redis/src/zmalloc.c

1057 lines
32 KiB
C

/* zmalloc - total amount of allocated memory aware version of malloc()
*
* Copyright (c) 2009-Present, Redis Ltd.
* All rights reserved.
*
* Licensed under your choice of the Redis Source Available License 2.0
* (RSALv2) or the Server Side Public License v1 (SSPLv1).
*/
#include "fmacros.h"
#include "config.h"
#include "solarisfixes.h"
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <unistd.h>
#ifdef __linux__
#include <sys/mman.h>
#endif
/* This function provide us access to the original libc free(). This is useful
* for instance to free results obtained by backtrace_symbols(). We need
* to define this function before including zmalloc.h that may shadow the
* free implementation if we use jemalloc or another non standard allocator. */
void zlibc_free(void *ptr) {
free(ptr);
}
#include <string.h>
#include "zmalloc.h"
#include "atomicvar.h"
#define UNUSED(x) ((void)(x))
#ifdef HAVE_MALLOC_SIZE
#define PREFIX_SIZE (0)
#else
/* Use at least 8 bytes alignment on all systems. */
#if SIZE_MAX < 0xffffffffffffffffull
#define PREFIX_SIZE 8
#else
#define PREFIX_SIZE (sizeof(size_t))
#endif
#endif
/* When using the libc allocator, use a minimum allocation size to match the
* jemalloc behavior that doesn't return NULL in this case.
*/
#define MALLOC_MIN_SIZE(x) ((x) > 0 ? (x) : sizeof(long))
/* Explicitly override malloc/free etc when using tcmalloc. */
#if defined(USE_TCMALLOC)
#define malloc(size) tc_malloc(size)
#define calloc(count,size) tc_calloc(count,size)
#define realloc(ptr,size) tc_realloc(ptr,size)
#define free(ptr) tc_free(ptr)
/* Explicitly override malloc/free etc when using jemalloc. */
#elif defined(USE_JEMALLOC)
#define malloc(size) je_malloc(size)
#define calloc(count,size) je_calloc(count,size)
#define realloc(ptr,size) je_realloc(ptr,size)
#define free(ptr) je_free(ptr)
#define mallocx(size,flags) je_mallocx(size,flags)
#define rallocx(ptr,size,flags) je_rallocx(ptr,size,flags)
#define dallocx(ptr,flags) je_dallocx(ptr,flags)
#endif
#define update_zmalloc_stat_alloc(__n) atomicIncr(used_memory,(__n))
#define update_zmalloc_stat_free(__n) atomicDecr(used_memory,(__n))
static redisAtomic size_t used_memory = 0;
static void zmalloc_default_oom(size_t size) {
fprintf(stderr, "zmalloc: Out of memory trying to allocate %zu bytes\n",
size);
fflush(stderr);
abort();
}
static void (*zmalloc_oom_handler)(size_t) = zmalloc_default_oom;
#ifdef HAVE_MALLOC_SIZE
void *extend_to_usable(void *ptr, size_t size) {
UNUSED(size);
return ptr;
}
#endif
/* Try allocating memory, and return NULL if failed.
* '*usable' is set to the usable size if non NULL. */
static inline void *ztrymalloc_usable_internal(size_t size, size_t *usable) {
/* Possible overflow, return NULL, so that the caller can panic or handle a failed allocation. */
if (size >= SIZE_MAX/2) return NULL;
void *ptr = malloc(MALLOC_MIN_SIZE(size)+PREFIX_SIZE);
if (!ptr) return NULL;
#ifdef HAVE_MALLOC_SIZE
size = zmalloc_size(ptr);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return ptr;
#else
size = MALLOC_MIN_SIZE(size);
*((size_t*)ptr) = size;
update_zmalloc_stat_alloc(size+PREFIX_SIZE);
if (usable) *usable = size;
return (char*)ptr+PREFIX_SIZE;
#endif
}
void *ztrymalloc_usable(size_t size, size_t *usable) {
size_t usable_size = 0;
void *ptr = ztrymalloc_usable_internal(size, &usable_size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Allocate memory or panic */
void *zmalloc(size_t size) {
void *ptr = ztrymalloc_usable_internal(size, NULL);
if (!ptr) zmalloc_oom_handler(size);
return ptr;
}
/* Try allocating memory, and return NULL if failed. */
void *ztrymalloc(size_t size) {
void *ptr = ztrymalloc_usable_internal(size, NULL);
return ptr;
}
/* Allocate memory or panic.
* '*usable' is set to the usable size if non NULL. */
void *zmalloc_usable(size_t size, size_t *usable) {
size_t usable_size = 0;
void *ptr = ztrymalloc_usable_internal(size, &usable_size);
if (!ptr) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
#if defined(USE_JEMALLOC)
void *zmalloc_with_flags(size_t size, int flags) {
if (size >= SIZE_MAX/2) zmalloc_oom_handler(size);
void *ptr = mallocx(size+PREFIX_SIZE, flags);
if (!ptr) zmalloc_oom_handler(size);
update_zmalloc_stat_alloc(zmalloc_size(ptr));
return ptr;
}
void *zrealloc_with_flags(void *ptr, size_t size, int flags) {
/* Not allocating anything, just redirect to free. */
if (size == 0 && ptr != NULL) {
zfree_with_flags(ptr, flags);
return NULL;
}
/* Not freeing anything, just redirect to malloc. */
if (ptr == NULL)
return zmalloc_with_flags(size, flags);
/* Possible overflow, return NULL, so that the caller can panic or handle a failed allocation. */
if (size >= SIZE_MAX/2) {
zfree_with_flags(ptr, flags);
zmalloc_oom_handler(size);
return NULL;
}
size_t oldsize = zmalloc_size(ptr);
void *newptr = rallocx(ptr, size, flags);
if (newptr == NULL) {
zmalloc_oom_handler(size);
return NULL;
}
update_zmalloc_stat_free(oldsize);
size = zmalloc_size(newptr);
update_zmalloc_stat_alloc(size);
return newptr;
}
void zfree_with_flags(void *ptr, int flags) {
if (ptr == NULL) return;
update_zmalloc_stat_free(zmalloc_size(ptr));
dallocx(ptr, flags);
}
#endif
/* Allocation and free functions that bypass the thread cache
* and go straight to the allocator arena bins.
* Currently implemented only for jemalloc. Used for online defragmentation. */
#ifdef HAVE_DEFRAG
void *zmalloc_no_tcache(size_t size) {
if (size >= SIZE_MAX/2) zmalloc_oom_handler(size);
void *ptr = mallocx(size+PREFIX_SIZE, MALLOCX_TCACHE_NONE);
if (!ptr) zmalloc_oom_handler(size);
update_zmalloc_stat_alloc(zmalloc_size(ptr));
return ptr;
}
void zfree_no_tcache(void *ptr) {
if (ptr == NULL) return;
update_zmalloc_stat_free(zmalloc_size(ptr));
dallocx(ptr, MALLOCX_TCACHE_NONE);
}
#endif
/* Try allocating memory and zero it, and return NULL if failed.
* '*usable' is set to the usable size if non NULL. */
static inline void *ztrycalloc_usable_internal(size_t size, size_t *usable) {
/* Possible overflow, return NULL, so that the caller can panic or handle a failed allocation. */
if (size >= SIZE_MAX/2) return NULL;
void *ptr = calloc(1, MALLOC_MIN_SIZE(size)+PREFIX_SIZE);
if (ptr == NULL) return NULL;
#ifdef HAVE_MALLOC_SIZE
size = zmalloc_size(ptr);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return ptr;
#else
size = MALLOC_MIN_SIZE(size);
*((size_t*)ptr) = size;
update_zmalloc_stat_alloc(size+PREFIX_SIZE);
if (usable) *usable = size;
return (char*)ptr+PREFIX_SIZE;
#endif
}
void *ztrycalloc_usable(size_t size, size_t *usable) {
size_t usable_size = 0;
void *ptr = ztrycalloc_usable_internal(size, &usable_size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Allocate memory and zero it or panic.
* We need this wrapper to have a calloc compatible signature */
void *zcalloc_num(size_t num, size_t size) {
/* Ensure that the arguments to calloc(), when multiplied, do not wrap.
* Division operations are susceptible to divide-by-zero errors so we also check it. */
if ((size == 0) || (num > SIZE_MAX/size)) {
zmalloc_oom_handler(SIZE_MAX);
return NULL;
}
void *ptr = ztrycalloc_usable_internal(num*size, NULL);
if (!ptr) zmalloc_oom_handler(num*size);
return ptr;
}
/* Allocate memory and zero it or panic */
void *zcalloc(size_t size) {
void *ptr = ztrycalloc_usable_internal(size, NULL);
if (!ptr) zmalloc_oom_handler(size);
return ptr;
}
/* Try allocating memory, and return NULL if failed. */
void *ztrycalloc(size_t size) {
void *ptr = ztrycalloc_usable_internal(size, NULL);
return ptr;
}
/* Allocate memory or panic.
* '*usable' is set to the usable size if non NULL. */
void *zcalloc_usable(size_t size, size_t *usable) {
size_t usable_size = 0;
void *ptr = ztrycalloc_usable_internal(size, &usable_size);
if (!ptr) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Try reallocating memory, and return NULL if failed.
* '*usable' is set to the usable size if non NULL. */
static inline void *ztryrealloc_usable_internal(void *ptr, size_t size, size_t *usable) {
#ifndef HAVE_MALLOC_SIZE
void *realptr;
#endif
size_t oldsize;
void *newptr;
/* not allocating anything, just redirect to free. */
if (size == 0 && ptr != NULL) {
zfree(ptr);
if (usable) *usable = 0;
return NULL;
}
/* Not freeing anything, just redirect to malloc. */
if (ptr == NULL)
return ztrymalloc_usable(size, usable);
/* Possible overflow, return NULL, so that the caller can panic or handle a failed allocation. */
if (size >= SIZE_MAX/2) {
zfree(ptr);
if (usable) *usable = 0;
return NULL;
}
#ifdef HAVE_MALLOC_SIZE
oldsize = zmalloc_size(ptr);
newptr = realloc(ptr,size);
if (newptr == NULL) {
if (usable) *usable = 0;
return NULL;
}
update_zmalloc_stat_free(oldsize);
size = zmalloc_size(newptr);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return newptr;
#else
realptr = (char*)ptr-PREFIX_SIZE;
oldsize = *((size_t*)realptr);
newptr = realloc(realptr,size+PREFIX_SIZE);
if (newptr == NULL) {
if (usable) *usable = 0;
return NULL;
}
*((size_t*)newptr) = size;
update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return (char*)newptr+PREFIX_SIZE;
#endif
}
void *ztryrealloc_usable(void *ptr, size_t size, size_t *usable) {
size_t usable_size = 0;
ptr = ztryrealloc_usable_internal(ptr, size, &usable_size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Reallocate memory and zero it or panic */
void *zrealloc(void *ptr, size_t size) {
ptr = ztryrealloc_usable_internal(ptr, size, NULL);
if (!ptr && size != 0) zmalloc_oom_handler(size);
return ptr;
}
/* Try Reallocating memory, and return NULL if failed. */
void *ztryrealloc(void *ptr, size_t size) {
ptr = ztryrealloc_usable_internal(ptr, size, NULL);
return ptr;
}
/* Reallocate memory or panic.
* '*usable' is set to the usable size if non NULL. */
void *zrealloc_usable(void *ptr, size_t size, size_t *usable) {
size_t usable_size = 0;
ptr = ztryrealloc_usable(ptr, size, &usable_size);
if (!ptr && size != 0) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
ptr = extend_to_usable(ptr, usable_size);
#endif
if (usable) *usable = usable_size;
return ptr;
}
/* Provide zmalloc_size() for systems where this function is not provided by
* malloc itself, given that in that case we store a header with this
* information as the first bytes of every allocation. */
#ifndef HAVE_MALLOC_SIZE
size_t zmalloc_size(void *ptr) {
void *realptr = (char*)ptr-PREFIX_SIZE;
size_t size = *((size_t*)realptr);
return size+PREFIX_SIZE;
}
size_t zmalloc_usable_size(void *ptr) {
return zmalloc_size(ptr)-PREFIX_SIZE;
}
#endif
void zfree(void *ptr) {
#ifndef HAVE_MALLOC_SIZE
void *realptr;
size_t oldsize;
#endif
if (ptr == NULL) return;
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_free(zmalloc_size(ptr));
free(ptr);
#else
realptr = (char*)ptr-PREFIX_SIZE;
oldsize = *((size_t*)realptr);
update_zmalloc_stat_free(oldsize+PREFIX_SIZE);
free(realptr);
#endif
}
/* Similar to zfree, '*usable' is set to the usable size being freed. */
void zfree_usable(void *ptr, size_t *usable) {
#ifndef HAVE_MALLOC_SIZE
void *realptr;
size_t oldsize;
#endif
if (ptr == NULL) return;
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_free(*usable = zmalloc_size(ptr));
free(ptr);
#else
realptr = (char*)ptr-PREFIX_SIZE;
*usable = oldsize = *((size_t*)realptr);
update_zmalloc_stat_free(oldsize+PREFIX_SIZE);
free(realptr);
#endif
}
char *zstrdup(const char *s) {
size_t l = strlen(s)+1;
char *p = zmalloc(l);
memcpy(p,s,l);
return p;
}
size_t zmalloc_used_memory(void) {
size_t um;
atomicGet(used_memory,um);
return um;
}
void zmalloc_set_oom_handler(void (*oom_handler)(size_t)) {
zmalloc_oom_handler = oom_handler;
}
/* Use 'MADV_DONTNEED' to release memory to operating system quickly.
* We do that in a fork child process to avoid CoW when the parent modifies
* these shared pages. */
void zmadvise_dontneed(void *ptr) {
#if defined(USE_JEMALLOC) && defined(__linux__)
static size_t page_size = 0;
if (page_size == 0) page_size = sysconf(_SC_PAGESIZE);
size_t page_size_mask = page_size - 1;
size_t real_size = zmalloc_size(ptr);
if (real_size < page_size) return;
/* We need to align the pointer upwards according to page size, because
* the memory address is increased upwards and we only can free memory
* based on page. */
char *aligned_ptr = (char *)(((size_t)ptr+page_size_mask) & ~page_size_mask);
real_size -= (aligned_ptr-(char*)ptr);
if (real_size >= page_size) {
madvise((void *)aligned_ptr, real_size&~page_size_mask, MADV_DONTNEED);
}
#else
(void)(ptr);
#endif
}
/* Get the RSS information in an OS-specific way.
*
* WARNING: the function zmalloc_get_rss() is not designed to be fast
* and may not be called in the busy loops where Redis tries to release
* memory expiring or swapping out objects.
*
* For this kind of "fast RSS reporting" usages use instead the
* function RedisEstimateRSS() that is a much faster (and less precise)
* version of the function. */
#if defined(HAVE_PROC_STAT)
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#endif
/* Get the i'th field from "/proc/self/stat" note i is 1 based as appears in the 'proc' man page */
int get_proc_stat_ll(int i, long long *res) {
#if defined(HAVE_PROC_STAT)
char buf[4096];
int fd, l;
char *p, *x;
if ((fd = open("/proc/self/stat",O_RDONLY)) == -1) return 0;
if ((l = read(fd,buf,sizeof(buf)-1)) <= 0) {
close(fd);
return 0;
}
close(fd);
buf[l] = '\0';
if (buf[l-1] == '\n') buf[l-1] = '\0';
/* Skip pid and process name (surrounded with parentheses) */
p = strrchr(buf, ')');
if (!p) return 0;
p++;
while (*p == ' ') p++;
if (*p == '\0') return 0;
i -= 3;
if (i < 0) return 0;
while (p && i--) {
p = strchr(p, ' ');
if (p) p++;
else return 0;
}
x = strchr(p,' ');
if (x) *x = '\0';
*res = strtoll(p,&x,10);
if (*x != '\0') return 0;
return 1;
#else
UNUSED(i);
UNUSED(res);
return 0;
#endif
}
#if defined(HAVE_PROC_STAT)
size_t zmalloc_get_rss(void) {
int page = sysconf(_SC_PAGESIZE);
long long rss;
/* RSS is the 24th field in /proc/<pid>/stat */
if (!get_proc_stat_ll(24, &rss)) return 0;
rss *= page;
return rss;
}
#elif defined(HAVE_TASKINFO)
#include <sys/types.h>
#include <sys/sysctl.h>
#include <mach/task.h>
#include <mach/mach_init.h>
size_t zmalloc_get_rss(void) {
task_t task = MACH_PORT_NULL;
struct task_basic_info t_info;
mach_msg_type_number_t t_info_count = TASK_BASIC_INFO_COUNT;
if (task_for_pid(current_task(), getpid(), &task) != KERN_SUCCESS)
return 0;
task_info(task, TASK_BASIC_INFO, (task_info_t)&t_info, &t_info_count);
return t_info.resident_size;
}
#elif defined(__FreeBSD__) || defined(__DragonFly__)
#include <sys/types.h>
#include <sys/sysctl.h>
#include <sys/user.h>
size_t zmalloc_get_rss(void) {
struct kinfo_proc info;
size_t infolen = sizeof(info);
int mib[4];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC;
mib[2] = KERN_PROC_PID;
mib[3] = getpid();
if (sysctl(mib, 4, &info, &infolen, NULL, 0) == 0)
#if defined(__FreeBSD__)
return (size_t)info.ki_rssize * getpagesize();
#else
return (size_t)info.kp_vm_rssize * getpagesize();
#endif
return 0L;
}
#elif defined(__NetBSD__) || defined(__OpenBSD__)
#include <sys/types.h>
#include <sys/sysctl.h>
#if defined(__OpenBSD__)
#define kinfo_proc2 kinfo_proc
#define KERN_PROC2 KERN_PROC
#define __arraycount(a) (sizeof(a) / sizeof(a[0]))
#endif
size_t zmalloc_get_rss(void) {
struct kinfo_proc2 info;
size_t infolen = sizeof(info);
int mib[6];
mib[0] = CTL_KERN;
mib[1] = KERN_PROC2;
mib[2] = KERN_PROC_PID;
mib[3] = getpid();
mib[4] = sizeof(info);
mib[5] = 1;
if (sysctl(mib, __arraycount(mib), &info, &infolen, NULL, 0) == 0)
return (size_t)info.p_vm_rssize * getpagesize();
return 0L;
}
#elif defined(__HAIKU__)
#include <OS.h>
size_t zmalloc_get_rss(void) {
area_info info;
thread_info th;
size_t rss = 0;
ssize_t cookie = 0;
if (get_thread_info(find_thread(0), &th) != B_OK)
return 0;
while (get_next_area_info(th.team, &cookie, &info) == B_OK)
rss += info.ram_size;
return rss;
}
#elif defined(HAVE_PSINFO)
#include <unistd.h>
#include <sys/procfs.h>
#include <fcntl.h>
size_t zmalloc_get_rss(void) {
struct prpsinfo info;
char filename[256];
int fd;
snprintf(filename,256,"/proc/%ld/psinfo",(long) getpid());
if ((fd = open(filename,O_RDONLY)) == -1) return 0;
if (ioctl(fd, PIOCPSINFO, &info) == -1) {
close(fd);
return 0;
}
close(fd);
return info.pr_rssize;
}
#else
size_t zmalloc_get_rss(void) {
/* If we can't get the RSS in an OS-specific way for this system just
* return the memory usage we estimated in zmalloc()..
*
* Fragmentation will appear to be always 1 (no fragmentation)
* of course... */
return zmalloc_used_memory();
}
#endif
#if defined(USE_JEMALLOC)
#include "redisassert.h"
/* Compute the total memory wasted in fragmentation of inside small arena bins.
* Done by summing the memory in unused regs in all slabs of all small bins.
*
* Pass in arena to get the information of the specified arena, otherwise pass
* in MALLCTL_ARENAS_ALL to get all. */
size_t zmalloc_get_frag_smallbins_by_arena(unsigned int arena) {
unsigned nbins;
size_t sz, frag = 0;
char buf[100];
sz = sizeof(unsigned);
assert(!je_mallctl("arenas.nbins", &nbins, &sz, NULL, 0));
for (unsigned j = 0; j < nbins; j++) {
size_t curregs, curslabs, reg_size;
uint32_t nregs;
/* The size of the current bin */
snprintf(buf, sizeof(buf), "arenas.bin.%u.size", j);
sz = sizeof(size_t);
assert(!je_mallctl(buf, &reg_size, &sz, NULL, 0));
/* Number of used regions in the bin */
snprintf(buf, sizeof(buf), "stats.arenas.%u.bins.%u.curregs", arena, j);
sz = sizeof(size_t);
assert(!je_mallctl(buf, &curregs, &sz, NULL, 0));
/* Number of regions per slab */
snprintf(buf, sizeof(buf), "arenas.bin.%u.nregs", j);
sz = sizeof(uint32_t);
assert(!je_mallctl(buf, &nregs, &sz, NULL, 0));
/* Number of current slabs in the bin */
snprintf(buf, sizeof(buf), "stats.arenas.%u.bins.%u.curslabs", arena, j);
sz = sizeof(size_t);
assert(!je_mallctl(buf, &curslabs, &sz, NULL, 0));
/* Calculate the fragmentation bytes for the current bin and add it to the total. */
frag += ((nregs * curslabs) - curregs) * reg_size;
}
return frag;
}
/* Compute the total memory wasted in fragmentation of inside small arena bins.
* Done by summing the memory in unused regs in all slabs of all small bins. */
size_t zmalloc_get_frag_smallbins(void) {
return zmalloc_get_frag_smallbins_by_arena(MALLCTL_ARENAS_ALL);
}
/* Get memory allocation information from allocator.
*
* refresh_stats indicates whether to refresh cached statistics.
* For the meaning of the other parameters, please refer to the function implementation
* and INFO's allocator_* in redis-doc. */
int zmalloc_get_allocator_info(int refresh_stats, size_t *allocated, size_t *active, size_t *resident,
size_t *retained, size_t *muzzy, size_t *frag_smallbins_bytes)
{
size_t sz;
*allocated = *resident = *active = 0;
/* Update the statistics cached by mallctl. */
if (refresh_stats) {
uint64_t epoch = 1;
sz = sizeof(epoch);
je_mallctl("epoch", &epoch, &sz, &epoch, sz);
}
sz = sizeof(size_t);
/* Unlike RSS, this does not include RSS from shared libraries and other non
* heap mappings. */
je_mallctl("stats.resident", resident, &sz, NULL, 0);
/* Unlike resident, this doesn't not include the pages jemalloc reserves
* for re-use (purge will clean that). */
je_mallctl("stats.active", active, &sz, NULL, 0);
/* Unlike zmalloc_used_memory, this matches the stats.resident by taking
* into account all allocations done by this process (not only zmalloc). */
je_mallctl("stats.allocated", allocated, &sz, NULL, 0);
/* Retained memory is memory released by `madvised(..., MADV_DONTNEED)`, which is not part
* of RSS or mapped memory, and doesn't have a strong association with physical memory in the OS.
* It is still part of the VM-Size, and may be used again in later allocations. */
if (retained) {
*retained = 0;
je_mallctl("stats.retained", retained, &sz, NULL, 0);
}
/* Unlike retained, Muzzy representats memory released with `madvised(..., MADV_FREE)`.
* These pages will show as RSS for the process, until the OS decides to re-use them. */
if (muzzy) {
char buf[100];
size_t pmuzzy, page;
snprintf(buf, sizeof(buf), "stats.arenas.%u.pmuzzy", MALLCTL_ARENAS_ALL);
assert(!je_mallctl(buf, &pmuzzy, &sz, NULL, 0));
assert(!je_mallctl("arenas.page", &page, &sz, NULL, 0));
*muzzy = pmuzzy * page;
}
/* Total size of consumed meomry in unused regs in small bins (AKA external fragmentation). */
*frag_smallbins_bytes = zmalloc_get_frag_smallbins();
return 1;
}
/* Get the specified arena memory allocation information from allocator.
*
* refresh_stats indicates whether to refresh cached statistics.
* For the meaning of the other parameters, please refer to the function implementation
* and INFO's allocator_* in redis-doc. */
int zmalloc_get_allocator_info_by_arena(unsigned int arena, int refresh_stats, size_t *allocated,
size_t *active, size_t *resident, size_t *frag_smallbins_bytes)
{
char buf[100];
size_t sz;
*allocated = *resident = *active = 0;
/* Update the statistics cached by mallctl. */
if (refresh_stats) {
uint64_t epoch = 1;
sz = sizeof(epoch);
je_mallctl("epoch", &epoch, &sz, &epoch, sz);
}
sz = sizeof(size_t);
/* Unlike RSS, this does not include RSS from shared libraries and other non
* heap mappings. */
snprintf(buf, sizeof(buf), "stats.arenas.%u.small.resident", arena);
je_mallctl(buf, resident, &sz, NULL, 0);
/* Unlike resident, this doesn't not include the pages jemalloc reserves
* for re-use (purge will clean that). */
size_t pactive, page;
snprintf(buf, sizeof(buf), "stats.arenas.%u.pactive", arena);
assert(!je_mallctl(buf, &pactive, &sz, NULL, 0));
assert(!je_mallctl("arenas.page", &page, &sz, NULL, 0));
*active = pactive * page;
/* Unlike zmalloc_used_memory, this matches the stats.resident by taking
* into account all allocations done by this process (not only zmalloc). */
size_t small_allcated, large_allacted;
snprintf(buf, sizeof(buf), "stats.arenas.%u.small.allocated", arena);
assert(!je_mallctl(buf, &small_allcated, &sz, NULL, 0));
*allocated += small_allcated;
snprintf(buf, sizeof(buf), "stats.arenas.%u.large.allocated", arena);
assert(!je_mallctl(buf, &large_allacted, &sz, NULL, 0));
*allocated += large_allacted;
/* Total size of consumed meomry in unused regs in small bins (AKA external fragmentation). */
*frag_smallbins_bytes = zmalloc_get_frag_smallbins_by_arena(arena);
return 1;
}
void set_jemalloc_bg_thread(int enable) {
/* let jemalloc do purging asynchronously, required when there's no traffic
* after flushdb */
char val = !!enable;
je_mallctl("background_thread", NULL, 0, &val, 1);
}
int jemalloc_purge(void) {
/* return all unused (reserved) pages to the OS */
char tmp[32];
unsigned narenas = 0;
size_t sz = sizeof(unsigned);
if (!je_mallctl("arenas.narenas", &narenas, &sz, NULL, 0)) {
snprintf(tmp, sizeof(tmp), "arena.%u.purge", narenas);
if (!je_mallctl(tmp, NULL, 0, NULL, 0))
return 0;
}
return -1;
}
#else
int zmalloc_get_allocator_info(int refresh_stats, size_t *allocated, size_t *active, size_t *resident,
size_t *retained, size_t *muzzy, size_t *frag_smallbins_bytes)
{
UNUSED(refresh_stats);
*allocated = *resident = *active = *frag_smallbins_bytes = 0;
if (retained) *retained = 0;
if (muzzy) *muzzy = 0;
return 1;
}
int zmalloc_get_allocator_info_by_arena(unsigned int arena, int refresh_stats, size_t *allocated,
size_t *active, size_t *resident, size_t *frag_smallbins_bytes)
{
UNUSED(arena);
UNUSED(refresh_stats);
*allocated = *resident = *active = *frag_smallbins_bytes = 0;
return 1;
}
void set_jemalloc_bg_thread(int enable) {
((void)(enable));
}
int jemalloc_purge(void) {
return 0;
}
#endif
#if defined(__APPLE__)
/* For proc_pidinfo() used later in zmalloc_get_smap_bytes_by_field().
* Note that this file cannot be included in zmalloc.h because it includes
* a Darwin queue.h file where there is a "LIST_HEAD" macro (!) defined
* conficting with Redis user code. */
#include <libproc.h>
#endif
/* Get the sum of the specified field (converted form kb to bytes) in
* /proc/self/smaps. The field must be specified with trailing ":" as it
* apperas in the smaps output.
*
* If a pid is specified, the information is extracted for such a pid,
* otherwise if pid is -1 the information is reported is about the
* current process.
*
* Example: zmalloc_get_smap_bytes_by_field("Rss:",-1);
*/
#if defined(HAVE_PROC_SMAPS)
size_t zmalloc_get_smap_bytes_by_field(char *field, long pid) {
char line[1024];
size_t bytes = 0;
int flen = strlen(field);
FILE *fp;
if (pid == -1) {
fp = fopen("/proc/self/smaps","r");
} else {
char filename[128];
snprintf(filename,sizeof(filename),"/proc/%ld/smaps",pid);
fp = fopen(filename,"r");
}
if (!fp) return 0;
while(fgets(line,sizeof(line),fp) != NULL) {
if (strncmp(line,field,flen) == 0) {
char *p = strchr(line,'k');
if (p) {
*p = '\0';
bytes += strtol(line+flen,NULL,10) * 1024;
}
}
}
fclose(fp);
return bytes;
}
#else
/* Get sum of the specified field from libproc api call.
* As there are per page value basis we need to convert
* them accordingly.
*
* Note that AnonHugePages is a no-op as THP feature
* is not supported in this platform
*/
size_t zmalloc_get_smap_bytes_by_field(char *field, long pid) {
#if defined(__APPLE__)
struct proc_regioninfo pri;
if (pid == -1) pid = getpid();
if (proc_pidinfo(pid, PROC_PIDREGIONINFO, 0, &pri,
PROC_PIDREGIONINFO_SIZE) == PROC_PIDREGIONINFO_SIZE)
{
int pagesize = getpagesize();
if (!strcmp(field, "Private_Dirty:")) {
return (size_t)pri.pri_pages_dirtied * pagesize;
} else if (!strcmp(field, "Rss:")) {
return (size_t)pri.pri_pages_resident * pagesize;
} else if (!strcmp(field, "AnonHugePages:")) {
return 0;
}
}
return 0;
#endif
((void) field);
((void) pid);
return 0;
}
#endif
/* Return the total number bytes in pages marked as Private Dirty.
*
* Note: depending on the platform and memory footprint of the process, this
* call can be slow, exceeding 1000ms!
*/
size_t zmalloc_get_private_dirty(long pid) {
return zmalloc_get_smap_bytes_by_field("Private_Dirty:",pid);
}
/* Returns the size of physical memory (RAM) in bytes.
* It looks ugly, but this is the cleanest way to achieve cross platform results.
* Cleaned up from:
*
* http://nadeausoftware.com/articles/2012/09/c_c_tip_how_get_physical_memory_size_system
*
* Note that this function:
* 1) Was released under the following CC attribution license:
* http://creativecommons.org/licenses/by/3.0/deed.en_US.
* 2) Was originally implemented by David Robert Nadeau.
* 3) Was modified for Redis by Matt Stancliff.
* 4) This note exists in order to comply with the original license.
*/
size_t zmalloc_get_memory_size(void) {
#if defined(__unix__) || defined(__unix) || defined(unix) || \
(defined(__APPLE__) && defined(__MACH__))
#if defined(CTL_HW) && (defined(HW_MEMSIZE) || defined(HW_PHYSMEM64))
int mib[2];
mib[0] = CTL_HW;
#if defined(HW_MEMSIZE)
mib[1] = HW_MEMSIZE; /* OSX. --------------------- */
#elif defined(HW_PHYSMEM64)
mib[1] = HW_PHYSMEM64; /* NetBSD, OpenBSD. --------- */
#endif
int64_t size = 0; /* 64-bit */
size_t len = sizeof(size);
if (sysctl( mib, 2, &size, &len, NULL, 0) == 0)
return (size_t)size;
return 0L; /* Failed? */
#elif defined(_SC_PHYS_PAGES) && defined(_SC_PAGESIZE)
/* FreeBSD, Linux, OpenBSD, and Solaris. -------------------- */
return (size_t)sysconf(_SC_PHYS_PAGES) * (size_t)sysconf(_SC_PAGESIZE);
#elif defined(CTL_HW) && (defined(HW_PHYSMEM) || defined(HW_REALMEM))
/* DragonFly BSD, FreeBSD, NetBSD, OpenBSD, and OSX. -------- */
int mib[2];
mib[0] = CTL_HW;
#if defined(HW_REALMEM)
mib[1] = HW_REALMEM; /* FreeBSD. ----------------- */
#elif defined(HW_PHYSMEM)
mib[1] = HW_PHYSMEM; /* Others. ------------------ */
#endif
unsigned int size = 0; /* 32-bit */
size_t len = sizeof(size);
if (sysctl(mib, 2, &size, &len, NULL, 0) == 0)
return (size_t)size;
return 0L; /* Failed? */
#else
return 0L; /* Unknown method to get the data. */
#endif
#else
return 0L; /* Unknown OS. */
#endif
}
#ifdef REDIS_TEST
#include "testhelp.h"
#include "redisassert.h"
#define TEST(name) printf("test — %s\n", name);
int zmalloc_test(int argc, char **argv, int flags) {
void *ptr, *ptr2;
UNUSED(argc);
UNUSED(argv);
UNUSED(flags);
printf("Malloc prefix size: %d\n", (int) PREFIX_SIZE);
TEST("Initial used memory is 0") {
assert(zmalloc_used_memory() == 0);
}
TEST("Allocated 123 bytes") {
ptr = zmalloc(123);
printf("Allocated 123 bytes; used: %zu\n", zmalloc_used_memory());
}
TEST("Reallocated to 456 bytes") {
ptr = zrealloc(ptr, 456);
printf("Reallocated to 456 bytes; used: %zu\n", zmalloc_used_memory());
}
TEST("Callocated 123 bytes") {
ptr2 = zcalloc(123);
printf("Callocated 123 bytes; used: %zu\n", zmalloc_used_memory());
}
TEST("Freed pointers") {
zfree(ptr);
zfree(ptr2);
printf("Freed pointers; used: %zu\n", zmalloc_used_memory());
}
TEST("Allocated 0 bytes") {
ptr = zmalloc(0);
printf("Allocated 0 bytes; used: %zu\n", zmalloc_used_memory());
zfree(ptr);
}
TEST("At the end used memory is 0") {
assert(zmalloc_used_memory() == 0);
}
return 0;
}
#endif