != 0;
int xx = (flags & ZADD_IN_XX) != 0;
int gt = (flags & ZADD_IN_GT) != 0;
int lt = (flags & ZADD_IN_LT) != 0;
/* After the options, we expect to have an even number of args, since
* we expect any number of score-element pairs. */
elements = c->argc-scoreidx;
if (elements % 2 || !elements) {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
elements /= 2; /* Now this holds the number of score-element pairs. */
/* Check for incompatible options. */
if (nx && xx) {
addReplyError(c,
"XX and NX options at the same time are not compatible");
return;
}
if ((gt && nx) || (lt && nx) || (gt && lt)) {
addReplyError(c,
"GT, LT, and/or NX options at the same time are not compatible");
return;
}
/* Note that XX is compatible with either GT or LT */
if (incr && elements > 1) {
addReplyError(c,
"INCR option supports a single increment-element pair");
return;
}
/* Start parsing all the scores, we need to emit any syntax error
* before executing additions to the sorted set, as the command should
* either execute fully or nothing at all. */
scores = zmalloc(sizeof(double)*elements);
for (j = 0; j < elements; j++) {
if (getDoubleFromObjectOrReply(c,c->argv[scoreidx+j*2],&scores[j],NULL)
!= C_OK) goto cleanup;
}
/* Lookup the key and create the sorted set if does not exist. */
zobj = lookupKeyWrite(c->db,key);
if (checkType(c,zobj,OBJ_ZSET)) goto cleanup;
if (zobj == NULL) {
if (xx) goto reply_to_client; /* No key + XX option: nothing to do. */
if (server.zset_max_listpack_entries == 0 ||
server.zset_max_listpack_value < sdslen(c->argv[scoreidx+1]->ptr))
{
zobj = createZsetObject();
} else {
zobj = createZsetListpackObject();
}
dbAdd(c->db,key,zobj);
}
for (j = 0; j < elements; j++) {
double newscore;
score = scores[j];
int retflags = 0;
ele = c->argv[scoreidx+1+j*2]->ptr;
int retval = zsetAdd(zobj, score, ele, flags, &retflags, &newscore);
if (retval == 0) {
addReplyError(c,nanerr);
goto cleanup;
}
if (retflags & ZADD_OUT_ADDED) added++;
if (retflags & ZADD_OUT_UPDATED) updated++;
if (!(retflags & ZADD_OUT_NOP)) processed++;
score = newscore;
}
server.dirty += (added+updated);
reply_to_client:
if (incr) { /* ZINCRBY or INCR option. */
if (processed)
addReplyDouble(c,score);
else
addReplyNull(c);
} else { /* ZADD. */
addReplyLongLong(c,ch ? added+updated : added);
}
cleanup:
zfree(scores);
if (added || updated) {
signalModifiedKey(c,c->db,key);
notifyKeyspaceEvent(NOTIFY_ZSET,
incr ? "zincr" : "zadd", key, c->db->id);
}
}
void zaddCommand(client *c) {
zaddGenericCommand(c,ZADD_IN_NONE);
}
void zincrbyCommand(client *c) {
zaddGenericCommand(c,ZADD_IN_INCR);
}
void zremCommand(client *c) {
robj *key = c->argv[1];
robj *zobj;
int deleted = 0, keyremoved = 0, j;
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,OBJ_ZSET)) return;
for (j = 2; j < c->argc; j++) {
if (zsetDel(zobj,c->argv[j]->ptr)) deleted++;
if (zsetLength(zobj) == 0) {
dbDelete(c->db,key);
keyremoved = 1;
break;
}
}
if (deleted) {
notifyKeyspaceEvent(NOTIFY_ZSET,"zrem",key,c->db->id);
if (keyremoved)
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id);
signalModifiedKey(c,c->db,key);
server.dirty += deleted;
}
addReplyLongLong(c,deleted);
}
typedef enum {
ZRANGE_AUTO = 0,
ZRANGE_RANK,
ZRANGE_SCORE,
ZRANGE_LEX,
} zrange_type;
/* Implements ZREMRANGEBYRANK, ZREMRANGEBYSCORE, ZREMRANGEBYLEX commands. */
void zremrangeGenericCommand(client *c, zrange_type rangetype) {
robj *key = c->argv[1];
robj *zobj;
int keyremoved = 0;
unsigned long deleted = 0;
zrangespec range;
zlexrangespec lexrange;
long start, end, llen;
char *notify_type = NULL;
/* Step 1: Parse the range. */
if (rangetype == ZRANGE_RANK) {
notify_type = "zremrangebyrank";
if ((getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK) ||
(getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK))
return;
} else if (rangetype == ZRANGE_SCORE) {
notify_type = "zremrangebyscore";
if (zslParseRange(c->argv[2],c->argv[3],&range) != C_OK) {
addReplyError(c,"min or max is not a float");
return;
}
} else if (rangetype == ZRANGE_LEX) {
notify_type = "zremrangebylex";
if (zslParseLexRange(c->argv[2],c->argv[3],&lexrange) != C_OK) {
addReplyError(c,"min or max not valid string range item");
return;
}
} else {
serverPanic("unknown rangetype %d", (int)rangetype);
}
/* Step 2: Lookup & range sanity checks if needed. */
if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,OBJ_ZSET)) goto cleanup;
if (rangetype == ZRANGE_RANK) {
/* Sanitize indexes. */
llen = zsetLength(zobj);
if (start < 0) start = llen+start;
if (end < 0) end = llen+end;
if (start < 0) start = 0;
/* Invariant: start >= 0, so this test will be true when end < 0.
* The range is empty when start > end or start >= length. */
if (start > end || start >= llen) {
addReply(c,shared.czero);
goto cleanup;
}
if (end >= llen) end = llen-1;
}
/* Step 3: Perform the range deletion operation. */
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
switch(rangetype) {
case ZRANGE_AUTO:
case ZRANGE_RANK:
zobj->ptr = zzlDeleteRangeByRank(zobj->ptr,start+1,end+1,&deleted);
break;
case ZRANGE_SCORE:
zobj->ptr = zzlDeleteRangeByScore(zobj->ptr,&range,&deleted);
break;
case ZRANGE_LEX:
zobj->ptr = zzlDeleteRangeByLex(zobj->ptr,&lexrange,&deleted);
break;
}
if (zzlLength(zobj->ptr) == 0) {
dbDelete(c->db,key);
keyremoved = 1;
}
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
switch(rangetype) {
case ZRANGE_AUTO:
case ZRANGE_RANK:
deleted = zslDeleteRangeByRank(zs->zsl,start+1,end+1,zs->dict);
break;
case ZRANGE_SCORE:
deleted = zslDeleteRangeByScore(zs->zsl,&range,zs->dict);
break;
case ZRANGE_LEX:
deleted = zslDeleteRangeByLex(zs->zsl,&lexrange,zs->dict);
break;
}
if (htNeedsResize(zs->dict)) dictResize(zs->dict);
if (dictSize(zs->dict) == 0) {
dbDelete(c->db,key);
keyremoved = 1;
}
} else {
serverPanic("Unknown sorted set encoding");
}
/* Step 4: Notifications and reply. */
if (deleted) {
signalModifiedKey(c,c->db,key);
notifyKeyspaceEvent(NOTIFY_ZSET,notify_type,key,c->db->id);
if (keyremoved)
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id);
}
server.dirty += deleted;
addReplyLongLong(c,deleted);
cleanup:
if (rangetype == ZRANGE_LEX) zslFreeLexRange(&lexrange);
}
void zremrangebyrankCommand(client *c) {
zremrangeGenericCommand(c,ZRANGE_RANK);
}
void zremrangebyscoreCommand(client *c) {
zremrangeGenericCommand(c,ZRANGE_SCORE);
}
void zremrangebylexCommand(client *c) {
zremrangeGenericCommand(c,ZRANGE_LEX);
}
typedef struct {
robj *subject;
int type; /* Set, sorted set */
int encoding;
double weight;
union {
/* Set iterators. */
union _iterset {
struct {
intset *is;
int ii;
} is;
struct {
dict *dict;
dictIterator *di;
dictEntry *de;
} ht;
} set;
/* Sorted set iterators. */
union _iterzset {
struct {
unsigned char *zl;
unsigned char *eptr, *sptr;
} zl;
struct {
zset *zs;
zskiplistNode *node;
} sl;
} zset;
} iter;
} zsetopsrc;
/* Use dirty flags for pointers that need to be cleaned up in the next
* iteration over the zsetopval. The dirty flag for the long long value is
* special, since long long values don't need cleanup. Instead, it means that
* we already checked that "ell" holds a long long, or tried to convert another
* representation into a long long value. When this was successful,
* OPVAL_VALID_LL is set as well. */
#define OPVAL_DIRTY_SDS 1
#define OPVAL_DIRTY_LL 2
#define OPVAL_VALID_LL 4
/* Store value retrieved from the iterator. */
typedef struct {
int flags;
unsigned char _buf[32]; /* Private buffer. */
sds ele;
unsigned char *estr;
unsigned int elen;
long long ell;
double score;
} zsetopval;
typedef union _iterset iterset;
typedef union _iterzset iterzset;
void zuiInitIterator(zsetopsrc *op) {
if (op->subject == NULL)
return;
if (op->type == OBJ_SET) {
iterset *it = &op->iter.set;
if (op->encoding == OBJ_ENCODING_INTSET) {
it->is.is = op->subject->ptr;
it->is.ii = 0;
} else if (op->encoding == OBJ_ENCODING_HT) {
it->ht.dict = op->subject->ptr;
it->ht.di = dictGetIterator(op->subject->ptr);
it->ht.de = dictNext(it->ht.di);
} else {
serverPanic("Unknown set encoding");
}
} else if (op->type == OBJ_ZSET) {
/* Sorted sets are traversed in reverse order to optimize for
* the insertion of the elements in a new list as in
* ZDIFF/ZINTER/ZUNION */
iterzset *it = &op->iter.zset;
if (op->encoding == OBJ_ENCODING_LISTPACK) {
it->zl.zl = op->subject->ptr;
it->zl.eptr = lpSeek(it->zl.zl,-2);
if (it->zl.eptr != NULL) {
it->zl.sptr = lpNext(it->zl.zl,it->zl.eptr);
serverAssert(it->zl.sptr != NULL);
}
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
it->sl.zs = op->subject->ptr;
it->sl.node = it->sl.zs->zsl->tail;
} else {
serverPanic("Unknown sorted set encoding");
}
} else {
serverPanic("Unsupported type");
}
}
void zuiClearIterator(zsetopsrc *op) {
if (op->subject == NULL)
return;
if (op->type == OBJ_SET) {
iterset *it = &op->iter.set;
if (op->encoding == OBJ_ENCODING_INTSET) {
UNUSED(it); /* skip */
} else if (op->encoding == OBJ_ENCODING_HT) {
dictReleaseIterator(it->ht.di);
} else {
serverPanic("Unknown set encoding");
}
} else if (op->type == OBJ_ZSET) {
iterzset *it = &op->iter.zset;
if (op->encoding == OBJ_ENCODING_LISTPACK) {
UNUSED(it); /* skip */
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
UNUSED(it); /* skip */
} else {
serverPanic("Unknown sorted set encoding");
}
} else {
serverPanic("Unsupported type");
}
}
void zuiDiscardDirtyValue(zsetopval *val) {
if (val->flags & OPVAL_DIRTY_SDS) {
sdsfree(val->ele);
val->ele = NULL;
val->flags &= ~OPVAL_DIRTY_SDS;
}
}
unsigned long zuiLength(zsetopsrc *op) {
if (op->subject == NULL)
return 0;
if (op->type == OBJ_SET) {
if (op->encoding == OBJ_ENCODING_INTSET) {
return intsetLen(op->subject->ptr);
} else if (op->encoding == OBJ_ENCODING_HT) {
dict *ht = op->subject->ptr;
return dictSize(ht);
} else {
serverPanic("Unknown set encoding");
}
} else if (op->type == OBJ_ZSET) {
if (op->encoding == OBJ_ENCODING_LISTPACK) {
return zzlLength(op->subject->ptr);
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = op->subject->ptr;
return zs->zsl->length;
} else {
serverPanic("Unknown sorted set encoding");
}
} else {
serverPanic("Unsupported type");
}
}
/* Check if the current value is valid. If so, store it in the passed structure
* and move to the next element. If not valid, this means we have reached the
* end of the structure and can abort. */
int zuiNext(zsetopsrc *op, zsetopval *val) {
if (op->subject == NULL)
return 0;
zuiDiscardDirtyValue(val);
memset(val,0,sizeof(zsetopval));
if (op->type == OBJ_SET) {
iterset *it = &op->iter.set;
if (op->encoding == OBJ_ENCODING_INTSET) {
int64_t ell;
if (!intsetGet(it->is.is,it->is.ii,&ell))
return 0;
val->ell = ell;
val->score = 1.0;
/* Move to next element. */
it->is.ii++;
} else if (op->encoding == OBJ_ENCODING_HT) {
if (it->ht.de == NULL)
return 0;
val->ele = dictGetKey(it->ht.de);
val->score = 1.0;
/* Move to next element. */
it->ht.de = dictNext(it->ht.di);
} else {
serverPanic("Unknown set encoding");
}
} else if (op->type == OBJ_ZSET) {
iterzset *it = &op->iter.zset;
if (op->encoding == OBJ_ENCODING_LISTPACK) {
/* No need to check both, but better be explicit. */
if (it->zl.eptr == NULL || it->zl.sptr == NULL)
return 0;
val->estr = lpGetValue(it->zl.eptr,&val->elen,&val->ell);
val->score = zzlGetScore(it->zl.sptr);
/* Move to next element (going backwards, see zuiInitIterator). */
zzlPrev(it->zl.zl,&it->zl.eptr,&it->zl.sptr);
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
if (it->sl.node == NULL)
return 0;
val->ele = it->sl.node->ele;
val->score = it->sl.node->score;
/* Move to next element. (going backwards, see zuiInitIterator) */
it->sl.node = it->sl.node->backward;
} else {
serverPanic("Unknown sorted set encoding");
}
} else {
serverPanic("Unsupported type");
}
return 1;
}
int zuiLongLongFromValue(zsetopval *val) {
if (!(val->flags & OPVAL_DIRTY_LL)) {
val->flags |= OPVAL_DIRTY_LL;
if (val->ele != NULL) {
if (string2ll(val->ele,sdslen(val->ele),&val->ell))
val->flags |= OPVAL_VALID_LL;
} else if (val->estr != NULL) {
if (string2ll((char*)val->estr,val->elen,&val->ell))
val->flags |= OPVAL_VALID_LL;
} else {
/* The long long was already set, flag as valid. */
val->flags |= OPVAL_VALID_LL;
}
}
return val->flags & OPVAL_VALID_LL;
}
sds zuiSdsFromValue(zsetopval *val) {
if (val->ele == NULL) {
if (val->estr != NULL) {
val->ele = sdsnewlen((char*)val->estr,val->elen);
} else {
val->ele = sdsfromlonglong(val->ell);
}
val->flags |= OPVAL_DIRTY_SDS;
}
return val->ele;
}
/* This is different from zuiSdsFromValue since returns a new SDS string
* which is up to the caller to free. */
sds zuiNewSdsFromValue(zsetopval *val) {
if (val->flags & OPVAL_DIRTY_SDS) {
/* We have already one to return! */
sds ele = val->ele;
val->flags &= ~OPVAL_DIRTY_SDS;
val->ele = NULL;
return ele;
} else if (val->ele) {
return sdsdup(val->ele);
} else if (val->estr) {
return sdsnewlen((char*)val->estr,val->elen);
} else {
return sdsfromlonglong(val->ell);
}
}
int zuiBufferFromValue(zsetopval *val) {
if (val->estr == NULL) {
if (val->ele != NULL) {
val->elen = sdslen(val->ele);
val->estr = (unsigned char*)val->ele;
} else {
val->elen = ll2string((char*)val->_buf,sizeof(val->_buf),val->ell);
val->estr = val->_buf;
}
}
return 1;
}
/* Find value pointed to by val in the source pointer to by op. When found,
* return 1 and store its score in target. Return 0 otherwise. */
int zuiFind(zsetopsrc *op, zsetopval *val, double *score) {
if (op->subject == NULL)
return 0;
if (op->type == OBJ_SET) {
if (op->encoding == OBJ_ENCODING_INTSET) {
if (zuiLongLongFromValue(val) &&
intsetFind(op->subject->ptr,val->ell))
{
*score = 1.0;
return 1;
} else {
return 0;
}
} else if (op->encoding == OBJ_ENCODING_HT) {
dict *ht = op->subject->ptr;
zuiSdsFromValue(val);
if (dictFind(ht,val->ele) != NULL) {
*score = 1.0;
return 1;
} else {
return 0;
}
} else {
serverPanic("Unknown set encoding");
}
} else if (op->type == OBJ_ZSET) {
zuiSdsFromValue(val);
if (op->encoding == OBJ_ENCODING_LISTPACK) {
if (zzlFind(op->subject->ptr,val->ele,score) != NULL) {
/* Score is already set by zzlFind. */
return 1;
} else {
return 0;
}
} else if (op->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = op->subject->ptr;
dictEntry *de;
if ((de = dictFind(zs->dict,val->ele)) != NULL) {
*score = *(double*)dictGetVal(de);
return 1;
} else {
return 0;
}
} else {
serverPanic("Unknown sorted set encoding");
}
} else {
serverPanic("Unsupported type");
}
}
int zuiCompareByCardinality(const void *s1, const void *s2) {
unsigned long first = zuiLength((zsetopsrc*)s1);
unsigned long second = zuiLength((zsetopsrc*)s2);
if (first > second) return 1;
if (first < second) return -1;
return 0;
}
static int zuiCompareByRevCardinality(const void *s1, const void *s2) {
return zuiCompareByCardinality(s1, s2) * -1;
}
#define REDIS_AGGR_SUM 1
#define REDIS_AGGR_MIN 2
#define REDIS_AGGR_MAX 3
#define zunionInterDictValue(_e) (dictGetVal(_e) == NULL ? 1.0 : *(double*)dictGetVal(_e))
inline static void zunionInterAggregate(double *target, double val, int aggregate) {
if (aggregate == REDIS_AGGR_SUM) {
*target = *target + val;
/* The result of adding two doubles is NaN when one variable
* is +inf and the other is -inf. When these numbers are added,
* we maintain the convention of the result being 0.0. */
if (isnan(*target)) *target = 0.0;
} else if (aggregate == REDIS_AGGR_MIN) {
*target = val < *target ? val : *target;
} else if (aggregate == REDIS_AGGR_MAX) {
*target = val > *target ? val : *target;
} else {
/* safety net */
serverPanic("Unknown ZUNION/INTER aggregate type");
}
}
static size_t zsetDictGetMaxElementLength(dict *d, size_t *totallen) {
dictIterator *di;
dictEntry *de;
size_t maxelelen = 0;
di = dictGetIterator(d);
while((de = dictNext(di)) != NULL) {
sds ele = dictGetKey(de);
if (sdslen(ele) > maxelelen) maxelelen = sdslen(ele);
if (totallen)
(*totallen) += sdslen(ele);
}
dictReleaseIterator(di);
return maxelelen;
}
static void zdiffAlgorithm1(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) {
/* DIFF Algorithm 1:
*
* We perform the diff by iterating all the elements of the first set,
* and only adding it to the target set if the element does not exist
* into all the other sets.
*
* This way we perform at max N*M operations, where N is the size of
* the first set, and M the number of sets.
*
* There is also a O(K*log(K)) cost for adding the resulting elements
* to the target set, where K is the final size of the target set.
*
* The final complexity of this algorithm is O(N*M + K*log(K)). */
int j;
zsetopval zval;
zskiplistNode *znode;
sds tmp;
/* With algorithm 1 it is better to order the sets to subtract
* by decreasing size, so that we are more likely to find
* duplicated elements ASAP. */
qsort(src+1,setnum-1,sizeof(zsetopsrc),zuiCompareByRevCardinality);
memset(&zval, 0, sizeof(zval));
zuiInitIterator(&src[0]);
while (zuiNext(&src[0],&zval)) {
double value;
int exists = 0;
for (j = 1; j < setnum; j++) {
/* It is not safe to access the zset we are
* iterating, so explicitly check for equal object.
* This check isn't really needed anymore since we already
* check for a duplicate set in the zsetChooseDiffAlgorithm
* function, but we're leaving it for future-proofing. */
if (src[j].subject == src[0].subject ||
zuiFind(&src[j],&zval,&value)) {
exists = 1;
break;
}
}
if (!exists) {
tmp = zuiNewSdsFromValue(&zval);
znode = zslInsert(dstzset->zsl,zval.score,tmp);
dictAdd(dstzset->dict,tmp,&znode->score);
if (sdslen(tmp) > *maxelelen) *maxelelen = sdslen(tmp);
(*totelelen) += sdslen(tmp);
}
}
zuiClearIterator(&src[0]);
}
static void zdiffAlgorithm2(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) {
/* DIFF Algorithm 2:
*
* Add all the elements of the first set to the auxiliary set.
* Then remove all the elements of all the next sets from it.
*
* This is O(L + (N-K)log(N)) where L is the sum of all the elements in every
* set, N is the size of the first set, and K is the size of the result set.
*
* Note that from the (L-N) dict searches, (N-K) got to the zsetRemoveFromSkiplist
* which costs log(N)
*
* There is also a O(K) cost at the end for finding the largest element
* size, but this doesn't change the algorithm complexity since K < L, and
* O(2L) is the same as O(L). */
int j;
int cardinality = 0;
zsetopval zval;
zskiplistNode *znode;
sds tmp;
for (j = 0; j < setnum; j++) {
if (zuiLength(&src[j]) == 0) continue;
memset(&zval, 0, sizeof(zval));
zuiInitIterator(&src[j]);
while (zuiNext(&src[j],&zval)) {
if (j == 0) {
tmp = zuiNewSdsFromValue(&zval);
znode = zslInsert(dstzset->zsl,zval.score,tmp);
dictAdd(dstzset->dict,tmp,&znode->score);
cardinality++;
} else {
tmp = zuiSdsFromValue(&zval);
if (zsetRemoveFromSkiplist(dstzset, tmp)) {
cardinality--;
}
}
/* Exit if result set is empty as any additional removal
* of elements will have no effect. */
if (cardinality == 0) break;
}
zuiClearIterator(&src[j]);
if (cardinality == 0) break;
}
/* Resize dict if needed after removing multiple elements */
if (htNeedsResize(dstzset->dict)) dictResize(dstzset->dict);
/* Using this algorithm, we can't calculate the max element as we go,
* we have to iterate through all elements to find the max one after. */
*maxelelen = zsetDictGetMaxElementLength(dstzset->dict, totelelen);
}
static int zsetChooseDiffAlgorithm(zsetopsrc *src, long setnum) {
int j;
/* Select what DIFF algorithm to use.
*
* Algorithm 1 is O(N*M + K*log(K)) where N is the size of the
* first set, M the total number of sets, and K is the size of the
* result set.
*
* Algorithm 2 is O(L + (N-K)log(N)) where L is the total number of elements
* in all the sets, N is the size of the first set, and K is the size of the
* result set.
*
* We compute what is the best bet with the current input here. */
long long algo_one_work = 0;
long long algo_two_work = 0;
for (j = 0; j < setnum; j++) {
/* If any other set is equal to the first set, there is nothing to be
* done, since we would remove all elements anyway. */
if (j > 0 && src[0].subject == src[j].subject) {
return 0;
}
algo_one_work += zuiLength(&src[0]);
algo_two_work += zuiLength(&src[j]);
}
/* Algorithm 1 has better constant times and performs less operations
* if there are elements in common. Give it some advantage. */
algo_one_work /= 2;
return (algo_one_work <= algo_two_work) ? 1 : 2;
}
static void zdiff(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) {
/* Skip everything if the smallest input is empty. */
if (zuiLength(&src[0]) > 0) {
int diff_algo = zsetChooseDiffAlgorithm(src, setnum);
if (diff_algo == 1) {
zdiffAlgorithm1(src, setnum, dstzset, maxelelen, totelelen);
} else if (diff_algo == 2) {
zdiffAlgorithm2(src, setnum, dstzset, maxelelen, totelelen);
} else if (diff_algo != 0) {
serverPanic("Unknown algorithm");
}
}
}
dictType setAccumulatorDictType = {
dictSdsHash, /* hash function */
NULL, /* key dup */
NULL, /* val dup */
dictSdsKeyCompare, /* key compare */
NULL, /* key destructor */
NULL, /* val destructor */
NULL /* allow to expand */
};
/* The zunionInterDiffGenericCommand() function is called in order to implement the
* following commands: ZUNION, ZINTER, ZDIFF, ZUNIONSTORE, ZINTERSTORE, ZDIFFSTORE,
* ZINTERCARD.
*
* 'numkeysIndex' parameter position of key number. for ZUNION/ZINTER/ZDIFF command,
* this value is 1, for ZUNIONSTORE/ZINTERSTORE/ZDIFFSTORE command, this value is 2.
*
* 'op' SET_OP_INTER, SET_OP_UNION or SET_OP_DIFF.
*
* 'cardinality_only' is currently only applicable when 'op' is SET_OP_INTER.
* Work for SINTERCARD, only return the cardinality with minimum processing and memory overheads.
*/
void zunionInterDiffGenericCommand(client *c, robj *dstkey, int numkeysIndex, int op,
int cardinality_only) {
int i, j;
long setnum;
int aggregate = REDIS_AGGR_SUM;
zsetopsrc *src;
zsetopval zval;
sds tmp;
size_t maxelelen = 0, totelelen = 0;
robj *dstobj;
zset *dstzset;
zskiplistNode *znode;
int withscores = 0;
unsigned long cardinality = 0;
long limit = 0; /* Stop searching after reaching the limit. 0 means unlimited. */
/* expect setnum input keys to be given */
if ((getLongFromObjectOrReply(c, c->argv[numkeysIndex], &setnum, NULL) != C_OK))
return;
if (setnum < 1) {
addReplyErrorFormat(c,
"at least 1 input key is needed for '%s' command", c->cmd->fullname);
return;
}
/* test if the expected number of keys would overflow */
if (setnum > (c->argc-(numkeysIndex+1))) {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
/* read keys to be used for input */
src = zcalloc(sizeof(zsetopsrc) * setnum);
for (i = 0, j = numkeysIndex+1; i < setnum; i++, j++) {
robj *obj = lookupKeyRead(c->db, c->argv[j]);
if (obj != NULL) {
if (obj->type != OBJ_ZSET && obj->type != OBJ_SET) {
zfree(src);
addReplyErrorObject(c,shared.wrongtypeerr);
return;
}
src[i].subject = obj;
src[i].type = obj->type;
src[i].encoding = obj->encoding;
} else {
src[i].subject = NULL;
}
/* Default all weights to 1. */
src[i].weight = 1.0;
}
/* parse optional extra arguments */
if (j < c->argc) {
int remaining = c->argc - j;
while (remaining) {
if (op != SET_OP_DIFF && !cardinality_only &&
remaining >= (setnum + 1) &&
!strcasecmp(c->argv[j]->ptr,"weights"))
{
j++; remaining--;
for (i = 0; i < setnum; i++, j++, remaining--) {
if (getDoubleFromObjectOrReply(c,c->argv[j],&src[i].weight,
"weight value is not a float") != C_OK)
{
zfree(src);
return;
}
}
} else if (op != SET_OP_DIFF && !cardinality_only &&
remaining >= 2 &&
!strcasecmp(c->argv[j]->ptr,"aggregate"))
{
j++; remaining--;
if (!strcasecmp(c->argv[j]->ptr,"sum")) {
aggregate = REDIS_AGGR_SUM;
} else if (!strcasecmp(c->argv[j]->ptr,"min")) {
aggregate = REDIS_AGGR_MIN;
} else if (!strcasecmp(c->argv[j]->ptr,"max")) {
aggregate = REDIS_AGGR_MAX;
} else {
zfree(src);
addReplyErrorObject(c,shared.syntaxerr);
return;
}
j++; remaining--;
} else if (remaining >= 1 &&
!dstkey && !cardinality_only &&
!strcasecmp(c->argv[j]->ptr,"withscores"))
{
j++; remaining--;
withscores = 1;
} else if (cardinality_only && remaining >= 2 &&
!strcasecmp(c->argv[j]->ptr, "limit"))
{
j++; remaining--;
if (getPositiveLongFromObjectOrReply(c, c->argv[j], &limit,
"LIMIT can't be negative") != C_OK)
{
zfree(src);
return;
}
j++; remaining--;
} else {
zfree(src);
addReplyErrorObject(c,shared.syntaxerr);
return;
}
}
}
if (op != SET_OP_DIFF) {
/* sort sets from the smallest to largest, this will improve our
* algorithm's performance */
qsort(src,setnum,sizeof(zsetopsrc),zuiCompareByCardinality);
}
dstobj = createZsetObject();
dstzset = dstobj->ptr;
memset(&zval, 0, sizeof(zval));
if (op == SET_OP_INTER) {
/* Skip everything if the smallest input is empty. */
if (zuiLength(&src[0]) > 0) {
/* Precondition: as src[0] is non-empty and the inputs are ordered
* by size, all src[i > 0] are non-empty too. */
zuiInitIterator(&src[0]);
while (zuiNext(&src[0],&zval)) {
double score, value;
score = src[0].weight * zval.score;
if (isnan(score)) score = 0;
for (j = 1; j < setnum; j++) {
/* It is not safe to access the zset we are
* iterating, so explicitly check for equal object. */
if (src[j].subject == src[0].subject) {
value = zval.score*src[j].weight;
zunionInterAggregate(&score,value,aggregate);
} else if (zuiFind(&src[j],&zval,&value)) {
value *= src[j].weight;
zunionInterAggregate(&score,value,aggregate);
} else {
break;
}
}
/* Only continue when present in every input. */
if (j == setnum && cardinality_only) {
cardinality++;
/* We stop the searching after reaching the limit. */
if (limit && cardinality >= (unsigned long)limit) {
/* Cleanup before we break the zuiNext loop. */
zuiDiscardDirtyValue(&zval);
break;
}
} else if (j == setnum) {
tmp = zuiNewSdsFromValue(&zval);
znode = zslInsert(dstzset->zsl,score,tmp);
dictAdd(dstzset->dict,tmp,&znode->score);
totelelen += sdslen(tmp);
if (sdslen(tmp) > maxelelen) maxelelen = sdslen(tmp);
}
}
zuiClearIterator(&src[0]);
}
} else if (op == SET_OP_UNION) {
dict *accumulator = dictCreate(&setAccumulatorDictType);
dictIterator *di;
dictEntry *de, *existing;
double score;
if (setnum) {
/* Our union is at least as large as the largest set.
* Resize the dictionary ASAP to avoid useless rehashing. */
dictExpand(accumulator,zuiLength(&src[setnum-1]));
}
/* Step 1: Create a dictionary of elements -> aggregated-scores
* by iterating one sorted set after the other. */
for (i = 0; i < setnum; i++) {
if (zuiLength(&src[i]) == 0) continue;
zuiInitIterator(&src[i]);
while (zuiNext(&src[i],&zval)) {
/* Initialize value */
score = src[i].weight * zval.score;
if (isnan(score)) score = 0;
/* Search for this element in the accumulating dictionary. */
de = dictAddRaw(accumulator,zuiSdsFromValue(&zval),&existing);
/* If we don't have it, we need to create a new entry. */
if (!existing) {
tmp = zuiNewSdsFromValue(&zval);
/* Remember the longest single element encountered,
* to understand if it's possible to convert to listpack
* at the end. */
totelelen += sdslen(tmp);
if (sdslen(tmp) > maxelelen) maxelelen = sdslen(tmp);
/* Update the element with its initial score. */
dictSetKey(accumulator, de, tmp);
dictSetDoubleVal(de,score);
} else {
/* Update the score with the score of the new instance
* of the element found in the current sorted set.
*
* Here we access directly the dictEntry double
* value inside the union as it is a big speedup
* compared to using the getDouble/setDouble API. */
zunionInterAggregate(&existing->v.d,score,aggregate);
}
}
zuiClearIterator(&src[i]);
}
/* Step 2: convert the dictionary into the final sorted set. */
di = dictGetIterator(accumulator);
/* We now are aware of the final size of the resulting sorted set,
* let's resize the dictionary embedded inside the sorted set to the
* right size, in order to save rehashing time. */
dictExpand(dstzset->dict,dictSize(accumulator));
while((de = dictNext(di)) != NULL) {
sds ele = dictGetKey(de);
score = dictGetDoubleVal(de);
znode = zslInsert(dstzset->zsl,score,ele);
dictAdd(dstzset->dict,ele,&znode->score);
}
dictReleaseIterator(di);
dictRelease(accumulator);
} else if (op == SET_OP_DIFF) {
zdiff(src, setnum, dstzset, &maxelelen, &totelelen);
} else {
serverPanic("Unknown operator");
}
if (dstkey) {
if (dstzset->zsl->length) {
zsetConvertToListpackIfNeeded(dstobj, maxelelen, totelelen);
setKey(c, c->db, dstkey, dstobj, 0);
addReplyLongLong(c, zsetLength(dstobj));
notifyKeyspaceEvent(NOTIFY_ZSET,
(op == SET_OP_UNION) ? "zunionstore" :
(op == SET_OP_INTER ? "zinterstore" : "zdiffstore"),
dstkey, c->db->id);
server.dirty++;
} else {
addReply(c, shared.czero);
if (dbDelete(c->db, dstkey)) {
signalModifiedKey(c, c->db, dstkey);
notifyKeyspaceEvent(NOTIFY_GENERIC, "del", dstkey, c->db->id);
server.dirty++;
}
}
} else if (cardinality_only) {
addReplyLongLong(c, cardinality);
} else {
unsigned long length = dstzset->zsl->length;
zskiplist *zsl = dstzset->zsl;
zskiplistNode *zn = zsl->header->level[0].forward;
/* In case of WITHSCORES, respond with a single array in RESP2, and
* nested arrays in RESP3. We can't use a map response type since the
* client library needs to know to respect the order. */
if (withscores && c->resp == 2)
addReplyArrayLen(c, length*2);
else
addReplyArrayLen(c, length);
while (zn != NULL) {
if (withscores && c->resp > 2) addReplyArrayLen(c,2);
addReplyBulkCBuffer(c,zn->ele,sdslen(zn->ele));
if (withscores) addReplyDouble(c,zn->score);
zn = zn->level[0].forward;
}
}
decrRefCount(dstobj);
zfree(src);
}
/* ZUNIONSTORE destination numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] */
void zunionstoreCommand(client *c) {
zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_UNION, 0);
}
/* ZINTERSTORE destination numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] */
void zinterstoreCommand(client *c) {
zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_INTER, 0);
}
/* ZDIFFSTORE destination numkeys key [key ...] */
void zdiffstoreCommand(client *c) {
zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_DIFF, 0);
}
/* ZUNION numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] [WITHSCORES] */
void zunionCommand(client *c) {
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_UNION, 0);
}
/* ZINTER numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] [WITHSCORES] */
void zinterCommand(client *c) {
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_INTER, 0);
}
/* ZINTERCARD numkeys key [key ...] [LIMIT limit] */
void zinterCardCommand(client *c) {
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_INTER, 1);
}
/* ZDIFF numkeys key [key ...] [WITHSCORES] */
void zdiffCommand(client *c) {
zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_DIFF, 0);
}
typedef enum {
ZRANGE_DIRECTION_AUTO = 0,
ZRANGE_DIRECTION_FORWARD,
ZRANGE_DIRECTION_REVERSE
} zrange_direction;
typedef enum {
ZRANGE_CONSUMER_TYPE_CLIENT = 0,
ZRANGE_CONSUMER_TYPE_INTERNAL
} zrange_consumer_type;
typedef struct zrange_result_handler zrange_result_handler;
typedef void (*zrangeResultBeginFunction)(zrange_result_handler *c, long length);
typedef void (*zrangeResultFinalizeFunction)(
zrange_result_handler *c, size_t result_count);
typedef void (*zrangeResultEmitCBufferFunction)(
zrange_result_handler *c, const void *p, size_t len, double score);
typedef void (*zrangeResultEmitLongLongFunction)(
zrange_result_handler *c, long long ll, double score);
void zrangeGenericCommand (zrange_result_handler *handler, int argc_start, int store,
zrange_type rangetype, zrange_direction direction);
/* Interface struct for ZRANGE/ZRANGESTORE generic implementation.
* There is one implementation of this interface that sends a RESP reply to clients.
* and one implementation that stores the range result into a zset object. */
struct zrange_result_handler {
zrange_consumer_type type;
client *client;
robj *dstkey;
robj *dstobj;
void *userdata;
int withscores;
int should_emit_array_length;
zrangeResultBeginFunction beginResultEmission;
zrangeResultFinalizeFunction finalizeResultEmission;
zrangeResultEmitCBufferFunction emitResultFromCBuffer;
zrangeResultEmitLongLongFunction emitResultFromLongLong;
};
/* Result handler methods for responding the ZRANGE to clients.
* length can be used to provide the result length in advance (avoids deferred reply overhead).
* length can be set to -1 if the result length is not know in advance.
*/
static void zrangeResultBeginClient(zrange_result_handler *handler, long length) {
if (length > 0) {
/* In case of WITHSCORES, respond with a single array in RESP2, and
* nested arrays in RESP3. We can't use a map response type since the
* client library needs to know to respect the order. */
if (handler->withscores && (handler->client->resp == 2)) {
length *= 2;
}
addReplyArrayLen(handler->client, length);
handler->userdata = NULL;
return;
}
handler->userdata = addReplyDeferredLen(handler->client);
}
static void zrangeResultEmitCBufferToClient(zrange_result_handler *handler,
const void *value, size_t value_length_in_bytes, double score)
{
if (handler->should_emit_array_length) {
addReplyArrayLen(handler->client, 2);
}
addReplyBulkCBuffer(handler->client, value, value_length_in_bytes);
if (handler->withscores) {
addReplyDouble(handler->client, score);
}
}
static void zrangeResultEmitLongLongToClient(zrange_result_handler *handler,
long long value, double score)
{
if (handler->should_emit_array_length) {
addReplyArrayLen(handler->client, 2);
}
addReplyBulkLongLong(handler->client, value);
if (handler->withscores) {
addReplyDouble(handler->client, score);
}
}
static void zrangeResultFinalizeClient(zrange_result_handler *handler,
size_t result_count)
{
/* If the reply size was know at start there's nothing left to do */
if (!handler->userdata)
return;
/* In case of WITHSCORES, respond with a single array in RESP2, and
* nested arrays in RESP3. We can't use a map response type since the
* client library needs to know to respect the order. */
if (handler->withscores && (handler->client->resp == 2)) {
result_count *= 2;
}
setDeferredArrayLen(handler->client, handler->userdata, result_count);
}
/* Result handler methods for storing the ZRANGESTORE to a zset. */
static void zrangeResultBeginStore(zrange_result_handler *handler, long length)
{
UNUSED(length);
handler->dstobj = createZsetListpackObject();
}
static void zrangeResultEmitCBufferForStore(zrange_result_handler *handler,
const void *value, size_t value_length_in_bytes, double score)
{
double newscore;
int retflags = 0;
sds ele = sdsnewlen(value, value_length_in_bytes);
int retval = zsetAdd(handler->dstobj, score, ele, ZADD_IN_NONE, &retflags, &newscore);
sdsfree(ele);
serverAssert(retval);
}
static void zrangeResultEmitLongLongForStore(zrange_result_handler *handler,
long long value, double score)
{
double newscore;
int retflags = 0;
sds ele = sdsfromlonglong(value);
int retval = zsetAdd(handler->dstobj, score, ele, ZADD_IN_NONE, &retflags, &newscore);
sdsfree(ele);
serverAssert(retval);
}
static void zrangeResultFinalizeStore(zrange_result_handler *handler, size_t result_count)
{
if (result_count) {
setKey(handler->client, handler->client->db, handler->dstkey, handler->dstobj, 0);
addReplyLongLong(handler->client, result_count);
notifyKeyspaceEvent(NOTIFY_ZSET, "zrangestore", handler->dstkey, handler->client->db->id);
server.dirty++;
} else {
addReply(handler->client, shared.czero);
if (dbDelete(handler->client->db, handler->dstkey)) {
signalModifiedKey(handler->client, handler->client->db, handler->dstkey);
notifyKeyspaceEvent(NOTIFY_GENERIC, "del", handler->dstkey, handler->client->db->id);
server.dirty++;
}
}
decrRefCount(handler->dstobj);
}
/* Initialize the consumer interface type with the requested type. */
static void zrangeResultHandlerInit(zrange_result_handler *handler,
client *client, zrange_consumer_type type)
{
memset(handler, 0, sizeof(*handler));
handler->client = client;
switch (type) {
case ZRANGE_CONSUMER_TYPE_CLIENT:
handler->beginResultEmission = zrangeResultBeginClient;
handler->finalizeResultEmission = zrangeResultFinalizeClient;
handler->emitResultFromCBuffer = zrangeResultEmitCBufferToClient;
handler->emitResultFromLongLong = zrangeResultEmitLongLongToClient;
break;
case ZRANGE_CONSUMER_TYPE_INTERNAL:
handler->beginResultEmission = zrangeResultBeginStore;
handler->finalizeResultEmission = zrangeResultFinalizeStore;
handler->emitResultFromCBuffer = zrangeResultEmitCBufferForStore;
handler->emitResultFromLongLong = zrangeResultEmitLongLongForStore;
break;
}
}
static void zrangeResultHandlerScoreEmissionEnable(zrange_result_handler *handler) {
handler->withscores = 1;
handler->should_emit_array_length = (handler->client->resp > 2);
}
static void zrangeResultHandlerDestinationKeySet (zrange_result_handler *handler,
robj *dstkey)
{
handler->dstkey = dstkey;
}
/* This command implements ZRANGE, ZREVRANGE. */
void genericZrangebyrankCommand(zrange_result_handler *handler,
robj *zobj, long start, long end, int withscores, int reverse) {
client *c = handler->client;
long llen;
long rangelen;
size_t result_cardinality;
/* Sanitize indexes. */
llen = zsetLength(zobj);
if (start < 0) start = llen+start;
if (end < 0) end = llen+end;
if (start < 0) start = 0;
/* Invariant: start >= 0, so this test will be true when end < 0.
* The range is empty when start > end or start >= length. */
if (start > end || start >= llen) {
handler->beginResultEmission(handler, 0);
handler->finalizeResultEmission(handler, 0);
return;
}
if (end >= llen) end = llen-1;
rangelen = (end-start)+1;
result_cardinality = rangelen;
handler->beginResultEmission(handler, rangelen);
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
double score = 0.0;
if (reverse)
eptr = lpSeek(zl,-2-(2*start));
else
eptr = lpSeek(zl,2*start);
serverAssertWithInfo(c,zobj,eptr != NULL);
sptr = lpNext(zl,eptr);
while (rangelen--) {
serverAssertWithInfo(c,zobj,eptr != NULL && sptr != NULL);
vstr = lpGetValue(eptr,&vlen,&vlong);
if (withscores) /* don't bother to extract the score if it's gonna be ignored. */
score = zzlGetScore(sptr);
if (vstr == NULL) {
handler->emitResultFromLongLong(handler, vlong, score);
} else {
handler->emitResultFromCBuffer(handler, vstr, vlen, score);
}
if (reverse)
zzlPrev(zl,&eptr,&sptr);
else
zzlNext(zl,&eptr,&sptr);
}
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *ln;
/* Check if starting point is trivial, before doing log(N) lookup. */
if (reverse) {
ln = zsl->tail;
if (start > 0)
ln = zslGetElementByRank(zsl,llen-start);
} else {
ln = zsl->header->level[0].forward;
if (start > 0)
ln = zslGetElementByRank(zsl,start+1);
}
while(rangelen--) {
serverAssertWithInfo(c,zobj,ln != NULL);
sds ele = ln->ele;
handler->emitResultFromCBuffer(handler, ele, sdslen(ele), ln->score);
ln = reverse ? ln->backward : ln->level[0].forward;
}
} else {
serverPanic("Unknown sorted set encoding");
}
handler->finalizeResultEmission(handler, result_cardinality);
}
/* ZRANGESTORE <dst> <src> <min> <max> [BYSCORE | BYLEX] [REV] [LIMIT offset count] */
void zrangestoreCommand (client *c) {
robj *dstkey = c->argv[1];
zrange_result_handler handler;
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_INTERNAL);
zrangeResultHandlerDestinationKeySet(&handler, dstkey);
zrangeGenericCommand(&handler, 2, 1, ZRANGE_AUTO, ZRANGE_DIRECTION_AUTO);
}
/* ZRANGE <key> <min> <max> [BYSCORE | BYLEX] [REV] [WITHSCORES] [LIMIT offset count] */
void zrangeCommand(client *c) {
zrange_result_handler handler;
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
zrangeGenericCommand(&handler, 1, 0, ZRANGE_AUTO, ZRANGE_DIRECTION_AUTO);
}
/* ZREVRANGE <key> <start> <stop> [WITHSCORES] */
void zrevrangeCommand(client *c) {
zrange_result_handler handler;
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
zrangeGenericCommand(&handler, 1, 0, ZRANGE_RANK, ZRANGE_DIRECTION_REVERSE);
}
/* This command implements ZRANGEBYSCORE, ZREVRANGEBYSCORE. */
void genericZrangebyscoreCommand(zrange_result_handler *handler,
zrangespec *range, robj *zobj, long offset, long limit,
int reverse) {
unsigned long rangelen = 0;
handler->beginResultEmission(handler, -1);
/* For invalid offset, return directly. */
if (offset > 0 && offset >= (long)zsetLength(zobj)) {
handler->finalizeResultEmission(handler, 0);
return;
}
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
/* If reversed, get the last node in range as starting point. */
if (reverse) {
eptr = zzlLastInRange(zl,range);
} else {
eptr = zzlFirstInRange(zl,range);
}
/* Get score pointer for the first element. */
if (eptr)
sptr = lpNext(zl,eptr);
/* If there is an offset, just traverse the number of elements without
* checking the score because that is done in the next loop. */
while (eptr && offset--) {
if (reverse) {
zzlPrev(zl,&eptr,&sptr);
} else {
zzlNext(zl,&eptr,&sptr);
}
}
while (eptr && limit--) {
double score = zzlGetScore(sptr);
/* Abort when the node is no longer in range. */
if (reverse) {
if (!zslValueGteMin(score,range)) break;
} else {
if (!zslValueLteMax(score,range)) break;
}
vstr = lpGetValue(eptr,&vlen,&vlong);
rangelen++;
if (vstr == NULL) {
handler->emitResultFromLongLong(handler, vlong, score);
} else {
handler->emitResultFromCBuffer(handler, vstr, vlen, score);
}
/* Move to next node */
if (reverse) {
zzlPrev(zl,&eptr,&sptr);
} else {
zzlNext(zl,&eptr,&sptr);
}
}
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *ln;
/* If reversed, get the last node in range as starting point. */
if (reverse) {
ln = zslLastInRange(zsl,range);
} else {
ln = zslFirstInRange(zsl,range);
}
/* If there is an offset, just traverse the number of elements without
* checking the score because that is done in the next loop. */
while (ln && offset--) {
if (reverse) {
ln = ln->backward;
} else {
ln = ln->level[0].forward;
}
}
while (ln && limit--) {
/* Abort when the node is no longer in range. */
if (reverse) {
if (!zslValueGteMin(ln->score,range)) break;
} else {
if (!zslValueLteMax(ln->score,range)) break;
}
rangelen++;
handler->emitResultFromCBuffer(handler, ln->ele, sdslen(ln->ele), ln->score);
/* Move to next node */
if (reverse) {
ln = ln->backward;
} else {
ln = ln->level[0].forward;
}
}
} else {
serverPanic("Unknown sorted set encoding");
}
handler->finalizeResultEmission(handler, rangelen);
}
/* ZRANGEBYSCORE <key> <min> <max> [WITHSCORES] [LIMIT offset count] */
void zrangebyscoreCommand(client *c) {
zrange_result_handler handler;
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
zrangeGenericCommand(&handler, 1, 0, ZRANGE_SCORE, ZRANGE_DIRECTION_FORWARD);
}
/* ZREVRANGEBYSCORE <key> <max> <min> [WITHSCORES] [LIMIT offset count] */
void zrevrangebyscoreCommand(client *c) {
zrange_result_handler handler;
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
zrangeGenericCommand(&handler, 1, 0, ZRANGE_SCORE, ZRANGE_DIRECTION_REVERSE);
}
void zcountCommand(client *c) {
robj *key = c->argv[1];
robj *zobj;
zrangespec range;
unsigned long count = 0;
/* Parse the range arguments */
if (zslParseRange(c->argv[2],c->argv[3],&range) != C_OK) {
addReplyError(c,"min or max is not a float");
return;
}
/* Lookup the sorted set */
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL ||
checkType(c, zobj, OBJ_ZSET)) return;
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
double score;
/* Use the first element in range as the starting point */
eptr = zzlFirstInRange(zl,&range);
/* No "first" element */
if (eptr == NULL) {
addReply(c, shared.czero);
return;
}
/* First element is in range */
sptr = lpNext(zl,eptr);
score = zzlGetScore(sptr);
serverAssertWithInfo(c,zobj,zslValueLteMax(score,&range));
/* Iterate over elements in range */
while (eptr) {
score = zzlGetScore(sptr);
/* Abort when the node is no longer in range. */
if (!zslValueLteMax(score,&range)) {
break;
} else {
count++;
zzlNext(zl,&eptr,&sptr);
}
}
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *zn;
unsigned long rank;
/* Find first element in range */
zn = zslFirstInRange(zsl, &range);
/* Use rank of first element, if any, to determine preliminary count */
if (zn != NULL) {
rank = zslGetRank(zsl, zn->score, zn->ele);
count = (zsl->length - (rank - 1));
/* Find last element in range */
zn = zslLastInRange(zsl, &range);
/* Use rank of last element, if any, to determine the actual count */
if (zn != NULL) {
rank = zslGetRank(zsl, zn->score, zn->ele);
count -= (zsl->length - rank);
}
}
} else {
serverPanic("Unknown sorted set encoding");
}
addReplyLongLong(c, count);
}
void zlexcountCommand(client *c) {
robj *key = c->argv[1];
robj *zobj;
zlexrangespec range;
unsigned long count = 0;
/* Parse the range arguments */
if (zslParseLexRange(c->argv[2],c->argv[3],&range) != C_OK) {
addReplyError(c,"min or max not valid string range item");
return;
}
/* Lookup the sorted set */
if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL ||
checkType(c, zobj, OBJ_ZSET))
{
zslFreeLexRange(&range);
return;
}
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
/* Use the first element in range as the starting point */
eptr = zzlFirstInLexRange(zl,&range);
/* No "first" element */
if (eptr == NULL) {
zslFreeLexRange(&range);
addReply(c, shared.czero);
return;
}
/* First element is in range */
sptr = lpNext(zl,eptr);
serverAssertWithInfo(c,zobj,zzlLexValueLteMax(eptr,&range));
/* Iterate over elements in range */
while (eptr) {
/* Abort when the node is no longer in range. */
if (!zzlLexValueLteMax(eptr,&range)) {
break;
} else {
count++;
zzlNext(zl,&eptr,&sptr);
}
}
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *zn;
unsigned long rank;
/* Find first element in range */
zn = zslFirstInLexRange(zsl, &range);
/* Use rank of first element, if any, to determine preliminary count */
if (zn != NULL) {
rank = zslGetRank(zsl, zn->score, zn->ele);
count = (zsl->length - (rank - 1));
/* Find last element in range */
zn = zslLastInLexRange(zsl, &range);
/* Use rank of last element, if any, to determine the actual count */
if (zn != NULL) {
rank = zslGetRank(zsl, zn->score, zn->ele);
count -= (zsl->length - rank);
}
}
} else {
serverPanic("Unknown sorted set encoding");
}
zslFreeLexRange(&range);
addReplyLongLong(c, count);
}
/* This command implements ZRANGEBYLEX, ZREVRANGEBYLEX. */
void genericZrangebylexCommand(zrange_result_handler *handler,
zlexrangespec *range, robj *zobj, int withscores, long offset, long limit,
int reverse)
{
unsigned long rangelen = 0;
handler->beginResultEmission(handler, -1);
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
/* If reversed, get the last node in range as starting point. */
if (reverse) {
eptr = zzlLastInLexRange(zl,range);
} else {
eptr = zzlFirstInLexRange(zl,range);
}
/* Get score pointer for the first element. */
if (eptr)
sptr = lpNext(zl,eptr);
/* If there is an offset, just traverse the number of elements without
* checking the score because that is done in the next loop. */
while (eptr && offset--) {
if (reverse) {
zzlPrev(zl,&eptr,&sptr);
} else {
zzlNext(zl,&eptr,&sptr);
}
}
while (eptr && limit--) {
double score = 0;
if (withscores) /* don't bother to extract the score if it's gonna be ignored. */
score = zzlGetScore(sptr);
/* Abort when the node is no longer in range. */
if (reverse) {
if (!zzlLexValueGteMin(eptr,range)) break;
} else {
if (!zzlLexValueLteMax(eptr,range)) break;
}
vstr = lpGetValue(eptr,&vlen,&vlong);
rangelen++;
if (vstr == NULL) {
handler->emitResultFromLongLong(handler, vlong, score);
} else {
handler->emitResultFromCBuffer(handler, vstr, vlen, score);
}
/* Move to next node */
if (reverse) {
zzlPrev(zl,&eptr,&sptr);
} else {
zzlNext(zl,&eptr,&sptr);
}
}
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *ln;
/* If reversed, get the last node in range as starting point. */
if (reverse) {
ln = zslLastInLexRange(zsl,range);
} else {
ln = zslFirstInLexRange(zsl,range);
}
/* If there is an offset, just traverse the number of elements without
* checking the score because that is done in the next loop. */
while (ln && offset--) {
if (reverse) {
ln = ln->backward;
} else {
ln = ln->level[0].forward;
}
}
while (ln && limit--) {
/* Abort when the node is no longer in range. */
if (reverse) {
if (!zslLexValueGteMin(ln->ele,range)) break;
} else {
if (!zslLexValueLteMax(ln->ele,range)) break;
}
rangelen++;
handler->emitResultFromCBuffer(handler, ln->ele, sdslen(ln->ele), ln->score);
/* Move to next node */
if (reverse) {
ln = ln->backward;
} else {
ln = ln->level[0].forward;
}
}
} else {
serverPanic("Unknown sorted set encoding");
}
handler->finalizeResultEmission(handler, rangelen);
}
/* ZRANGEBYLEX <key> <min> <max> [LIMIT offset count] */
void zrangebylexCommand(client *c) {
zrange_result_handler handler;
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
zrangeGenericCommand(&handler, 1, 0, ZRANGE_LEX, ZRANGE_DIRECTION_FORWARD);
}
/* ZREVRANGEBYLEX <key> <max> <min> [LIMIT offset count] */
void zrevrangebylexCommand(client *c) {
zrange_result_handler handler;
zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT);
zrangeGenericCommand(&handler, 1, 0, ZRANGE_LEX, ZRANGE_DIRECTION_REVERSE);
}
/**
* This function handles ZRANGE and ZRANGESTORE, and also the deprecated
* Z[REV]RANGE[BYPOS|BYLEX] commands.
*
* The simple ZRANGE and ZRANGESTORE can take _AUTO in rangetype and direction,
* other command pass explicit value.
*
* The argc_start points to the src key argument, so following syntax is like:
* <src> <min> <max> [BYSCORE | BYLEX] [REV] [WITHSCORES] [LIMIT offset count]
*/
void zrangeGenericCommand(zrange_result_handler *handler, int argc_start, int store,
zrange_type rangetype, zrange_direction direction)
{
client *c = handler->client;
robj *key = c->argv[argc_start];
robj *zobj;
zrangespec range;
zlexrangespec lexrange;
int minidx = argc_start + 1;
int maxidx = argc_start + 2;
/* Options common to all */
long opt_start = 0;
long opt_end = 0;
int opt_withscores = 0;
long opt_offset = 0;
long opt_limit = -1;
/* Step 1: Skip the <src> <min> <max> args and parse remaining optional arguments. */
for (int j=argc_start + 3; j < c->argc; j++) {
int leftargs = c->argc-j-1;
if (!store && !strcasecmp(c->argv[j]->ptr,"withscores")) {
opt_withscores = 1;
} else if (!strcasecmp(c->argv[j]->ptr,"limit") && leftargs >= 2) {
if ((getLongFromObjectOrReply(c, c->argv[j+1], &opt_offset, NULL) != C_OK) ||
(getLongFromObjectOrReply(c, c->argv[j+2], &opt_limit, NULL) != C_OK))
{
return;
}
j += 2;
} else if (direction == ZRANGE_DIRECTION_AUTO &&
!strcasecmp(c->argv[j]->ptr,"rev"))
{
direction = ZRANGE_DIRECTION_REVERSE;
} else if (rangetype == ZRANGE_AUTO &&
!strcasecmp(c->argv[j]->ptr,"bylex"))
{
rangetype = ZRANGE_LEX;
} else if (rangetype == ZRANGE_AUTO &&
!strcasecmp(c->argv[j]->ptr,"byscore"))
{
rangetype = ZRANGE_SCORE;
} else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
}
/* Use defaults if not overridden by arguments. */
if (direction == ZRANGE_DIRECTION_AUTO)
direction = ZRANGE_DIRECTION_FORWARD;
if (rangetype == ZRANGE_AUTO)
rangetype = ZRANGE_RANK;
/* Check for conflicting arguments. */
if (opt_limit != -1 && rangetype == ZRANGE_RANK) {
addReplyError(c,"syntax error, LIMIT is only supported in combination with either BYSCORE or BYLEX");
return;
}
if (opt_withscores && rangetype == ZRANGE_LEX) {
addReplyError(c,"syntax error, WITHSCORES not supported in combination with BYLEX");
return;
}
if (direction == ZRANGE_DIRECTION_REVERSE &&
((ZRANGE_SCORE == rangetype) || (ZRANGE_LEX == rangetype)))
{
/* Range is given as [max,min] */
int tmp = maxidx;
maxidx = minidx;
minidx = tmp;
}
/* Step 2: Parse the range. */
switch (rangetype) {
case ZRANGE_AUTO:
case ZRANGE_RANK:
/* Z[REV]RANGE, ZRANGESTORE [REV]RANGE */
if ((getLongFromObjectOrReply(c, c->argv[minidx], &opt_start,NULL) != C_OK) ||
(getLongFromObjectOrReply(c, c->argv[maxidx], &opt_end,NULL) != C_OK))
{
return;
}
break;
case ZRANGE_SCORE:
/* Z[REV]RANGEBYSCORE, ZRANGESTORE [REV]RANGEBYSCORE */
if (zslParseRange(c->argv[minidx], c->argv[maxidx], &range) != C_OK) {
addReplyError(c, "min or max is not a float");
return;
}
break;
case ZRANGE_LEX:
/* Z[REV]RANGEBYLEX, ZRANGESTORE [REV]RANGEBYLEX */
if (zslParseLexRange(c->argv[minidx], c->argv[maxidx], &lexrange) != C_OK) {
addReplyError(c, "min or max not valid string range item");
return;
}
break;
}
if (opt_withscores || store) {
zrangeResultHandlerScoreEmissionEnable(handler);
}
/* Step 3: Lookup the key and get the range. */
zobj = lookupKeyRead(c->db, key);
if (zobj == NULL) {
if (store) {
handler->beginResultEmission(handler, -1);
handler->finalizeResultEmission(handler, 0);
} else {
addReply(c, shared.emptyarray);
}
goto cleanup;
}
if (checkType(c,zobj,OBJ_ZSET)) goto cleanup;
/* Step 4: Pass this to the command-specific handler. */
switch (rangetype) {
case ZRANGE_AUTO:
case ZRANGE_RANK:
genericZrangebyrankCommand(handler, zobj, opt_start, opt_end,
opt_withscores || store, direction == ZRANGE_DIRECTION_REVERSE);
break;
case ZRANGE_SCORE:
genericZrangebyscoreCommand(handler, &range, zobj, opt_offset,
opt_limit, direction == ZRANGE_DIRECTION_REVERSE);
break;
case ZRANGE_LEX:
genericZrangebylexCommand(handler, &lexrange, zobj, opt_withscores || store,
opt_offset, opt_limit, direction == ZRANGE_DIRECTION_REVERSE);
break;
}
/* Instead of returning here, we'll just fall-through the clean-up. */
cleanup:
if (rangetype == ZRANGE_LEX) {
zslFreeLexRange(&lexrange);
}
}
void zcardCommand(client *c) {
robj *key = c->argv[1];
robj *zobj;
if ((zobj = lookupKeyReadOrReply(c,key,shared.czero)) == NULL ||
checkType(c,zobj,OBJ_ZSET)) return;
addReplyLongLong(c,zsetLength(zobj));
}
void zscoreCommand(client *c) {
robj *key = c->argv[1];
robj *zobj;
double score;
if ((zobj = lookupKeyReadOrReply(c,key,shared.null[c->resp])) == NULL ||
checkType(c,zobj,OBJ_ZSET)) return;
if (zsetScore(zobj,c->argv[2]->ptr,&score) == C_ERR) {
addReplyNull(c);
} else {
addReplyDouble(c,score);
}
}
void zmscoreCommand(client *c) {
robj *key = c->argv[1];
robj *zobj;
double score;
zobj = lookupKeyRead(c->db,key);
if (checkType(c,zobj,OBJ_ZSET)) return;
addReplyArrayLen(c,c->argc - 2);
for (int j = 2; j < c->argc; j++) {
/* Treat a missing set the same way as an empty set */
if (zobj == NULL || zsetScore(zobj,c->argv[j]->ptr,&score) == C_ERR) {
addReplyNull(c);
} else {
addReplyDouble(c,score);
}
}
}
void zrankGenericCommand(client *c, int reverse) {
robj *key = c->argv[1];
robj *ele = c->argv[2];
robj *zobj;
long rank;
if ((zobj = lookupKeyReadOrReply(c,key,shared.null[c->resp])) == NULL ||
checkType(c,zobj,OBJ_ZSET)) return;
serverAssertWithInfo(c,ele,sdsEncodedObject(ele));
rank = zsetRank(zobj,ele->ptr,reverse);
if (rank >= 0) {
addReplyLongLong(c,rank);
} else {
addReplyNull(c);
}
}
void zrankCommand(client *c) {
zrankGenericCommand(c, 0);
}
void zrevrankCommand(client *c) {
zrankGenericCommand(c, 1);
}
void zscanCommand(client *c) {
robj *o;
unsigned long cursor;
if (parseScanCursorOrReply(c,c->argv[2],&cursor) == C_ERR) return;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.emptyscan)) == NULL ||
checkType(c,o,OBJ_ZSET)) return;
scanGenericCommand(c,o,cursor);
}
/* This command implements the generic zpop operation, used by:
* ZPOPMIN, ZPOPMAX, BZPOPMIN, BZPOPMAX and ZMPOP. This function is also used
* inside blocked.c in the unblocking stage of BZPOPMIN, BZPOPMAX and BZMPOP.
*
* If 'emitkey' is true also the key name is emitted, useful for the blocking
* behavior of BZPOP[MIN|MAX], since we can block into multiple keys.
* Or in ZMPOP/BZMPOP, because we also can take multiple keys.
*
* 'count' is the number of elements requested to pop, or -1 for plain single pop.
*
* 'use_nested_array' when false it generates a flat array (with or without key name).
* When true, it generates a nested 2 level array of field + score pairs, or 3 level when emitkey is set.
*
* 'reply_nil_when_empty' when true we reply a NIL if we are not able to pop up any elements.
* Like in ZMPOP/BZMPOP we reply with a structured nested array containing key name
* and member + score pairs. In these commands, we reply with null when we have no result.
* Otherwise in ZPOPMIN/ZPOPMAX we reply an empty array by default.
*
* 'deleted' is an optional output argument to get an indication
* if the key got deleted by this function.
* */
void genericZpopCommand(client *c, robj **keyv, int keyc, int where, int emitkey,
long count, int use_nested_array, int reply_nil_when_empty, int *deleted) {
int idx;
robj *key = NULL;
robj *zobj = NULL;
sds ele;
double score;
if (deleted) *deleted = 0;
/* Check type and break on the first error, otherwise identify candidate. */
idx = 0;
while (idx < keyc) {
key = keyv[idx++];
zobj = lookupKeyWrite(c->db,key);
if (!zobj) continue;
if (checkType(c,zobj,OBJ_ZSET)) return;
break;
}
/* No candidate for zpopping, return empty. */
if (!zobj) {
if (reply_nil_when_empty) {
addReplyNullArray(c);
} else {
addReply(c,shared.emptyarray);
}
return;
}
if (count == 0) {
/* ZPOPMIN/ZPOPMAX with count 0. */
addReply(c, shared.emptyarray);
return;
}
long result_count = 0;
/* When count is -1, we need to correct it to 1 for plain single pop. */
if (count == -1) count = 1;
long llen = zsetLength(zobj);
long rangelen = (count > llen) ? llen : count;
if (!use_nested_array && !emitkey) {
/* ZPOPMIN/ZPOPMAX with or without COUNT option in RESP2. */
addReplyArrayLen(c, rangelen * 2);
} else if (use_nested_array && !emitkey) {
/* ZPOPMIN/ZPOPMAX with COUNT option in RESP3. */
addReplyArrayLen(c, rangelen);
} else if (!use_nested_array && emitkey) {
/* BZPOPMIN/BZPOPMAX in RESP2 and RESP3. */
addReplyArrayLen(c, rangelen * 2 + 1);
addReplyBulk(c, key);
} else if (use_nested_array && emitkey) {
/* ZMPOP/BZMPOP in RESP2 and RESP3. */
addReplyArrayLen(c, 2);
addReplyBulk(c, key);
addReplyArrayLen(c, rangelen);
}
/* Remove the element. */
do {
if (zobj->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = zobj->ptr;
unsigned char *eptr, *sptr;
unsigned char *vstr;
unsigned int vlen;
long long vlong;
/* Get the first or last element in the sorted set. */
eptr = lpSeek(zl,where == ZSET_MAX ? -2 : 0);
serverAssertWithInfo(c,zobj,eptr != NULL);
vstr = lpGetValue(eptr,&vlen,&vlong);
if (vstr == NULL)
ele = sdsfromlonglong(vlong);
else
ele = sdsnewlen(vstr,vlen);
/* Get the score. */
sptr = lpNext(zl,eptr);
serverAssertWithInfo(c,zobj,sptr != NULL);
score = zzlGetScore(sptr);
} else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zobj->ptr;
zskiplist *zsl = zs->zsl;
zskiplistNode *zln;
/* Get the first or last element in the sorted set. */
zln = (where == ZSET_MAX ? zsl->tail :
zsl->header->level[0].forward);
/* There must be an element in the sorted set. */
serverAssertWithInfo(c,zobj,zln != NULL);
ele = sdsdup(zln->ele);
score = zln->score;
} else {
serverPanic("Unknown sorted set encoding");
}
serverAssertWithInfo(c,zobj,zsetDel(zobj,ele));
server.dirty++;
if (result_count == 0) { /* Do this only for the first iteration. */
char *events[2] = {"zpopmin","zpopmax"};
notifyKeyspaceEvent(NOTIFY_ZSET,events[where],key,c->db->id);
signalModifiedKey(c,c->db,key);
}
if (use_nested_array) {
addReplyArrayLen(c,2);
}
addReplyBulkCBuffer(c,ele,sdslen(ele));
addReplyDouble(c,score);
sdsfree(ele);
++result_count;
} while(--rangelen);
/* Remove the key, if indeed needed. */
if (zsetLength(zobj) == 0) {
if (deleted) *deleted = 1;
dbDelete(c->db,key);
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id);
}
if (c->cmd->proc == zmpopCommand) {
/* Always replicate it as ZPOP[MIN|MAX] with COUNT option instead of ZMPOP. */
robj *count_obj = createStringObjectFromLongLong((count > llen) ? llen : count);
rewriteClientCommandVector(c, 3,
(where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin,
key, count_obj);
decrRefCount(count_obj);
}
}
/* ZPOPMIN/ZPOPMAX key [<count>] */
void zpopMinMaxCommand(client *c, int where) {
if (c->argc > 3) {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
long count = -1; /* -1 for plain single pop. */
if (c->argc == 3 && getPositiveLongFromObjectOrReply(c, c->argv[2], &count, NULL) != C_OK)
return;
/* Respond with a single (flat) array in RESP2 or if count is -1
* (returning a single element). In RESP3, when count > 0 use nested array. */
int use_nested_array = (c->resp > 2 && count != -1);
genericZpopCommand(c, &c->argv[1], 1, where, 0, count, use_nested_array, 0, NULL);
}
/* ZPOPMIN key [<count>] */
void zpopminCommand(client *c) {
zpopMinMaxCommand(c, ZSET_MIN);
}
/* ZPOPMAX key [<count>] */
void zpopmaxCommand(client *c) {
zpopMinMaxCommand(c, ZSET_MAX);
}
/* BZPOPMIN, BZPOPMAX, BZMPOP actual implementation.
*
* 'numkeys' is the number of keys.
*
* 'timeout_idx' parameter position of block timeout.
*
* 'where' ZSET_MIN or ZSET_MAX.
*
* 'count' is the number of elements requested to pop, or -1 for plain single pop.
*
* 'use_nested_array' when false it generates a flat array (with or without key name).
* When true, it generates a nested 3 level array of keyname, field + score pairs.
* */
void blockingGenericZpopCommand(client *c, robj **keys, int numkeys, int where,
int timeout_idx, long count, int use_nested_array, int reply_nil_when_empty) {
robj *o;
robj *key;
mstime_t timeout;
int j;
if (getTimeoutFromObjectOrReply(c,c->argv[timeout_idx],&timeout,UNIT_SECONDS)
!= C_OK) return;
for (j = 0; j < numkeys; j++) {
key = keys[j];
o = lookupKeyWrite(c->db,key);
/* Non-existing key, move to next key. */
if (o == NULL) continue;
if (checkType(c,o,OBJ_ZSET)) return;
long llen = zsetLength(o);
/* Empty zset, move to next key. */
if (llen == 0) continue;
/* Non empty zset, this is like a normal ZPOP[MIN|MAX]. */
genericZpopCommand(c, &key, 1, where, 1, count, use_nested_array, reply_nil_when_empty, NULL);
if (count == -1) {
/* Replicate it as ZPOP[MIN|MAX] instead of BZPOP[MIN|MAX]. */
rewriteClientCommandVector(c,2,
(where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin,
key);
} else {
/* Replicate it as ZPOP[MIN|MAX] with COUNT option. */
robj *count_obj = createStringObjectFromLongLong((count > llen) ? llen : count);
rewriteClientCommandVector(c, 3,
(where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin,
key, count_obj);
decrRefCount(count_obj);
}
return;
}
/* If we are not allowed to block the client and the zset is empty the only thing
* we can do is treating it as a timeout (even with timeout 0). */
if (c->flags & CLIENT_DENY_BLOCKING) {
addReplyNullArray(c);
return;
}
/* If the keys do not exist we must block */
struct blockPos pos = {where};
blockForKeys(c,BLOCKED_ZSET,c->argv+1,c->argc-2,count,timeout,NULL,&pos,NULL);
}
// BZPOPMIN key [key ...] timeout
void bzpopminCommand(client *c) {
blockingGenericZpopCommand(c, c->argv+1, c->argc-2, ZSET_MIN, c->argc-1, -1, 0, 0);
}
// BZPOPMAX key [key ...] timeout
void bzpopmaxCommand(client *c) {
blockingGenericZpopCommand(c, c->argv+1, c->argc-2, ZSET_MAX, c->argc-1, -1, 0, 0);
}
static void zarndmemberReplyWithListpack(client *c, unsigned int count, listpackEntry *keys, listpackEntry *vals) {
for (unsigned long i = 0; i < count; i++) {
if (vals && c->resp > 2)
addReplyArrayLen(c,2);
if (keys[i].sval)
addReplyBulkCBuffer(c, keys[i].sval, keys[i].slen);
else
addReplyBulkLongLong(c, keys[i].lval);
if (vals) {
if (vals[i].sval) {
addReplyDouble(c, zzlStrtod(vals[i].sval,vals[i].slen));
} else
addReplyDouble(c, vals[i].lval);
}
}
}
/* How many times bigger should be the zset compared to the requested size
* for us to not use the "remove elements" strategy? Read later in the
* implementation for more info. */
#define ZRANDMEMBER_SUB_STRATEGY_MUL 3
/* If client is trying to ask for a very large number of random elements,
* queuing may consume an unlimited amount of memory, so we want to limit
* the number of randoms per time. */
#define ZRANDMEMBER_RANDOM_SAMPLE_LIMIT 1000
void zrandmemberWithCountCommand(client *c, long l, int withscores) {
unsigned long count, size;
int uniq = 1;
robj *zsetobj;
if ((zsetobj = lookupKeyReadOrReply(c, c->argv[1], shared.emptyarray))
== NULL || checkType(c, zsetobj, OBJ_ZSET)) return;
size = zsetLength(zsetobj);
if(l >= 0) {
count = (unsigned long) l;
} else {
count = -l;
uniq = 0;
}
/* If count is zero, serve it ASAP to avoid special cases later. */
if (count == 0) {
addReply(c,shared.emptyarray);
return;
}
/* CASE 1: The count was negative, so the extraction method is just:
* "return N random elements" sampling the whole set every time.
* This case is trivial and can be served without auxiliary data
* structures. This case is the only one that also needs to return the
* elements in random order. */
if (!uniq || count == 1) {
if (withscores && c->resp == 2)
addReplyArrayLen(c, count*2);
else
addReplyArrayLen(c, count);
if (zsetobj->encoding == OBJ_ENCODING_SKIPLIST) {
zset *zs = zsetobj->ptr;
while (count--) {
dictEntry *de = dictGetFairRandomKey(zs->dict);
sds key = dictGetKey(de);
if (withscores && c->resp > 2)
addReplyArrayLen(c,2);
addReplyBulkCBuffer(c, key, sdslen(key));
if (withscores)
addReplyDouble(c, *(double*)dictGetVal(de));
}
} else if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) {
listpackEntry *keys, *vals = NULL;
unsigned long limit, sample_count;
limit = count > ZRANDMEMBER_RANDOM_SAMPLE_LIMIT ? ZRANDMEMBER_RANDOM_SAMPLE_LIMIT : count;
keys = zmalloc(sizeof(listpackEntry)*limit);
if (withscores)
vals = zmalloc(sizeof(listpackEntry)*limit);
while (count) {
sample_count = count > limit ? limit : count;
count -= sample_count;
lpRandomPairs(zsetobj->ptr, sample_count, keys, vals);
zarndmemberReplyWithListpack(c, sample_count, keys, vals);
}
zfree(keys);
zfree(vals);
}
return;
}
zsetopsrc src;
zsetopval zval;
src.subject = zsetobj;
src.type = zsetobj->type;
src.encoding = zsetobj->encoding;
zuiInitIterator(&src);
memset(&zval, 0, sizeof(zval));
/* Initiate reply count, RESP3 responds with nested array, RESP2 with flat one. */
long reply_size = count < size ? count : size;
if (withscores && c->resp == 2)
addReplyArrayLen(c, reply_size*2);
else
addReplyArrayLen(c, reply_size);
/* CASE 2:
* The number of requested elements is greater than the number of
* elements inside the zset: simply return the whole zset. */
if (count >= size) {
while (zuiNext(&src, &zval)) {
if (withscores && c->resp > 2)
addReplyArrayLen(c,2);
addReplyBulkSds(c, zuiNewSdsFromValue(&zval));
if (withscores)
addReplyDouble(c, zval.score);
}
zuiClearIterator(&src);
return;
}
/* CASE 3:
* The number of elements inside the zset is not greater than
* ZRANDMEMBER_SUB_STRATEGY_MUL times the number of requested elements.
* In this case we create a dict from scratch with all the elements, and
* subtract random elements to reach the requested number of elements.
*
* This is done because if the number of requested elements is just
* a bit less than the number of elements in the set, the natural approach
* used into CASE 4 is highly inefficient. */
if (count*ZRANDMEMBER_SUB_STRATEGY_MUL > size) {
dict *d = dictCreate(&sdsReplyDictType);
dictExpand(d, size);
/* Add all the elements into the temporary dictionary. */
while (zuiNext(&src, &zval)) {
sds key = zuiNewSdsFromValue(&zval);
dictEntry *de = dictAddRaw(d, key, NULL);
serverAssert(de);
if (withscores)
dictSetDoubleVal(de, zval.score);
}
serverAssert(dictSize(d) == size);
/* Remove random elements to reach the right count. */
while (size > count) {
dictEntry *de;
de = dictGetFairRandomKey(d);
dictUnlink(d,dictGetKey(de));
sdsfree(dictGetKey(de));
dictFreeUnlinkedEntry(d,de);
size--;
}
/* Reply with what's in the dict and release memory */
dictIterator *di;
dictEntry *de;
di = dictGetIterator(d);
while ((de = dictNext(di)) != NULL) {
if (withscores && c->resp > 2)
addReplyArrayLen(c,2);
addReplyBulkSds(c, dictGetKey(de));
if (withscores)
addReplyDouble(c, dictGetDoubleVal(de));
}
dictReleaseIterator(di);
dictRelease(d);
}
/* CASE 4: We have a big zset compared to the requested number of elements.
* In this case we can simply get random elements from the zset and add
* to the temporary set, trying to eventually get enough unique elements
* to reach the specified count. */
else {
if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) {
/* it is inefficient to repeatedly pick one random element from a
* listpack. so we use this instead: */
listpackEntry *keys, *vals = NULL;
keys = zmalloc(sizeof(listpackEntry)*count);
if (withscores)
vals = zmalloc(sizeof(listpackEntry)*count);
serverAssert(lpRandomPairsUnique(zsetobj->ptr, count, keys, vals) == count);
zarndmemberReplyWithListpack(c, count, keys, vals);
zfree(keys);
zfree(vals);
zuiClearIterator(&src);
return;
}
/* Hashtable encoding (generic implementation) */
unsigned long added = 0;
dict *d = dictCreate(&hashDictType);
dictExpand(d, count);
while (added < count) {
listpackEntry key;
double score;
zsetTypeRandomElement(zsetobj, size, &key, withscores ? &score: NULL);
/* Try to add the object to the dictionary. If it already exists
* free it, otherwise increment the number of objects we have
* in the result dictionary. */
sds skey = zsetSdsFromListpackEntry(&key);
if (dictAdd(d,skey,NULL) != DICT_OK) {
sdsfree(skey);
continue;
}
added++;
if (withscores && c->resp > 2)
addReplyArrayLen(c,2);
zsetReplyFromListpackEntry(c, &key);
if (withscores)
addReplyDouble(c, score);
}
/* Release memory */
dictRelease(d);
}
zuiClearIterator(&src);
}
/* ZRANDMEMBER key [<count> [WITHSCORES]] */
void zrandmemberCommand(client *c) {
long l;
int withscores = 0;
robj *zset;
listpackEntry ele;
if (c->argc >= 3) {
if (getLongFromObjectOrReply(c,c->argv[2],&l,NULL) != C_OK) return;
if (c->argc > 4 || (c->argc == 4 && strcasecmp(c->argv[3]->ptr,"withscores"))) {
addReplyErrorObject(c,shared.syntaxerr);
return;
} else if (c->argc == 4)
withscores = 1;
zrandmemberWithCountCommand(c, l, withscores);
return;
}
/* Handle variant without <count> argument. Reply with simple bulk string */
if ((zset = lookupKeyReadOrReply(c,c->argv[1],shared.null[c->resp]))== NULL ||
checkType(c,zset,OBJ_ZSET)) {
return;
}
zsetTypeRandomElement(zset, zsetLength(zset), &ele,NULL);
zsetReplyFromListpackEntry(c,&ele);
}
/* ZMPOP/BZMPOP
*
* 'numkeys_idx' parameter position of key number.
* 'is_block' this indicates whether it is a blocking variant. */
void zmpopGenericCommand(client *c, int numkeys_idx, int is_block) {
long j;
long numkeys = 0; /* Number of keys. */
int where = 0; /* ZSET_MIN or ZSET_MAX. */
long count = -1; /* Reply will consist of up to count elements, depending on the zset's length. */
/* Parse the numkeys. */
if (getRangeLongFromObjectOrReply(c, c->argv[numkeys_idx], 1, LONG_MAX,
&numkeys, "numkeys should be greater than 0") != C_OK)
return;
/* Parse the where. where_idx: the index of where in the c->argv. */
long where_idx = numkeys_idx + numkeys + 1;
if (where_idx >= c->argc) {
addReplyErrorObject(c, shared.syntaxerr);
return;
}
if (!strcasecmp(c->argv[where_idx]->ptr, "MIN")) {
where = ZSET_MIN;
} else if (!strcasecmp(c->argv[where_idx]->ptr, "MAX")) {
where = ZSET_MAX;
} else {
addReplyErrorObject(c, shared.syntaxerr);
return;
}
/* Parse the optional arguments. */
for (j = where_idx + 1; j < c->argc; j++) {
char *opt = c->argv[j]->ptr;
int moreargs = (c->argc - 1) - j;
if (count == -1 && !strcasecmp(opt, "COUNT") && moreargs) {
j++;
if (getRangeLongFromObjectOrReply(c, c->argv[j], 1, LONG_MAX,
&count,"count should be greater than 0") != C_OK)
return;
} else {
addReplyErrorObject(c, shared.syntaxerr);
return;
}
}
if (count == -1) count = 1;
if (is_block) {
/* BLOCK. We will handle CLIENT_DENY_BLOCKING flag in blockingGenericZpopCommand. */
blockingGenericZpopCommand(c, c->argv+numkeys_idx+1, numkeys, where, 1, count, 1, 1);
} else {
/* NON-BLOCK */
genericZpopCommand(c, c->argv+numkeys_idx+1, numkeys, where, 1, count, 1, 1, NULL);
}
}
/* ZMPOP numkeys key [<key> ...] MIN|MAX [COUNT count] */
void zmpopCommand(client *c) {
zmpopGenericCommand(c, 1, 0);
}
/* BZMPOP timeout numkeys key [<key> ...] MIN|MAX [COUNT count] */
void bzmpopCommand(client *c) {
zmpopGenericCommand(c, 2, 1);
}