redis/src/t_hash.c

1140 lines
37 KiB
C

/*
* Copyright (c) 2009-Present, Redis Ltd.
* All rights reserved.
*
* Licensed under your choice of the Redis Source Available License 2.0
* (RSALv2) or the Server Side Public License v1 (SSPLv1).
*/
#include "server.h"
#include <math.h>
/*-----------------------------------------------------------------------------
* Hash type API
*----------------------------------------------------------------------------*/
/* Check the length of a number of objects to see if we need to convert a
* listpack to a real hash. Note that we only check string encoded objects
* as their string length can be queried in constant time. */
void hashTypeTryConversion(robj *o, robj **argv, int start, int end) {
int i;
size_t sum = 0;
if (o->encoding != OBJ_ENCODING_LISTPACK) return;
/* We guess that most of the values in the input are unique, so
* if there are enough arguments we create a pre-sized hash, which
* might over allocate memory if there are duplicates. */
size_t new_fields = (end - start + 1) / 2;
if (new_fields > server.hash_max_listpack_entries) {
hashTypeConvert(o, OBJ_ENCODING_HT);
dictExpand(o->ptr, new_fields);
return;
}
for (i = start; i <= end; i++) {
if (!sdsEncodedObject(argv[i]))
continue;
size_t len = sdslen(argv[i]->ptr);
if (len > server.hash_max_listpack_value) {
hashTypeConvert(o, OBJ_ENCODING_HT);
return;
}
sum += len;
}
if (!lpSafeToAdd(o->ptr, sum))
hashTypeConvert(o, OBJ_ENCODING_HT);
}
/* Get the value from a listpack encoded hash, identified by field.
* Returns -1 when the field cannot be found. */
int hashTypeGetFromListpack(robj *o, sds field,
unsigned char **vstr,
unsigned int *vlen,
long long *vll)
{
unsigned char *zl, *fptr = NULL, *vptr = NULL;
serverAssert(o->encoding == OBJ_ENCODING_LISTPACK);
zl = o->ptr;
fptr = lpFirst(zl);
if (fptr != NULL) {
fptr = lpFind(zl, fptr, (unsigned char*)field, sdslen(field), 1);
if (fptr != NULL) {
/* Grab pointer to the value (fptr points to the field) */
vptr = lpNext(zl, fptr);
serverAssert(vptr != NULL);
}
}
if (vptr != NULL) {
*vstr = lpGetValue(vptr, vlen, vll);
return 0;
}
return -1;
}
/* Get the value from a hash table encoded hash, identified by field.
* Returns NULL when the field cannot be found, otherwise the SDS value
* is returned. */
sds hashTypeGetFromHashTable(robj *o, sds field) {
dictEntry *de;
serverAssert(o->encoding == OBJ_ENCODING_HT);
de = dictFind(o->ptr, field);
if (de == NULL) return NULL;
return dictGetVal(de);
}
/* Higher level function of hashTypeGet*() that returns the hash value
* associated with the specified field. If the field is found C_OK
* is returned, otherwise C_ERR. The returned object is returned by
* reference in either *vstr and *vlen if it's returned in string form,
* or stored in *vll if it's returned as a number.
*
* If *vll is populated *vstr is set to NULL, so the caller
* can always check the function return by checking the return value
* for C_OK and checking if vll (or vstr) is NULL. */
int hashTypeGetValue(robj *o, sds field, unsigned char **vstr, unsigned int *vlen, long long *vll) {
if (o->encoding == OBJ_ENCODING_LISTPACK) {
*vstr = NULL;
if (hashTypeGetFromListpack(o, field, vstr, vlen, vll) == 0)
return C_OK;
} else if (o->encoding == OBJ_ENCODING_HT) {
sds value;
if ((value = hashTypeGetFromHashTable(o, field)) != NULL) {
*vstr = (unsigned char*) value;
*vlen = sdslen(value);
return C_OK;
}
} else {
serverPanic("Unknown hash encoding");
}
return C_ERR;
}
/* Like hashTypeGetValue() but returns a Redis object, which is useful for
* interaction with the hash type outside t_hash.c.
* The function returns NULL if the field is not found in the hash. Otherwise
* a newly allocated string object with the value is returned. */
robj *hashTypeGetValueObject(robj *o, sds field) {
unsigned char *vstr;
unsigned int vlen;
long long vll;
if (hashTypeGetValue(o,field,&vstr,&vlen,&vll) == C_ERR) return NULL;
if (vstr) return createStringObject((char*)vstr,vlen);
else return createStringObjectFromLongLong(vll);
}
/* Higher level function using hashTypeGet*() to return the length of the
* object associated with the requested field, or 0 if the field does not
* exist. */
size_t hashTypeGetValueLength(robj *o, sds field) {
size_t len = 0;
unsigned char *vstr = NULL;
unsigned int vlen = UINT_MAX;
long long vll = LLONG_MAX;
if (hashTypeGetValue(o, field, &vstr, &vlen, &vll) == C_OK)
len = vstr ? vlen : sdigits10(vll);
return len;
}
/* Test if the specified field exists in the given hash. Returns 1 if the field
* exists, and 0 when it doesn't. */
int hashTypeExists(robj *o, sds field) {
unsigned char *vstr = NULL;
unsigned int vlen = UINT_MAX;
long long vll = LLONG_MAX;
return hashTypeGetValue(o, field, &vstr, &vlen, &vll) == C_OK;
}
/* Add a new field, overwrite the old with the new value if it already exists.
* Return 0 on insert and 1 on update.
*
* By default, the key and value SDS strings are copied if needed, so the
* caller retains ownership of the strings passed. However this behavior
* can be effected by passing appropriate flags (possibly bitwise OR-ed):
*
* HASH_SET_TAKE_FIELD -- The SDS field ownership passes to the function.
* HASH_SET_TAKE_VALUE -- The SDS value ownership passes to the function.
*
* When the flags are used the caller does not need to release the passed
* SDS string(s). It's up to the function to use the string to create a new
* entry or to free the SDS string before returning to the caller.
*
* HASH_SET_COPY corresponds to no flags passed, and means the default
* semantics of copying the values if needed.
*
*/
#define HASH_SET_TAKE_FIELD (1<<0)
#define HASH_SET_TAKE_VALUE (1<<1)
#define HASH_SET_COPY 0
int hashTypeSet(robj *o, sds field, sds value, int flags) {
int update = 0;
/* Check if the field is too long for listpack, and convert before adding the item.
* This is needed for HINCRBY* case since in other commands this is handled early by
* hashTypeTryConversion, so this check will be a NOP. */
if (o->encoding == OBJ_ENCODING_LISTPACK) {
if (sdslen(field) > server.hash_max_listpack_value || sdslen(value) > server.hash_max_listpack_value)
hashTypeConvert(o, OBJ_ENCODING_HT);
}
if (o->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl, *fptr, *vptr;
zl = o->ptr;
fptr = lpFirst(zl);
if (fptr != NULL) {
fptr = lpFind(zl, fptr, (unsigned char*)field, sdslen(field), 1);
if (fptr != NULL) {
/* Grab pointer to the value (fptr points to the field) */
vptr = lpNext(zl, fptr);
serverAssert(vptr != NULL);
update = 1;
/* Replace value */
zl = lpReplace(zl, &vptr, (unsigned char*)value, sdslen(value));
}
}
if (!update) {
/* Push new field/value pair onto the tail of the listpack */
zl = lpAppend(zl, (unsigned char*)field, sdslen(field));
zl = lpAppend(zl, (unsigned char*)value, sdslen(value));
}
o->ptr = zl;
/* Check if the listpack needs to be converted to a hash table */
if (hashTypeLength(o) > server.hash_max_listpack_entries)
hashTypeConvert(o, OBJ_ENCODING_HT);
} else if (o->encoding == OBJ_ENCODING_HT) {
dict *ht = o->ptr;
dictEntry *de, *existing;
sds v;
if (flags & HASH_SET_TAKE_VALUE) {
v = value;
value = NULL;
} else {
v = sdsdup(value);
}
de = dictAddRaw(ht, field, &existing);
if (de) {
dictSetVal(ht, de, v);
if (flags & HASH_SET_TAKE_FIELD) {
field = NULL;
} else {
dictSetKey(ht, de, sdsdup(field));
}
} else {
sdsfree(dictGetVal(existing));
dictSetVal(ht, existing, v);
update = 1;
}
} else {
serverPanic("Unknown hash encoding");
}
/* Free SDS strings we did not referenced elsewhere if the flags
* want this function to be responsible. */
if (flags & HASH_SET_TAKE_FIELD && field) sdsfree(field);
if (flags & HASH_SET_TAKE_VALUE && value) sdsfree(value);
return update;
}
/* Delete an element from a hash.
* Return 1 on deleted and 0 on not found. */
int hashTypeDelete(robj *o, sds field) {
int deleted = 0;
if (o->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl, *fptr;
zl = o->ptr;
fptr = lpFirst(zl);
if (fptr != NULL) {
fptr = lpFind(zl, fptr, (unsigned char*)field, sdslen(field), 1);
if (fptr != NULL) {
/* Delete both of the key and the value. */
zl = lpDeleteRangeWithEntry(zl,&fptr,2);
o->ptr = zl;
deleted = 1;
}
}
} else if (o->encoding == OBJ_ENCODING_HT) {
if (dictDelete((dict*)o->ptr, field) == C_OK) {
deleted = 1;
}
} else {
serverPanic("Unknown hash encoding");
}
return deleted;
}
/* Return the number of elements in a hash. */
unsigned long hashTypeLength(const robj *o) {
unsigned long length = ULONG_MAX;
if (o->encoding == OBJ_ENCODING_LISTPACK) {
length = lpLength(o->ptr) / 2;
} else if (o->encoding == OBJ_ENCODING_HT) {
length = dictSize((const dict*)o->ptr);
} else {
serverPanic("Unknown hash encoding");
}
return length;
}
hashTypeIterator *hashTypeInitIterator(robj *subject) {
hashTypeIterator *hi = zmalloc(sizeof(hashTypeIterator));
hi->subject = subject;
hi->encoding = subject->encoding;
if (hi->encoding == OBJ_ENCODING_LISTPACK) {
hi->fptr = NULL;
hi->vptr = NULL;
} else if (hi->encoding == OBJ_ENCODING_HT) {
hi->di = dictGetIterator(subject->ptr);
} else {
serverPanic("Unknown hash encoding");
}
return hi;
}
void hashTypeReleaseIterator(hashTypeIterator *hi) {
if (hi->encoding == OBJ_ENCODING_HT)
dictReleaseIterator(hi->di);
zfree(hi);
}
/* Move to the next entry in the hash. Return C_OK when the next entry
* could be found and C_ERR when the iterator reaches the end. */
int hashTypeNext(hashTypeIterator *hi) {
if (hi->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl;
unsigned char *fptr, *vptr;
zl = hi->subject->ptr;
fptr = hi->fptr;
vptr = hi->vptr;
if (fptr == NULL) {
/* Initialize cursor */
serverAssert(vptr == NULL);
fptr = lpFirst(zl);
} else {
/* Advance cursor */
serverAssert(vptr != NULL);
fptr = lpNext(zl, vptr);
}
if (fptr == NULL) return C_ERR;
/* Grab pointer to the value (fptr points to the field) */
vptr = lpNext(zl, fptr);
serverAssert(vptr != NULL);
/* fptr, vptr now point to the first or next pair */
hi->fptr = fptr;
hi->vptr = vptr;
} else if (hi->encoding == OBJ_ENCODING_HT) {
if ((hi->de = dictNext(hi->di)) == NULL) return C_ERR;
} else {
serverPanic("Unknown hash encoding");
}
return C_OK;
}
/* Get the field or value at iterator cursor, for an iterator on a hash value
* encoded as a listpack. Prototype is similar to `hashTypeGetFromListpack`. */
void hashTypeCurrentFromListpack(hashTypeIterator *hi, int what,
unsigned char **vstr,
unsigned int *vlen,
long long *vll)
{
serverAssert(hi->encoding == OBJ_ENCODING_LISTPACK);
if (what & OBJ_HASH_KEY) {
*vstr = lpGetValue(hi->fptr, vlen, vll);
} else {
*vstr = lpGetValue(hi->vptr, vlen, vll);
}
}
/* Get the field or value at iterator cursor, for an iterator on a hash value
* encoded as a hash table. Prototype is similar to
* `hashTypeGetFromHashTable`. */
sds hashTypeCurrentFromHashTable(hashTypeIterator *hi, int what) {
serverAssert(hi->encoding == OBJ_ENCODING_HT);
if (what & OBJ_HASH_KEY) {
return dictGetKey(hi->de);
} else {
return dictGetVal(hi->de);
}
}
/* Higher level function of hashTypeCurrent*() that returns the hash value
* at current iterator position.
*
* The returned element is returned by reference in either *vstr and *vlen if
* it's returned in string form, or stored in *vll if it's returned as
* a number.
*
* If *vll is populated *vstr is set to NULL, so the caller
* can always check the function return by checking the return value
* type checking if vstr == NULL. */
void hashTypeCurrentObject(hashTypeIterator *hi, int what, unsigned char **vstr, unsigned int *vlen, long long *vll) {
if (hi->encoding == OBJ_ENCODING_LISTPACK) {
*vstr = NULL;
hashTypeCurrentFromListpack(hi, what, vstr, vlen, vll);
} else if (hi->encoding == OBJ_ENCODING_HT) {
sds ele = hashTypeCurrentFromHashTable(hi, what);
*vstr = (unsigned char*) ele;
*vlen = sdslen(ele);
} else {
serverPanic("Unknown hash encoding");
}
}
/* Return the key or value at the current iterator position as a new
* SDS string. */
sds hashTypeCurrentObjectNewSds(hashTypeIterator *hi, int what) {
unsigned char *vstr;
unsigned int vlen;
long long vll;
hashTypeCurrentObject(hi,what,&vstr,&vlen,&vll);
if (vstr) return sdsnewlen(vstr,vlen);
return sdsfromlonglong(vll);
}
robj *hashTypeLookupWriteOrCreate(client *c, robj *key) {
robj *o = lookupKeyWrite(c->db,key);
if (checkType(c,o,OBJ_HASH)) return NULL;
if (o == NULL) {
o = createHashObject();
dbAdd(c->db,key,o);
}
return o;
}
void hashTypeConvertListpack(robj *o, int enc) {
serverAssert(o->encoding == OBJ_ENCODING_LISTPACK);
if (enc == OBJ_ENCODING_LISTPACK) {
/* Nothing to do... */
} else if (enc == OBJ_ENCODING_HT) {
hashTypeIterator *hi;
dict *dict;
int ret;
hi = hashTypeInitIterator(o);
dict = dictCreate(&hashDictType);
/* Presize the dict to avoid rehashing */
dictExpand(dict,hashTypeLength(o));
while (hashTypeNext(hi) != C_ERR) {
sds key, value;
key = hashTypeCurrentObjectNewSds(hi,OBJ_HASH_KEY);
value = hashTypeCurrentObjectNewSds(hi,OBJ_HASH_VALUE);
ret = dictAdd(dict, key, value);
if (ret != DICT_OK) {
sdsfree(key); sdsfree(value); /* Needed for gcc ASAN */
hashTypeReleaseIterator(hi); /* Needed for gcc ASAN */
serverLogHexDump(LL_WARNING,"listpack with dup elements dump",
o->ptr,lpBytes(o->ptr));
serverPanic("Listpack corruption detected");
}
}
hashTypeReleaseIterator(hi);
zfree(o->ptr);
o->encoding = OBJ_ENCODING_HT;
o->ptr = dict;
} else {
serverPanic("Unknown hash encoding");
}
}
void hashTypeConvert(robj *o, int enc) {
if (o->encoding == OBJ_ENCODING_LISTPACK) {
hashTypeConvertListpack(o, enc);
} else if (o->encoding == OBJ_ENCODING_HT) {
serverPanic("Not implemented");
} else {
serverPanic("Unknown hash encoding");
}
}
/* This is a helper function for the COPY command.
* Duplicate a hash object, with the guarantee that the returned object
* has the same encoding as the original one.
*
* The resulting object always has refcount set to 1 */
robj *hashTypeDup(robj *o) {
robj *hobj;
hashTypeIterator *hi;
serverAssert(o->type == OBJ_HASH);
if(o->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *zl = o->ptr;
size_t sz = lpBytes(zl);
unsigned char *new_zl = zmalloc(sz);
memcpy(new_zl, zl, sz);
hobj = createObject(OBJ_HASH, new_zl);
hobj->encoding = OBJ_ENCODING_LISTPACK;
} else if(o->encoding == OBJ_ENCODING_HT){
dict *d = dictCreate(&hashDictType);
dictExpand(d, dictSize((const dict*)o->ptr));
hi = hashTypeInitIterator(o);
while (hashTypeNext(hi) != C_ERR) {
sds field, value;
sds newfield, newvalue;
/* Extract a field-value pair from an original hash object.*/
field = hashTypeCurrentFromHashTable(hi, OBJ_HASH_KEY);
value = hashTypeCurrentFromHashTable(hi, OBJ_HASH_VALUE);
newfield = sdsdup(field);
newvalue = sdsdup(value);
/* Add a field-value pair to a new hash object. */
dictAdd(d,newfield,newvalue);
}
hashTypeReleaseIterator(hi);
hobj = createObject(OBJ_HASH, d);
hobj->encoding = OBJ_ENCODING_HT;
} else {
serverPanic("Unknown hash encoding");
}
return hobj;
}
/* Create a new sds string from the listpack entry. */
sds hashSdsFromListpackEntry(listpackEntry *e) {
return e->sval ? sdsnewlen(e->sval, e->slen) : sdsfromlonglong(e->lval);
}
/* Reply with bulk string from the listpack entry. */
void hashReplyFromListpackEntry(client *c, listpackEntry *e) {
if (e->sval)
addReplyBulkCBuffer(c, e->sval, e->slen);
else
addReplyBulkLongLong(c, e->lval);
}
/* Return random element from a non empty hash.
* 'key' and 'val' will be set to hold the element.
* The memory in them is not to be freed or modified by the caller.
* 'val' can be NULL in which case it's not extracted. */
void hashTypeRandomElement(robj *hashobj, unsigned long hashsize, listpackEntry *key, listpackEntry *val) {
if (hashobj->encoding == OBJ_ENCODING_HT) {
dictEntry *de = dictGetFairRandomKey(hashobj->ptr);
sds s = dictGetKey(de);
key->sval = (unsigned char*)s;
key->slen = sdslen(s);
if (val) {
sds s = dictGetVal(de);
val->sval = (unsigned char*)s;
val->slen = sdslen(s);
}
} else if (hashobj->encoding == OBJ_ENCODING_LISTPACK) {
lpRandomPair(hashobj->ptr, hashsize, key, val);
} else {
serverPanic("Unknown hash encoding");
}
}
/*-----------------------------------------------------------------------------
* Hash type commands
*----------------------------------------------------------------------------*/
void hsetnxCommand(client *c) {
robj *o;
if ((o = hashTypeLookupWriteOrCreate(c,c->argv[1])) == NULL) return;
if (hashTypeExists(o, c->argv[2]->ptr)) {
addReply(c, shared.czero);
} else {
hashTypeTryConversion(o,c->argv,2,3);
hashTypeSet(o,c->argv[2]->ptr,c->argv[3]->ptr,HASH_SET_COPY);
addReply(c, shared.cone);
signalModifiedKey(c,c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_HASH,"hset",c->argv[1],c->db->id);
server.dirty++;
}
}
void hsetCommand(client *c) {
int i, created = 0;
robj *o;
if ((c->argc % 2) == 1) {
addReplyErrorArity(c);
return;
}
if ((o = hashTypeLookupWriteOrCreate(c,c->argv[1])) == NULL) return;
hashTypeTryConversion(o,c->argv,2,c->argc-1);
for (i = 2; i < c->argc; i += 2)
created += !hashTypeSet(o,c->argv[i]->ptr,c->argv[i+1]->ptr,HASH_SET_COPY);
/* HMSET (deprecated) and HSET return value is different. */
char *cmdname = c->argv[0]->ptr;
if (cmdname[1] == 's' || cmdname[1] == 'S') {
/* HSET */
addReplyLongLong(c, created);
} else {
/* HMSET */
addReply(c, shared.ok);
}
signalModifiedKey(c,c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_HASH,"hset",c->argv[1],c->db->id);
server.dirty += (c->argc - 2)/2;
}
void hincrbyCommand(client *c) {
long long value, incr, oldvalue;
robj *o;
sds new;
unsigned char *vstr;
unsigned int vlen;
if (getLongLongFromObjectOrReply(c,c->argv[3],&incr,NULL) != C_OK) return;
if ((o = hashTypeLookupWriteOrCreate(c,c->argv[1])) == NULL) return;
if (hashTypeGetValue(o,c->argv[2]->ptr,&vstr,&vlen,&value) == C_OK) {
if (vstr) {
if (string2ll((char*)vstr,vlen,&value) == 0) {
addReplyError(c,"hash value is not an integer");
return;
}
} /* Else hashTypeGetValue() already stored it into &value */
} else {
value = 0;
}
oldvalue = value;
if ((incr < 0 && oldvalue < 0 && incr < (LLONG_MIN-oldvalue)) ||
(incr > 0 && oldvalue > 0 && incr > (LLONG_MAX-oldvalue))) {
addReplyError(c,"increment or decrement would overflow");
return;
}
value += incr;
new = sdsfromlonglong(value);
hashTypeSet(o,c->argv[2]->ptr,new,HASH_SET_TAKE_VALUE);
addReplyLongLong(c,value);
signalModifiedKey(c,c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_HASH,"hincrby",c->argv[1],c->db->id);
server.dirty++;
}
void hincrbyfloatCommand(client *c) {
long double value, incr;
long long ll;
robj *o;
sds new;
unsigned char *vstr;
unsigned int vlen;
if (getLongDoubleFromObjectOrReply(c,c->argv[3],&incr,NULL) != C_OK) return;
if (isnan(incr) || isinf(incr)) {
addReplyError(c,"value is NaN or Infinity");
return;
}
if ((o = hashTypeLookupWriteOrCreate(c,c->argv[1])) == NULL) return;
if (hashTypeGetValue(o,c->argv[2]->ptr,&vstr,&vlen,&ll) == C_OK) {
if (vstr) {
if (string2ld((char*)vstr,vlen,&value) == 0) {
addReplyError(c,"hash value is not a float");
return;
}
} else {
value = (long double)ll;
}
} else {
value = 0;
}
value += incr;
if (isnan(value) || isinf(value)) {
addReplyError(c,"increment would produce NaN or Infinity");
return;
}
char buf[MAX_LONG_DOUBLE_CHARS];
int len = ld2string(buf,sizeof(buf),value,LD_STR_HUMAN);
new = sdsnewlen(buf,len);
hashTypeSet(o,c->argv[2]->ptr,new,HASH_SET_TAKE_VALUE);
addReplyBulkCBuffer(c,buf,len);
signalModifiedKey(c,c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_HASH,"hincrbyfloat",c->argv[1],c->db->id);
server.dirty++;
/* Always replicate HINCRBYFLOAT as an HSET command with the final value
* in order to make sure that differences in float precision or formatting
* will not create differences in replicas or after an AOF restart. */
robj *newobj;
newobj = createRawStringObject(buf,len);
rewriteClientCommandArgument(c,0,shared.hset);
rewriteClientCommandArgument(c,3,newobj);
decrRefCount(newobj);
}
static void addHashFieldToReply(client *c, robj *o, sds field) {
if (o == NULL) {
addReplyNull(c);
return;
}
unsigned char *vstr = NULL;
unsigned int vlen = UINT_MAX;
long long vll = LLONG_MAX;
if (hashTypeGetValue(o, field, &vstr, &vlen, &vll) == C_OK) {
if (vstr) {
addReplyBulkCBuffer(c, vstr, vlen);
} else {
addReplyBulkLongLong(c, vll);
}
} else {
addReplyNull(c);
}
}
void hgetCommand(client *c) {
robj *o;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.null[c->resp])) == NULL ||
checkType(c,o,OBJ_HASH)) return;
addHashFieldToReply(c, o, c->argv[2]->ptr);
}
void hmgetCommand(client *c) {
robj *o;
int i;
/* Don't abort when the key cannot be found. Non-existing keys are empty
* hashes, where HMGET should respond with a series of null bulks. */
o = lookupKeyRead(c->db, c->argv[1]);
if (checkType(c,o,OBJ_HASH)) return;
addReplyArrayLen(c, c->argc-2);
for (i = 2; i < c->argc; i++) {
addHashFieldToReply(c, o, c->argv[i]->ptr);
}
}
void hdelCommand(client *c) {
robj *o;
int j, deleted = 0, keyremoved = 0;
if ((o = lookupKeyWriteOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,o,OBJ_HASH)) return;
for (j = 2; j < c->argc; j++) {
if (hashTypeDelete(o,c->argv[j]->ptr)) {
deleted++;
if (hashTypeLength(o) == 0) {
dbDelete(c->db,c->argv[1]);
keyremoved = 1;
break;
}
}
}
if (deleted) {
signalModifiedKey(c,c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_HASH,"hdel",c->argv[1],c->db->id);
if (keyremoved)
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",c->argv[1],
c->db->id);
server.dirty += deleted;
}
addReplyLongLong(c,deleted);
}
void hlenCommand(client *c) {
robj *o;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,o,OBJ_HASH)) return;
addReplyLongLong(c,hashTypeLength(o));
}
void hstrlenCommand(client *c) {
robj *o;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,o,OBJ_HASH)) return;
addReplyLongLong(c,hashTypeGetValueLength(o,c->argv[2]->ptr));
}
static void addHashIteratorCursorToReply(client *c, hashTypeIterator *hi, int what) {
if (hi->encoding == OBJ_ENCODING_LISTPACK) {
unsigned char *vstr = NULL;
unsigned int vlen = UINT_MAX;
long long vll = LLONG_MAX;
hashTypeCurrentFromListpack(hi, what, &vstr, &vlen, &vll);
if (vstr)
addReplyBulkCBuffer(c, vstr, vlen);
else
addReplyBulkLongLong(c, vll);
} else if (hi->encoding == OBJ_ENCODING_HT) {
sds value = hashTypeCurrentFromHashTable(hi, what);
addReplyBulkCBuffer(c, value, sdslen(value));
} else {
serverPanic("Unknown hash encoding");
}
}
void genericHgetallCommand(client *c, int flags) {
robj *o;
hashTypeIterator *hi;
int length, count = 0;
robj *emptyResp = (flags & OBJ_HASH_KEY && flags & OBJ_HASH_VALUE) ?
shared.emptymap[c->resp] : shared.emptyarray;
if ((o = lookupKeyReadOrReply(c,c->argv[1],emptyResp))
== NULL || checkType(c,o,OBJ_HASH)) return;
/* We return a map if the user requested keys and values, like in the
* HGETALL case. Otherwise to use a flat array makes more sense. */
length = hashTypeLength(o);
if (flags & OBJ_HASH_KEY && flags & OBJ_HASH_VALUE) {
addReplyMapLen(c, length);
} else {
addReplyArrayLen(c, length);
}
hi = hashTypeInitIterator(o);
while (hashTypeNext(hi) != C_ERR) {
if (flags & OBJ_HASH_KEY) {
addHashIteratorCursorToReply(c, hi, OBJ_HASH_KEY);
count++;
}
if (flags & OBJ_HASH_VALUE) {
addHashIteratorCursorToReply(c, hi, OBJ_HASH_VALUE);
count++;
}
}
hashTypeReleaseIterator(hi);
/* Make sure we returned the right number of elements. */
if (flags & OBJ_HASH_KEY && flags & OBJ_HASH_VALUE) count /= 2;
serverAssert(count == length);
}
void hkeysCommand(client *c) {
genericHgetallCommand(c,OBJ_HASH_KEY);
}
void hvalsCommand(client *c) {
genericHgetallCommand(c,OBJ_HASH_VALUE);
}
void hgetallCommand(client *c) {
genericHgetallCommand(c,OBJ_HASH_KEY|OBJ_HASH_VALUE);
}
void hexistsCommand(client *c) {
robj *o;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,o,OBJ_HASH)) return;
addReply(c, hashTypeExists(o,c->argv[2]->ptr) ? shared.cone : shared.czero);
}
void hscanCommand(client *c) {
robj *o;
unsigned long long cursor;
if (parseScanCursorOrReply(c,c->argv[2],&cursor) == C_ERR) return;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.emptyscan)) == NULL ||
checkType(c,o,OBJ_HASH)) return;
scanGenericCommand(c,o,cursor);
}
static void hrandfieldReplyWithListpack(client *c, unsigned int count, listpackEntry *keys, listpackEntry *vals) {
for (unsigned long i = 0; i < count; i++) {
if (vals && c->resp > 2)
addReplyArrayLen(c,2);
if (keys[i].sval)
addReplyBulkCBuffer(c, keys[i].sval, keys[i].slen);
else
addReplyBulkLongLong(c, keys[i].lval);
if (vals) {
if (vals[i].sval)
addReplyBulkCBuffer(c, vals[i].sval, vals[i].slen);
else
addReplyBulkLongLong(c, vals[i].lval);
}
}
}
/* How many times bigger should be the hash compared to the requested size
* for us to not use the "remove elements" strategy? Read later in the
* implementation for more info. */
#define HRANDFIELD_SUB_STRATEGY_MUL 3
/* If client is trying to ask for a very large number of random elements,
* queuing may consume an unlimited amount of memory, so we want to limit
* the number of randoms per time. */
#define HRANDFIELD_RANDOM_SAMPLE_LIMIT 1000
void hrandfieldWithCountCommand(client *c, long l, int withvalues) {
unsigned long count, size;
int uniq = 1;
robj *hash;
if ((hash = lookupKeyReadOrReply(c,c->argv[1],shared.emptyarray))
== NULL || checkType(c,hash,OBJ_HASH)) return;
size = hashTypeLength(hash);
if(l >= 0) {
count = (unsigned long) l;
} else {
count = -l;
uniq = 0;
}
/* If count is zero, serve it ASAP to avoid special cases later. */
if (count == 0) {
addReply(c,shared.emptyarray);
return;
}
/* CASE 1: The count was negative, so the extraction method is just:
* "return N random elements" sampling the whole set every time.
* This case is trivial and can be served without auxiliary data
* structures. This case is the only one that also needs to return the
* elements in random order. */
if (!uniq || count == 1) {
if (withvalues && c->resp == 2)
addReplyArrayLen(c, count*2);
else
addReplyArrayLen(c, count);
if (hash->encoding == OBJ_ENCODING_HT) {
sds key, value;
while (count--) {
dictEntry *de = dictGetFairRandomKey(hash->ptr);
key = dictGetKey(de);
value = dictGetVal(de);
if (withvalues && c->resp > 2)
addReplyArrayLen(c,2);
addReplyBulkCBuffer(c, key, sdslen(key));
if (withvalues)
addReplyBulkCBuffer(c, value, sdslen(value));
if (c->flags & CLIENT_CLOSE_ASAP)
break;
}
} else if (hash->encoding == OBJ_ENCODING_LISTPACK) {
listpackEntry *keys, *vals = NULL;
unsigned long limit, sample_count;
limit = count > HRANDFIELD_RANDOM_SAMPLE_LIMIT ? HRANDFIELD_RANDOM_SAMPLE_LIMIT : count;
keys = zmalloc(sizeof(listpackEntry)*limit);
if (withvalues)
vals = zmalloc(sizeof(listpackEntry)*limit);
while (count) {
sample_count = count > limit ? limit : count;
count -= sample_count;
lpRandomPairs(hash->ptr, sample_count, keys, vals);
hrandfieldReplyWithListpack(c, sample_count, keys, vals);
if (c->flags & CLIENT_CLOSE_ASAP)
break;
}
zfree(keys);
zfree(vals);
}
return;
}
/* Initiate reply count, RESP3 responds with nested array, RESP2 with flat one. */
long reply_size = count < size ? count : size;
if (withvalues && c->resp == 2)
addReplyArrayLen(c, reply_size*2);
else
addReplyArrayLen(c, reply_size);
/* CASE 2:
* The number of requested elements is greater than the number of
* elements inside the hash: simply return the whole hash. */
if(count >= size) {
hashTypeIterator *hi = hashTypeInitIterator(hash);
while (hashTypeNext(hi) != C_ERR) {
if (withvalues && c->resp > 2)
addReplyArrayLen(c,2);
addHashIteratorCursorToReply(c, hi, OBJ_HASH_KEY);
if (withvalues)
addHashIteratorCursorToReply(c, hi, OBJ_HASH_VALUE);
}
hashTypeReleaseIterator(hi);
return;
}
/* CASE 2.5 listpack only. Sampling unique elements, in non-random order.
* Listpack encoded hashes are meant to be relatively small, so
* HRANDFIELD_SUB_STRATEGY_MUL isn't necessary and we rather not make
* copies of the entries. Instead, we emit them directly to the output
* buffer.
*
* And it is inefficient to repeatedly pick one random element from a
* listpack in CASE 4. So we use this instead. */
if (hash->encoding == OBJ_ENCODING_LISTPACK) {
listpackEntry *keys, *vals = NULL;
keys = zmalloc(sizeof(listpackEntry)*count);
if (withvalues)
vals = zmalloc(sizeof(listpackEntry)*count);
serverAssert(lpRandomPairsUnique(hash->ptr, count, keys, vals) == count);
hrandfieldReplyWithListpack(c, count, keys, vals);
zfree(keys);
zfree(vals);
return;
}
/* CASE 3:
* The number of elements inside the hash is not greater than
* HRANDFIELD_SUB_STRATEGY_MUL times the number of requested elements.
* In this case we create a hash from scratch with all the elements, and
* subtract random elements to reach the requested number of elements.
*
* This is done because if the number of requested elements is just
* a bit less than the number of elements in the hash, the natural approach
* used into CASE 4 is highly inefficient. */
if (count*HRANDFIELD_SUB_STRATEGY_MUL > size) {
/* Hashtable encoding (generic implementation) */
dict *d = dictCreate(&sdsReplyDictType);
dictExpand(d, size);
hashTypeIterator *hi = hashTypeInitIterator(hash);
/* Add all the elements into the temporary dictionary. */
while ((hashTypeNext(hi)) != C_ERR) {
int ret = DICT_ERR;
sds key, value = NULL;
key = hashTypeCurrentObjectNewSds(hi,OBJ_HASH_KEY);
if (withvalues)
value = hashTypeCurrentObjectNewSds(hi,OBJ_HASH_VALUE);
ret = dictAdd(d, key, value);
serverAssert(ret == DICT_OK);
}
serverAssert(dictSize(d) == size);
hashTypeReleaseIterator(hi);
/* Remove random elements to reach the right count. */
while (size > count) {
dictEntry *de;
de = dictGetFairRandomKey(d);
dictUnlink(d,dictGetKey(de));
sdsfree(dictGetKey(de));
sdsfree(dictGetVal(de));
dictFreeUnlinkedEntry(d,de);
size--;
}
/* Reply with what's in the dict and release memory */
dictIterator *di;
dictEntry *de;
di = dictGetIterator(d);
while ((de = dictNext(di)) != NULL) {
sds key = dictGetKey(de);
sds value = dictGetVal(de);
if (withvalues && c->resp > 2)
addReplyArrayLen(c,2);
addReplyBulkSds(c, key);
if (withvalues)
addReplyBulkSds(c, value);
}
dictReleaseIterator(di);
dictRelease(d);
}
/* CASE 4: We have a big hash compared to the requested number of elements.
* In this case we can simply get random elements from the hash and add
* to the temporary hash, trying to eventually get enough unique elements
* to reach the specified count. */
else {
/* Hashtable encoding (generic implementation) */
unsigned long added = 0;
listpackEntry key, value;
dict *d = dictCreate(&hashDictType);
dictExpand(d, count);
while(added < count) {
hashTypeRandomElement(hash, size, &key, withvalues? &value : NULL);
/* Try to add the object to the dictionary. If it already exists
* free it, otherwise increment the number of objects we have
* in the result dictionary. */
sds skey = hashSdsFromListpackEntry(&key);
if (dictAdd(d,skey,NULL) != DICT_OK) {
sdsfree(skey);
continue;
}
added++;
/* We can reply right away, so that we don't need to store the value in the dict. */
if (withvalues && c->resp > 2)
addReplyArrayLen(c,2);
hashReplyFromListpackEntry(c, &key);
if (withvalues)
hashReplyFromListpackEntry(c, &value);
}
/* Release memory */
dictRelease(d);
}
}
/* HRANDFIELD key [<count> [WITHVALUES]] */
void hrandfieldCommand(client *c) {
long l;
int withvalues = 0;
robj *hash;
listpackEntry ele;
if (c->argc >= 3) {
if (getRangeLongFromObjectOrReply(c,c->argv[2],-LONG_MAX,LONG_MAX,&l,NULL) != C_OK) return;
if (c->argc > 4 || (c->argc == 4 && strcasecmp(c->argv[3]->ptr,"withvalues"))) {
addReplyErrorObject(c,shared.syntaxerr);
return;
} else if (c->argc == 4) {
withvalues = 1;
if (l < -LONG_MAX/2 || l > LONG_MAX/2) {
addReplyError(c,"value is out of range");
return;
}
}
hrandfieldWithCountCommand(c, l, withvalues);
return;
}
/* Handle variant without <count> argument. Reply with simple bulk string */
if ((hash = lookupKeyReadOrReply(c,c->argv[1],shared.null[c->resp]))== NULL ||
checkType(c,hash,OBJ_HASH)) {
return;
}
hashTypeRandomElement(hash,hashTypeLength(hash),&ele,NULL);
hashReplyFromListpackEntry(c, &ele);
}