redis/src/networking.c

4606 lines
177 KiB
C

/*
* Copyright (c) 2009-Present, Redis Ltd.
* All rights reserved.
*
* Licensed under your choice of the Redis Source Available License 2.0
* (RSALv2) or the Server Side Public License v1 (SSPLv1).
*/
#include "server.h"
#include "atomicvar.h"
#include "cluster.h"
#include "script.h"
#include "fpconv_dtoa.h"
#include "fmtargs.h"
#include <sys/socket.h>
#include <sys/uio.h>
#include <math.h>
#include <ctype.h>
static void setProtocolError(const char *errstr, client *c);
static void pauseClientsByClient(mstime_t end, int isPauseClientAll);
int postponeClientRead(client *c);
char *getClientSockname(client *c);
int ProcessingEventsWhileBlocked = 0; /* See processEventsWhileBlocked(). */
/* Return the size consumed from the allocator, for the specified SDS string,
* including internal fragmentation. This function is used in order to compute
* the client output buffer size. */
size_t sdsZmallocSize(sds s) {
void *sh = sdsAllocPtr(s);
return zmalloc_size(sh);
}
/* Return the amount of memory used by the sds string at object->ptr
* for a string object. This includes internal fragmentation. */
size_t getStringObjectSdsUsedMemory(robj *o) {
serverAssertWithInfo(NULL,o,o->type == OBJ_STRING);
switch(o->encoding) {
case OBJ_ENCODING_RAW: return sdsZmallocSize(o->ptr);
case OBJ_ENCODING_EMBSTR: return zmalloc_size(o)-sizeof(robj);
default: return 0; /* Just integer encoding for now. */
}
}
/* Return the length of a string object.
* This does NOT includes internal fragmentation or sds unused space. */
size_t getStringObjectLen(robj *o) {
serverAssertWithInfo(NULL,o,o->type == OBJ_STRING);
switch(o->encoding) {
case OBJ_ENCODING_RAW: return sdslen(o->ptr);
case OBJ_ENCODING_EMBSTR: return sdslen(o->ptr);
default: return 0; /* Just integer encoding for now. */
}
}
/* Client.reply list dup and free methods. */
void *dupClientReplyValue(void *o) {
clientReplyBlock *old = o;
clientReplyBlock *buf = zmalloc(sizeof(clientReplyBlock) + old->size);
memcpy(buf, o, sizeof(clientReplyBlock) + old->size);
return buf;
}
void freeClientReplyValue(void *o) {
zfree(o);
}
/* This function links the client to the global linked list of clients.
* unlinkClient() does the opposite, among other things. */
void linkClient(client *c) {
listAddNodeTail(server.clients,c);
/* Note that we remember the linked list node where the client is stored,
* this way removing the client in unlinkClient() will not require
* a linear scan, but just a constant time operation. */
c->client_list_node = listLast(server.clients);
uint64_t id = htonu64(c->id);
raxInsert(server.clients_index,(unsigned char*)&id,sizeof(id),c,NULL);
}
/* Initialize client authentication state.
*/
static void clientSetDefaultAuth(client *c) {
/* If the default user does not require authentication, the user is
* directly authenticated. */
c->user = DefaultUser;
c->authenticated = (c->user->flags & USER_FLAG_NOPASS) &&
!(c->user->flags & USER_FLAG_DISABLED);
}
int authRequired(client *c) {
/* Check if the user is authenticated. This check is skipped in case
* the default user is flagged as "nopass" and is active. */
int auth_required = (!(DefaultUser->flags & USER_FLAG_NOPASS) ||
(DefaultUser->flags & USER_FLAG_DISABLED)) &&
!c->authenticated;
return auth_required;
}
client *createClient(connection *conn) {
client *c = zmalloc(sizeof(client));
/* passing NULL as conn it is possible to create a non connected client.
* This is useful since all the commands needs to be executed
* in the context of a client. When commands are executed in other
* contexts (for instance a Lua script) we need a non connected client. */
if (conn) {
connEnableTcpNoDelay(conn);
if (server.tcpkeepalive)
connKeepAlive(conn,server.tcpkeepalive);
connSetReadHandler(conn, readQueryFromClient);
connSetPrivateData(conn, c);
}
c->buf = zmalloc_usable(PROTO_REPLY_CHUNK_BYTES, &c->buf_usable_size);
selectDb(c,0);
uint64_t client_id;
atomicGetIncr(server.next_client_id, client_id, 1);
c->id = client_id;
#ifdef LOG_REQ_RES
reqresReset(c, 0);
c->resp = server.client_default_resp;
#else
c->resp = 2;
#endif
c->conn = conn;
c->name = NULL;
c->lib_name = NULL;
c->lib_ver = NULL;
c->bufpos = 0;
c->buf_peak = c->buf_usable_size;
c->buf_peak_last_reset_time = server.unixtime;
c->ref_repl_buf_node = NULL;
c->ref_block_pos = 0;
c->qb_pos = 0;
c->querybuf = sdsempty();
c->querybuf_peak = 0;
c->reqtype = 0;
c->argc = 0;
c->argv = NULL;
c->argv_len = 0;
c->argv_len_sum = 0;
c->original_argc = 0;
c->original_argv = NULL;
c->cmd = c->lastcmd = c->realcmd = NULL;
c->cur_script = NULL;
c->multibulklen = 0;
c->bulklen = -1;
c->sentlen = 0;
c->flags = 0;
c->slot = -1;
c->ctime = c->lastinteraction = server.unixtime;
c->duration = 0;
clientSetDefaultAuth(c);
c->replstate = REPL_STATE_NONE;
c->repl_start_cmd_stream_on_ack = 0;
c->reploff = 0;
c->read_reploff = 0;
c->repl_applied = 0;
c->repl_ack_off = 0;
c->repl_ack_time = 0;
c->repl_aof_off = 0;
c->repl_last_partial_write = 0;
c->slave_listening_port = 0;
c->slave_addr = NULL;
c->slave_capa = SLAVE_CAPA_NONE;
c->slave_req = SLAVE_REQ_NONE;
c->reply = listCreate();
c->deferred_reply_errors = NULL;
c->reply_bytes = 0;
c->obuf_soft_limit_reached_time = 0;
listSetFreeMethod(c->reply,freeClientReplyValue);
listSetDupMethod(c->reply,dupClientReplyValue);
initClientBlockingState(c);
c->woff = 0;
c->watched_keys = listCreate();
c->pubsub_channels = dictCreate(&objectKeyPointerValueDictType);
c->pubsub_patterns = dictCreate(&objectKeyPointerValueDictType);
c->pubsubshard_channels = dictCreate(&objectKeyPointerValueDictType);
c->peerid = NULL;
c->sockname = NULL;
c->client_list_node = NULL;
c->postponed_list_node = NULL;
c->pending_read_list_node = NULL;
c->client_tracking_redirection = 0;
c->client_tracking_prefixes = NULL;
c->last_memory_usage = 0;
c->last_memory_type = CLIENT_TYPE_NORMAL;
c->module_blocked_client = NULL;
c->module_auth_ctx = NULL;
c->auth_callback = NULL;
c->auth_callback_privdata = NULL;
c->auth_module = NULL;
listInitNode(&c->clients_pending_write_node, c);
c->mem_usage_bucket = NULL;
c->mem_usage_bucket_node = NULL;
if (conn) linkClient(c);
initClientMultiState(c);
return c;
}
void installClientWriteHandler(client *c) {
int ae_barrier = 0;
/* For the fsync=always policy, we want that a given FD is never
* served for reading and writing in the same event loop iteration,
* so that in the middle of receiving the query, and serving it
* to the client, we'll call beforeSleep() that will do the
* actual fsync of AOF to disk. the write barrier ensures that. */
if (server.aof_state == AOF_ON &&
server.aof_fsync == AOF_FSYNC_ALWAYS)
{
ae_barrier = 1;
}
if (connSetWriteHandlerWithBarrier(c->conn, sendReplyToClient, ae_barrier) == C_ERR) {
freeClientAsync(c);
}
}
/* This function puts the client in the queue of clients that should write
* their output buffers to the socket. Note that it does not *yet* install
* the write handler, to start clients are put in a queue of clients that need
* to write, so we try to do that before returning in the event loop (see the
* handleClientsWithPendingWrites() function).
* If we fail and there is more data to write, compared to what the socket
* buffers can hold, then we'll really install the handler. */
void putClientInPendingWriteQueue(client *c) {
/* Schedule the client to write the output buffers to the socket only
* if not already done and, for slaves, if the slave can actually receive
* writes at this stage. */
if (!(c->flags & CLIENT_PENDING_WRITE) &&
(c->replstate == REPL_STATE_NONE ||
(c->replstate == SLAVE_STATE_ONLINE && !c->repl_start_cmd_stream_on_ack)))
{
/* Here instead of installing the write handler, we just flag the
* client and put it into a list of clients that have something
* to write to the socket. This way before re-entering the event
* loop, we can try to directly write to the client sockets avoiding
* a system call. We'll only really install the write handler if
* we'll not be able to write the whole reply at once. */
c->flags |= CLIENT_PENDING_WRITE;
listLinkNodeHead(server.clients_pending_write, &c->clients_pending_write_node);
}
}
/* This function is called every time we are going to transmit new data
* to the client. The behavior is the following:
*
* If the client should receive new data (normal clients will) the function
* returns C_OK, and make sure to install the write handler in our event
* loop so that when the socket is writable new data gets written.
*
* If the client should not receive new data, because it is a fake client
* (used to load AOF in memory), a master or because the setup of the write
* handler failed, the function returns C_ERR.
*
* The function may return C_OK without actually installing the write
* event handler in the following cases:
*
* 1) The event handler should already be installed since the output buffer
* already contains something.
* 2) The client is a slave but not yet online, so we want to just accumulate
* writes in the buffer but not actually sending them yet.
*
* Typically gets called every time a reply is built, before adding more
* data to the clients output buffers. If the function returns C_ERR no
* data should be appended to the output buffers. */
int prepareClientToWrite(client *c) {
/* If it's the Lua client we always return ok without installing any
* handler since there is no socket at all. */
if (c->flags & (CLIENT_SCRIPT|CLIENT_MODULE)) return C_OK;
/* If CLIENT_CLOSE_ASAP flag is set, we need not write anything. */
if (c->flags & CLIENT_CLOSE_ASAP) return C_ERR;
/* CLIENT REPLY OFF / SKIP handling: don't send replies.
* CLIENT_PUSHING handling: disables the reply silencing flags. */
if ((c->flags & (CLIENT_REPLY_OFF|CLIENT_REPLY_SKIP)) &&
!(c->flags & CLIENT_PUSHING)) return C_ERR;
/* Masters don't receive replies, unless CLIENT_MASTER_FORCE_REPLY flag
* is set. */
if ((c->flags & CLIENT_MASTER) &&
!(c->flags & CLIENT_MASTER_FORCE_REPLY)) return C_ERR;
if (!c->conn) return C_ERR; /* Fake client for AOF loading. */
/* Schedule the client to write the output buffers to the socket, unless
* it should already be setup to do so (it has already pending data).
*
* If CLIENT_PENDING_READ is set, we're in an IO thread and should
* not put the client in pending write queue. Instead, it will be
* done by handleClientsWithPendingReadsUsingThreads() upon return.
*/
if (!clientHasPendingReplies(c) && io_threads_op == IO_THREADS_OP_IDLE)
putClientInPendingWriteQueue(c);
/* Authorize the caller to queue in the output buffer of this client. */
return C_OK;
}
/* -----------------------------------------------------------------------------
* Low level functions to add more data to output buffers.
* -------------------------------------------------------------------------- */
/* Attempts to add the reply to the static buffer in the client struct.
* Returns the length of data that is added to the reply buffer.
*
* Sanitizer suppression: client->buf_usable_size determined by
* zmalloc_usable_size() call. Writing beyond client->buf boundaries confuses
* sanitizer and generates a false positive out-of-bounds error */
REDIS_NO_SANITIZE("bounds")
size_t _addReplyToBuffer(client *c, const char *s, size_t len) {
size_t available = c->buf_usable_size - c->bufpos;
/* If there already are entries in the reply list, we cannot
* add anything more to the static buffer. */
if (listLength(c->reply) > 0) return 0;
size_t reply_len = len > available ? available : len;
memcpy(c->buf+c->bufpos,s,reply_len);
c->bufpos+=reply_len;
/* We update the buffer peak after appending the reply to the buffer */
if(c->buf_peak < (size_t)c->bufpos)
c->buf_peak = (size_t)c->bufpos;
return reply_len;
}
/* Adds the reply to the reply linked list.
* Note: some edits to this function need to be relayed to AddReplyFromClient. */
void _addReplyProtoToList(client *c, list *reply_list, const char *s, size_t len) {
listNode *ln = listLast(reply_list);
clientReplyBlock *tail = ln? listNodeValue(ln): NULL;
/* Note that 'tail' may be NULL even if we have a tail node, because when
* addReplyDeferredLen() is used, it sets a dummy node to NULL just
* to fill it later, when the size of the bulk length is set. */
/* Append to tail string when possible. */
if (tail) {
/* Copy the part we can fit into the tail, and leave the rest for a
* new node */
size_t avail = tail->size - tail->used;
size_t copy = avail >= len? len: avail;
memcpy(tail->buf + tail->used, s, copy);
tail->used += copy;
s += copy;
len -= copy;
}
if (len) {
/* Create a new node, make sure it is allocated to at
* least PROTO_REPLY_CHUNK_BYTES */
size_t usable_size;
size_t size = len < PROTO_REPLY_CHUNK_BYTES? PROTO_REPLY_CHUNK_BYTES: len;
tail = zmalloc_usable(size + sizeof(clientReplyBlock), &usable_size);
/* take over the allocation's internal fragmentation */
tail->size = usable_size - sizeof(clientReplyBlock);
tail->used = len;
memcpy(tail->buf, s, len);
listAddNodeTail(reply_list, tail);
c->reply_bytes += tail->size;
closeClientOnOutputBufferLimitReached(c, 1);
}
}
/* The subscribe / unsubscribe command family has a push as a reply,
* or in other words, it responds with a push (or several of them
* depending on how many arguments it got), and has no reply. */
int cmdHasPushAsReply(struct redisCommand *cmd) {
if (!cmd) return 0;
return cmd->proc == subscribeCommand || cmd->proc == unsubscribeCommand ||
cmd->proc == psubscribeCommand || cmd->proc == punsubscribeCommand ||
cmd->proc == ssubscribeCommand || cmd->proc == sunsubscribeCommand;
}
void _addReplyToBufferOrList(client *c, const char *s, size_t len) {
if (c->flags & CLIENT_CLOSE_AFTER_REPLY) return;
/* Replicas should normally not cause any writes to the reply buffer. In case a rogue replica sent a command on the
* replication link that caused a reply to be generated we'll simply disconnect it.
* Note this is the simplest way to check a command added a response. Replication links are used to write data but
* not for responses, so we should normally never get here on a replica client. */
if (getClientType(c) == CLIENT_TYPE_SLAVE) {
sds cmdname = c->lastcmd ? c->lastcmd->fullname : NULL;
logInvalidUseAndFreeClientAsync(c, "Replica generated a reply to command '%s'",
cmdname ? cmdname : "<unknown>");
return;
}
/* We call it here because this function may affect the reply
* buffer offset (see function comment) */
reqresSaveClientReplyOffset(c);
/* If we're processing a push message into the current client (i.e. executing PUBLISH
* to a channel which we are subscribed to, then we wanna postpone that message to be added
* after the command's reply (specifically important during multi-exec). the exception is
* the SUBSCRIBE command family, which (currently) have a push message instead of a proper reply.
* The check for executing_client also avoids affecting push messages that are part of eviction.
* Check CLIENT_PUSHING first to avoid race conditions, as it's absent in module's fake client. */
if ((c->flags & CLIENT_PUSHING) && c == server.current_client &&
server.executing_client && !cmdHasPushAsReply(server.executing_client->cmd))
{
_addReplyProtoToList(c,server.pending_push_messages,s,len);
return;
}
size_t reply_len = _addReplyToBuffer(c,s,len);
if (len > reply_len) _addReplyProtoToList(c,c->reply,s+reply_len,len-reply_len);
}
/* -----------------------------------------------------------------------------
* Higher level functions to queue data on the client output buffer.
* The following functions are the ones that commands implementations will call.
* -------------------------------------------------------------------------- */
/* Add the object 'obj' string representation to the client output buffer. */
void addReply(client *c, robj *obj) {
if (prepareClientToWrite(c) != C_OK) return;
if (sdsEncodedObject(obj)) {
_addReplyToBufferOrList(c,obj->ptr,sdslen(obj->ptr));
} else if (obj->encoding == OBJ_ENCODING_INT) {
/* For integer encoded strings we just convert it into a string
* using our optimized function, and attach the resulting string
* to the output buffer. */
char buf[32];
size_t len = ll2string(buf,sizeof(buf),(long)obj->ptr);
_addReplyToBufferOrList(c,buf,len);
} else {
serverPanic("Wrong obj->encoding in addReply()");
}
}
/* Add the SDS 's' string to the client output buffer, as a side effect
* the SDS string is freed. */
void addReplySds(client *c, sds s) {
if (prepareClientToWrite(c) != C_OK) {
/* The caller expects the sds to be free'd. */
sdsfree(s);
return;
}
_addReplyToBufferOrList(c,s,sdslen(s));
sdsfree(s);
}
/* This low level function just adds whatever protocol you send it to the
* client buffer, trying the static buffer initially, and using the string
* of objects if not possible.
*
* It is efficient because does not create an SDS object nor an Redis object
* if not needed. The object will only be created by calling
* _addReplyProtoToList() if we fail to extend the existing tail object
* in the list of objects. */
void addReplyProto(client *c, const char *s, size_t len) {
if (prepareClientToWrite(c) != C_OK) return;
_addReplyToBufferOrList(c,s,len);
}
/* Low level function called by the addReplyError...() functions.
* It emits the protocol for a Redis error, in the form:
*
* -ERRORCODE Error Message<CR><LF>
*
* If the error code is already passed in the string 's', the error
* code provided is used, otherwise the string "-ERR " for the generic
* error code is automatically added.
* Note that 's' must NOT end with \r\n. */
void addReplyErrorLength(client *c, const char *s, size_t len) {
/* If the string already starts with "-..." then the error code
* is provided by the caller. Otherwise we use "-ERR". */
if (!len || s[0] != '-') addReplyProto(c,"-ERR ",5);
addReplyProto(c,s,len);
addReplyProto(c,"\r\n",2);
}
/* Do some actions after an error reply was sent (Log if needed, updates stats, etc.)
* Possible flags:
* * ERR_REPLY_FLAG_NO_STATS_UPDATE - indicate not to update any error stats. */
void afterErrorReply(client *c, const char *s, size_t len, int flags) {
/* Module clients fall into two categories:
* Calls to RM_Call, in which case the error isn't being returned to a client, so should not be counted.
* Module thread safe context calls to RM_ReplyWithError, which will be added to a real client by the main thread later. */
if (c->flags & CLIENT_MODULE) {
if (!c->deferred_reply_errors) {
c->deferred_reply_errors = listCreate();
listSetFreeMethod(c->deferred_reply_errors, (void (*)(void*))sdsfree);
}
listAddNodeTail(c->deferred_reply_errors, sdsnewlen(s, len));
return;
}
if (!(flags & ERR_REPLY_FLAG_NO_STATS_UPDATE)) {
/* Increment the global error counter */
server.stat_total_error_replies++;
/* Increment the error stats
* If the string already starts with "-..." then the error prefix
* is provided by the caller ( we limit the search to 32 chars). Otherwise we use "-ERR". */
if (s[0] != '-') {
incrementErrorCount("ERR", 3);
} else {
char *spaceloc = memchr(s, ' ', len < 32 ? len : 32);
if (spaceloc) {
const size_t errEndPos = (size_t)(spaceloc - s);
incrementErrorCount(s+1, errEndPos-1);
} else {
/* Fallback to ERR if we can't retrieve the error prefix */
incrementErrorCount("ERR", 3);
}
}
} else {
/* stat_total_error_replies will not be updated, which means that
* the cmd stats will not be updated as well, we still want this command
* to be counted as failed so we update it here. We update c->realcmd in
* case c->cmd was changed (like in GEOADD). */
c->realcmd->failed_calls++;
}
/* Sometimes it could be normal that a slave replies to a master with
* an error and this function gets called. Actually the error will never
* be sent because addReply*() against master clients has no effect...
* A notable example is:
*
* EVAL 'redis.call("incr",KEYS[1]); redis.call("nonexisting")' 1 x
*
* Where the master must propagate the first change even if the second
* will produce an error. However it is useful to log such events since
* they are rare and may hint at errors in a script or a bug in Redis. */
int ctype = getClientType(c);
if (ctype == CLIENT_TYPE_MASTER || ctype == CLIENT_TYPE_SLAVE || c->id == CLIENT_ID_AOF) {
char *to, *from;
if (c->id == CLIENT_ID_AOF) {
to = "AOF-loading-client";
from = "server";
} else if (ctype == CLIENT_TYPE_MASTER) {
to = "master";
from = "replica";
} else {
to = "replica";
from = "master";
}
if (len > 4096) len = 4096;
sds cmdname = c->lastcmd ? c->lastcmd->fullname : NULL;
serverLog(LL_WARNING,"== CRITICAL == This %s is sending an error "
"to its %s: '%.*s' after processing the command "
"'%s'", from, to, (int)len, s, cmdname ? cmdname : "<unknown>");
if (ctype == CLIENT_TYPE_MASTER && server.repl_backlog &&
server.repl_backlog->histlen > 0)
{
showLatestBacklog();
}
server.stat_unexpected_error_replies++;
/* Based off the propagation error behavior, check if we need to panic here. There
* are currently two checked cases:
* * If this command was from our master and we are not a writable replica.
* * We are reading from an AOF file. */
int panic_in_replicas = (ctype == CLIENT_TYPE_MASTER && server.repl_slave_ro)
&& (server.propagation_error_behavior == PROPAGATION_ERR_BEHAVIOR_PANIC ||
server.propagation_error_behavior == PROPAGATION_ERR_BEHAVIOR_PANIC_ON_REPLICAS);
int panic_in_aof = c->id == CLIENT_ID_AOF
&& server.propagation_error_behavior == PROPAGATION_ERR_BEHAVIOR_PANIC;
if (panic_in_replicas || panic_in_aof) {
serverPanic("This %s panicked sending an error to its %s"
" after processing the command '%s'",
from, to, cmdname ? cmdname : "<unknown>");
}
}
}
/* The 'err' object is expected to start with -ERRORCODE and end with \r\n.
* Unlike addReplyErrorSds and others alike which rely on addReplyErrorLength. */
void addReplyErrorObject(client *c, robj *err) {
addReply(c, err);
afterErrorReply(c, err->ptr, sdslen(err->ptr)-2, 0); /* Ignore trailing \r\n */
}
/* Sends either a reply or an error reply by checking the first char.
* If the first char is '-' the reply is considered an error.
* In any case the given reply is sent, if the reply is also recognize
* as an error we also perform some post reply operations such as
* logging and stats update. */
void addReplyOrErrorObject(client *c, robj *reply) {
serverAssert(sdsEncodedObject(reply));
sds rep = reply->ptr;
if (sdslen(rep) > 1 && rep[0] == '-') {
addReplyErrorObject(c, reply);
} else {
addReply(c, reply);
}
}
/* See addReplyErrorLength for expectations from the input string. */
void addReplyError(client *c, const char *err) {
addReplyErrorLength(c,err,strlen(err));
afterErrorReply(c,err,strlen(err),0);
}
/* Add error reply to the given client.
* Supported flags:
* * ERR_REPLY_FLAG_NO_STATS_UPDATE - indicate not to perform any error stats updates */
void addReplyErrorSdsEx(client *c, sds err, int flags) {
addReplyErrorLength(c,err,sdslen(err));
afterErrorReply(c,err,sdslen(err),flags);
sdsfree(err);
}
/* See addReplyErrorLength for expectations from the input string. */
/* As a side effect the SDS string is freed. */
void addReplyErrorSds(client *c, sds err) {
addReplyErrorSdsEx(c, err, 0);
}
/* See addReplyErrorLength for expectations from the input string. */
/* As a side effect the SDS string is freed. */
void addReplyErrorSdsSafe(client *c, sds err) {
err = sdsmapchars(err, "\r\n", " ", 2);
addReplyErrorSdsEx(c, err, 0);
}
/* Internal function used by addReplyErrorFormat, addReplyErrorFormatEx and RM_ReplyWithErrorFormat.
* Refer to afterErrorReply for more information about the flags. */
void addReplyErrorFormatInternal(client *c, int flags, const char *fmt, va_list ap) {
va_list cpy;
va_copy(cpy,ap);
sds s = sdscatvprintf(sdsempty(),fmt,cpy);
va_end(cpy);
/* Trim any newlines at the end (ones will be added by addReplyErrorLength) */
s = sdstrim(s, "\r\n");
/* Make sure there are no newlines in the middle of the string, otherwise
* invalid protocol is emitted. */
s = sdsmapchars(s, "\r\n", " ", 2);
addReplyErrorLength(c,s,sdslen(s));
afterErrorReply(c,s,sdslen(s),flags);
sdsfree(s);
}
void addReplyErrorFormatEx(client *c, int flags, const char *fmt, ...) {
va_list ap;
va_start(ap,fmt);
addReplyErrorFormatInternal(c, flags, fmt, ap);
va_end(ap);
}
/* See addReplyErrorLength for expectations from the formatted string.
* The formatted string is safe to contain \r and \n anywhere. */
void addReplyErrorFormat(client *c, const char *fmt, ...) {
va_list ap;
va_start(ap,fmt);
addReplyErrorFormatInternal(c, 0, fmt, ap);
va_end(ap);
}
void addReplyErrorArity(client *c) {
addReplyErrorFormat(c, "wrong number of arguments for '%s' command",
c->cmd->fullname);
}
void addReplyErrorExpireTime(client *c) {
addReplyErrorFormat(c, "invalid expire time in '%s' command",
c->cmd->fullname);
}
void addReplyStatusLength(client *c, const char *s, size_t len) {
addReplyProto(c,"+",1);
addReplyProto(c,s,len);
addReplyProto(c,"\r\n",2);
}
void addReplyStatus(client *c, const char *status) {
addReplyStatusLength(c,status,strlen(status));
}
void addReplyStatusFormat(client *c, const char *fmt, ...) {
va_list ap;
va_start(ap,fmt);
sds s = sdscatvprintf(sdsempty(),fmt,ap);
va_end(ap);
addReplyStatusLength(c,s,sdslen(s));
sdsfree(s);
}
/* Sometimes we are forced to create a new reply node, and we can't append to
* the previous one, when that happens, we wanna try to trim the unused space
* at the end of the last reply node which we won't use anymore. */
void trimReplyUnusedTailSpace(client *c) {
listNode *ln = listLast(c->reply);
clientReplyBlock *tail = ln? listNodeValue(ln): NULL;
/* Note that 'tail' may be NULL even if we have a tail node, because when
* addReplyDeferredLen() is used */
if (!tail) return;
/* We only try to trim the space is relatively high (more than a 1/4 of the
* allocation), otherwise there's a high chance realloc will NOP.
* Also, to avoid large memmove which happens as part of realloc, we only do
* that if the used part is small. */
if (tail->size - tail->used > tail->size / 4 &&
tail->used < PROTO_REPLY_CHUNK_BYTES)
{
size_t usable_size;
size_t old_size = tail->size;
tail = zrealloc_usable(tail, tail->used + sizeof(clientReplyBlock), &usable_size);
/* take over the allocation's internal fragmentation (at least for
* memory usage tracking) */
tail->size = usable_size - sizeof(clientReplyBlock);
c->reply_bytes = c->reply_bytes + tail->size - old_size;
listNodeValue(ln) = tail;
}
}
/* Adds an empty object to the reply list that will contain the multi bulk
* length, which is not known when this function is called. */
void *addReplyDeferredLen(client *c) {
/* Note that we install the write event here even if the object is not
* ready to be sent, since we are sure that before returning to the
* event loop setDeferredAggregateLen() will be called. */
if (prepareClientToWrite(c) != C_OK) return NULL;
/* Replicas should normally not cause any writes to the reply buffer. In case a rogue replica sent a command on the
* replication link that caused a reply to be generated we'll simply disconnect it.
* Note this is the simplest way to check a command added a response. Replication links are used to write data but
* not for responses, so we should normally never get here on a replica client. */
if (getClientType(c) == CLIENT_TYPE_SLAVE) {
sds cmdname = c->lastcmd ? c->lastcmd->fullname : NULL;
logInvalidUseAndFreeClientAsync(c, "Replica generated a reply to command '%s'",
cmdname ? cmdname : "<unknown>");
return NULL;
}
/* We call it here because this function conceptually affects the reply
* buffer offset (see function comment) */
reqresSaveClientReplyOffset(c);
trimReplyUnusedTailSpace(c);
listAddNodeTail(c->reply,NULL); /* NULL is our placeholder. */
return listLast(c->reply);
}
void setDeferredReply(client *c, void *node, const char *s, size_t length) {
listNode *ln = (listNode*)node;
clientReplyBlock *next, *prev;
/* Abort when *node is NULL: when the client should not accept writes
* we return NULL in addReplyDeferredLen() */
if (node == NULL) return;
serverAssert(!listNodeValue(ln));
/* Normally we fill this dummy NULL node, added by addReplyDeferredLen(),
* with a new buffer structure containing the protocol needed to specify
* the length of the array following. However sometimes there might be room
* in the previous/next node so we can instead remove this NULL node, and
* suffix/prefix our data in the node immediately before/after it, in order
* to save a write(2) syscall later. Conditions needed to do it:
*
* - The prev node is non-NULL and has space in it or
* - The next node is non-NULL,
* - It has enough room already allocated
* - And not too large (avoid large memmove) */
if (ln->prev != NULL && (prev = listNodeValue(ln->prev)) &&
prev->size - prev->used > 0)
{
size_t len_to_copy = prev->size - prev->used;
if (len_to_copy > length)
len_to_copy = length;
memcpy(prev->buf + prev->used, s, len_to_copy);
prev->used += len_to_copy;
length -= len_to_copy;
if (length == 0) {
listDelNode(c->reply, ln);
return;
}
s += len_to_copy;
}
if (ln->next != NULL && (next = listNodeValue(ln->next)) &&
next->size - next->used >= length &&
next->used < PROTO_REPLY_CHUNK_BYTES * 4)
{
memmove(next->buf + length, next->buf, next->used);
memcpy(next->buf, s, length);
next->used += length;
listDelNode(c->reply,ln);
} else {
/* Create a new node */
size_t usable_size;
clientReplyBlock *buf = zmalloc_usable(length + sizeof(clientReplyBlock), &usable_size);
/* Take over the allocation's internal fragmentation */
buf->size = usable_size - sizeof(clientReplyBlock);
buf->used = length;
memcpy(buf->buf, s, length);
listNodeValue(ln) = buf;
c->reply_bytes += buf->size;
closeClientOnOutputBufferLimitReached(c, 1);
}
}
/* Populate the length object and try gluing it to the next chunk. */
void setDeferredAggregateLen(client *c, void *node, long length, char prefix) {
serverAssert(length >= 0);
/* Abort when *node is NULL: when the client should not accept writes
* we return NULL in addReplyDeferredLen() */
if (node == NULL) return;
/* Things like *2\r\n, %3\r\n or ~4\r\n are emitted very often by the protocol
* so we have a few shared objects to use if the integer is small
* like it is most of the times. */
const size_t hdr_len = OBJ_SHARED_HDR_STRLEN(length);
const int opt_hdr = length < OBJ_SHARED_BULKHDR_LEN;
if (prefix == '*' && opt_hdr) {
setDeferredReply(c, node, shared.mbulkhdr[length]->ptr, hdr_len);
return;
}
if (prefix == '%' && opt_hdr) {
setDeferredReply(c, node, shared.maphdr[length]->ptr, hdr_len);
return;
}
if (prefix == '~' && opt_hdr) {
setDeferredReply(c, node, shared.sethdr[length]->ptr, hdr_len);
return;
}
char lenstr[128];
size_t lenstr_len = snprintf(lenstr, sizeof(lenstr), "%c%ld\r\n", prefix, length);
setDeferredReply(c, node, lenstr, lenstr_len);
}
void setDeferredArrayLen(client *c, void *node, long length) {
setDeferredAggregateLen(c,node,length,'*');
}
void setDeferredMapLen(client *c, void *node, long length) {
int prefix = c->resp == 2 ? '*' : '%';
if (c->resp == 2) length *= 2;
setDeferredAggregateLen(c,node,length,prefix);
}
void setDeferredSetLen(client *c, void *node, long length) {
int prefix = c->resp == 2 ? '*' : '~';
setDeferredAggregateLen(c,node,length,prefix);
}
void setDeferredAttributeLen(client *c, void *node, long length) {
serverAssert(c->resp >= 3);
setDeferredAggregateLen(c,node,length,'|');
}
void setDeferredPushLen(client *c, void *node, long length) {
serverAssert(c->resp >= 3);
setDeferredAggregateLen(c,node,length,'>');
}
/* Add a double as a bulk reply */
void addReplyDouble(client *c, double d) {
if (c->resp == 3) {
char dbuf[MAX_D2STRING_CHARS+3];
dbuf[0] = ',';
const int dlen = d2string(dbuf+1,sizeof(dbuf)-1,d);
dbuf[dlen+1] = '\r';
dbuf[dlen+2] = '\n';
dbuf[dlen+3] = '\0';
addReplyProto(c,dbuf,dlen+3);
} else {
char dbuf[MAX_LONG_DOUBLE_CHARS+32];
/* In order to prepend the string length before the formatted number,
* but still avoid an extra memcpy of the whole number, we reserve space
* for maximum header `$0000\r\n`, print double, add the resp header in
* front of it, and then send the buffer with the right `start` offset. */
const int dlen = d2string(dbuf+7,sizeof(dbuf)-7,d);
int digits = digits10(dlen);
int start = 4 - digits;
serverAssert(start >= 0);
dbuf[start] = '$';
/* Convert `dlen` to string, putting it's digits after '$' and before the
* formatted double string. */
for(int i = digits, val = dlen; val && i > 0 ; --i, val /= 10) {
dbuf[start + i] = "0123456789"[val % 10];
}
dbuf[5] = '\r';
dbuf[6] = '\n';
dbuf[dlen+7] = '\r';
dbuf[dlen+8] = '\n';
dbuf[dlen+9] = '\0';
addReplyProto(c,dbuf+start,dlen+9-start);
}
}
void addReplyBigNum(client *c, const char* num, size_t len) {
if (c->resp == 2) {
addReplyBulkCBuffer(c, num, len);
} else {
addReplyProto(c,"(",1);
addReplyProto(c,num,len);
addReplyProto(c,"\r\n",2);
}
}
/* Add a long double as a bulk reply, but uses a human readable formatting
* of the double instead of exposing the crude behavior of doubles to the
* dear user. */
void addReplyHumanLongDouble(client *c, long double d) {
if (c->resp == 2) {
robj *o = createStringObjectFromLongDouble(d,1);
addReplyBulk(c,o);
decrRefCount(o);
} else {
char buf[MAX_LONG_DOUBLE_CHARS];
int len = ld2string(buf,sizeof(buf),d,LD_STR_HUMAN);
addReplyProto(c,",",1);
addReplyProto(c,buf,len);
addReplyProto(c,"\r\n",2);
}
}
/* Add a long long as integer reply or bulk len / multi bulk count.
* Basically this is used to output <prefix><long long><crlf>. */
void addReplyLongLongWithPrefix(client *c, long long ll, char prefix) {
char buf[128];
int len;
/* Things like $3\r\n or *2\r\n are emitted very often by the protocol
* so we have a few shared objects to use if the integer is small
* like it is most of the times. */
const int opt_hdr = ll < OBJ_SHARED_BULKHDR_LEN && ll >= 0;
const size_t hdr_len = OBJ_SHARED_HDR_STRLEN(ll);
if (prefix == '*' && opt_hdr) {
addReplyProto(c,shared.mbulkhdr[ll]->ptr,hdr_len);
return;
} else if (prefix == '$' && opt_hdr) {
addReplyProto(c,shared.bulkhdr[ll]->ptr,hdr_len);
return;
} else if (prefix == '%' && opt_hdr) {
addReplyProto(c,shared.maphdr[ll]->ptr,hdr_len);
return;
} else if (prefix == '~' && opt_hdr) {
addReplyProto(c,shared.sethdr[ll]->ptr,hdr_len);
return;
}
buf[0] = prefix;
len = ll2string(buf+1,sizeof(buf)-1,ll);
buf[len+1] = '\r';
buf[len+2] = '\n';
addReplyProto(c,buf,len+3);
}
void addReplyLongLong(client *c, long long ll) {
if (ll == 0)
addReply(c,shared.czero);
else if (ll == 1)
addReply(c,shared.cone);
else
addReplyLongLongWithPrefix(c,ll,':');
}
void addReplyAggregateLen(client *c, long length, int prefix) {
serverAssert(length >= 0);
addReplyLongLongWithPrefix(c,length,prefix);
}
void addReplyArrayLen(client *c, long length) {
addReplyAggregateLen(c,length,'*');
}
void addReplyMapLen(client *c, long length) {
int prefix = c->resp == 2 ? '*' : '%';
if (c->resp == 2) length *= 2;
addReplyAggregateLen(c,length,prefix);
}
void addReplySetLen(client *c, long length) {
int prefix = c->resp == 2 ? '*' : '~';
addReplyAggregateLen(c,length,prefix);
}
void addReplyAttributeLen(client *c, long length) {
serverAssert(c->resp >= 3);
addReplyAggregateLen(c,length,'|');
}
void addReplyPushLen(client *c, long length) {
serverAssert(c->resp >= 3);
serverAssertWithInfo(c, NULL, c->flags & CLIENT_PUSHING);
addReplyAggregateLen(c,length,'>');
}
void addReplyNull(client *c) {
if (c->resp == 2) {
addReplyProto(c,"$-1\r\n",5);
} else {
addReplyProto(c,"_\r\n",3);
}
}
void addReplyBool(client *c, int b) {
if (c->resp == 2) {
addReply(c, b ? shared.cone : shared.czero);
} else {
addReplyProto(c, b ? "#t\r\n" : "#f\r\n",4);
}
}
/* A null array is a concept that no longer exists in RESP3. However
* RESP2 had it, so API-wise we have this call, that will emit the correct
* RESP2 protocol, however for RESP3 the reply will always be just the
* Null type "_\r\n". */
void addReplyNullArray(client *c) {
if (c->resp == 2) {
addReplyProto(c,"*-1\r\n",5);
} else {
addReplyProto(c,"_\r\n",3);
}
}
/* Create the length prefix of a bulk reply, example: $2234 */
void addReplyBulkLen(client *c, robj *obj) {
size_t len = stringObjectLen(obj);
addReplyLongLongWithPrefix(c,len,'$');
}
/* Add a Redis Object as a bulk reply */
void addReplyBulk(client *c, robj *obj) {
addReplyBulkLen(c,obj);
addReply(c,obj);
addReplyProto(c,"\r\n",2);
}
/* Add a C buffer as bulk reply */
void addReplyBulkCBuffer(client *c, const void *p, size_t len) {
addReplyLongLongWithPrefix(c,len,'$');
addReplyProto(c,p,len);
addReplyProto(c,"\r\n",2);
}
/* Add sds to reply (takes ownership of sds and frees it) */
void addReplyBulkSds(client *c, sds s) {
addReplyLongLongWithPrefix(c,sdslen(s),'$');
addReplySds(c,s);
addReplyProto(c,"\r\n",2);
}
/* Set sds to a deferred reply (for symmetry with addReplyBulkSds it also frees the sds) */
void setDeferredReplyBulkSds(client *c, void *node, sds s) {
sds reply = sdscatprintf(sdsempty(), "$%d\r\n%s\r\n", (unsigned)sdslen(s), s);
setDeferredReply(c, node, reply, sdslen(reply));
sdsfree(reply);
sdsfree(s);
}
/* Add a C null term string as bulk reply */
void addReplyBulkCString(client *c, const char *s) {
if (s == NULL) {
addReplyNull(c);
} else {
addReplyBulkCBuffer(c,s,strlen(s));
}
}
/* Add a long long as a bulk reply */
void addReplyBulkLongLong(client *c, long long ll) {
char buf[64];
int len;
len = ll2string(buf,64,ll);
addReplyBulkCBuffer(c,buf,len);
}
/* Reply with a verbatim type having the specified extension.
*
* The 'ext' is the "extension" of the file, actually just a three
* character type that describes the format of the verbatim string.
* For instance "txt" means it should be interpreted as a text only
* file by the receiver, "md " as markdown, and so forth. Only the
* three first characters of the extension are used, and if the
* provided one is shorter than that, the remaining is filled with
* spaces. */
void addReplyVerbatim(client *c, const char *s, size_t len, const char *ext) {
if (c->resp == 2) {
addReplyBulkCBuffer(c,s,len);
} else {
char buf[32];
size_t preflen = snprintf(buf,sizeof(buf),"=%zu\r\nxxx:",len+4);
char *p = buf+preflen-4;
for (int i = 0; i < 3; i++) {
if (*ext == '\0') {
p[i] = ' ';
} else {
p[i] = *ext++;
}
}
addReplyProto(c,buf,preflen);
addReplyProto(c,s,len);
addReplyProto(c,"\r\n",2);
}
}
/* This function is similar to the addReplyHelp function but adds the
* ability to pass in two arrays of strings. Some commands have
* some additional subcommands based on the specific feature implementation
* Redis is compiled with (currently just clustering). This function allows
* to pass is the common subcommands in `help` and any implementation
* specific subcommands in `extended_help`.
*/
void addExtendedReplyHelp(client *c, const char **help, const char **extended_help) {
sds cmd = sdsnew((char*) c->argv[0]->ptr);
void *blenp = addReplyDeferredLen(c);
int blen = 0;
int idx = 0;
sdstoupper(cmd);
addReplyStatusFormat(c,
"%s <subcommand> [<arg> [value] [opt] ...]. Subcommands are:",cmd);
sdsfree(cmd);
while (help[blen]) addReplyStatus(c,help[blen++]);
if (extended_help) {
while (extended_help[idx]) addReplyStatus(c,extended_help[idx++]);
}
blen += idx;
addReplyStatus(c,"HELP");
addReplyStatus(c," Print this help.");
blen += 1; /* Account for the header. */
blen += 2; /* Account for the footer. */
setDeferredArrayLen(c,blenp,blen);
}
/* Add an array of C strings as status replies with a heading.
* This function is typically invoked by commands that support
* subcommands in response to the 'help' subcommand. The help array
* is terminated by NULL sentinel. */
void addReplyHelp(client *c, const char **help) {
addExtendedReplyHelp(c, help, NULL);
}
/* Add a suggestive error reply.
* This function is typically invoked by from commands that support
* subcommands in response to an unknown subcommand or argument error. */
void addReplySubcommandSyntaxError(client *c) {
sds cmd = sdsnew((char*) c->argv[0]->ptr);
sdstoupper(cmd);
addReplyErrorFormat(c,
"unknown subcommand or wrong number of arguments for '%.128s'. Try %s HELP.",
(char*)c->argv[1]->ptr,cmd);
sdsfree(cmd);
}
/* Append 'src' client output buffers into 'dst' client output buffers.
* This function clears the output buffers of 'src' */
void AddReplyFromClient(client *dst, client *src) {
/* If the source client contains a partial response due to client output
* buffer limits, propagate that to the dest rather than copy a partial
* reply. We don't wanna run the risk of copying partial response in case
* for some reason the output limits don't reach the same decision (maybe
* they changed) */
if (src->flags & CLIENT_CLOSE_ASAP) {
sds client = catClientInfoString(sdsempty(),dst);
freeClientAsync(dst);
serverLog(LL_WARNING,"Client %s scheduled to be closed ASAP for overcoming of output buffer limits.", client);
sdsfree(client);
return;
}
/* First add the static buffer (either into the static buffer or reply list) */
addReplyProto(dst,src->buf, src->bufpos);
/* We need to check with prepareClientToWrite again (after addReplyProto)
* since addReplyProto may have changed something (like CLIENT_CLOSE_ASAP) */
if (prepareClientToWrite(dst) != C_OK)
return;
/* We're bypassing _addReplyProtoToList, so we need to add the pre/post
* checks in it. */
if (dst->flags & CLIENT_CLOSE_AFTER_REPLY) return;
/* Concatenate the reply list into the dest */
if (listLength(src->reply))
listJoin(dst->reply,src->reply);
dst->reply_bytes += src->reply_bytes;
src->reply_bytes = 0;
src->bufpos = 0;
if (src->deferred_reply_errors) {
deferredAfterErrorReply(dst, src->deferred_reply_errors);
listRelease(src->deferred_reply_errors);
src->deferred_reply_errors = NULL;
}
/* Check output buffer limits */
closeClientOnOutputBufferLimitReached(dst, 1);
}
/* Append the listed errors to the server error statistics. the input
* list is not modified and remains the responsibility of the caller. */
void deferredAfterErrorReply(client *c, list *errors) {
listIter li;
listNode *ln;
listRewind(errors,&li);
while((ln = listNext(&li))) {
sds err = ln->value;
afterErrorReply(c, err, sdslen(err), 0);
}
}
/* Logically copy 'src' replica client buffers info to 'dst' replica.
* Basically increase referenced buffer block node reference count. */
void copyReplicaOutputBuffer(client *dst, client *src) {
serverAssert(src->bufpos == 0 && listLength(src->reply) == 0);
if (src->ref_repl_buf_node == NULL) return;
dst->ref_repl_buf_node = src->ref_repl_buf_node;
dst->ref_block_pos = src->ref_block_pos;
((replBufBlock *)listNodeValue(dst->ref_repl_buf_node))->refcount++;
}
/* Return true if the specified client has pending reply buffers to write to
* the socket. */
int clientHasPendingReplies(client *c) {
if (getClientType(c) == CLIENT_TYPE_SLAVE) {
/* Replicas use global shared replication buffer instead of
* private output buffer. */
serverAssert(c->bufpos == 0 && listLength(c->reply) == 0);
if (c->ref_repl_buf_node == NULL) return 0;
/* If the last replication buffer block content is totally sent,
* we have nothing to send. */
listNode *ln = listLast(server.repl_buffer_blocks);
replBufBlock *tail = listNodeValue(ln);
if (ln == c->ref_repl_buf_node &&
c->ref_block_pos == tail->used) return 0;
return 1;
} else {
return c->bufpos || listLength(c->reply);
}
}
void clientAcceptHandler(connection *conn) {
client *c = connGetPrivateData(conn);
if (connGetState(conn) != CONN_STATE_CONNECTED) {
serverLog(LL_WARNING,
"Error accepting a client connection: %s (addr=%s laddr=%s)",
connGetLastError(conn), getClientPeerId(c), getClientSockname(c));
freeClientAsync(c);
return;
}
/* If the server is running in protected mode (the default) and there
* is no password set, nor a specific interface is bound, we don't accept
* requests from non loopback interfaces. Instead we try to explain the
* user what to do to fix it if needed. */
if (server.protected_mode &&
DefaultUser->flags & USER_FLAG_NOPASS)
{
if (connIsLocal(conn) != 1) {
char *err =
"-DENIED Redis is running in protected mode because protected "
"mode is enabled and no password is set for the default user. "
"In this mode connections are only accepted from the loopback interface. "
"If you want to connect from external computers to Redis you "
"may adopt one of the following solutions: "
"1) Just disable protected mode sending the command "
"'CONFIG SET protected-mode no' from the loopback interface "
"by connecting to Redis from the same host the server is "
"running, however MAKE SURE Redis is not publicly accessible "
"from internet if you do so. Use CONFIG REWRITE to make this "
"change permanent. "
"2) Alternatively you can just disable the protected mode by "
"editing the Redis configuration file, and setting the protected "
"mode option to 'no', and then restarting the server. "
"3) If you started the server manually just for testing, restart "
"it with the '--protected-mode no' option. "
"4) Set up an authentication password for the default user. "
"NOTE: You only need to do one of the above things in order for "
"the server to start accepting connections from the outside.\r\n";
if (connWrite(c->conn,err,strlen(err)) == -1) {
/* Nothing to do, Just to avoid the warning... */
}
server.stat_rejected_conn++;
freeClientAsync(c);
return;
}
}
server.stat_numconnections++;
moduleFireServerEvent(REDISMODULE_EVENT_CLIENT_CHANGE,
REDISMODULE_SUBEVENT_CLIENT_CHANGE_CONNECTED,
c);
}
void acceptCommonHandler(connection *conn, int flags, char *ip) {
client *c;
UNUSED(ip);
if (connGetState(conn) != CONN_STATE_ACCEPTING) {
char addr[NET_ADDR_STR_LEN] = {0};
char laddr[NET_ADDR_STR_LEN] = {0};
connFormatAddr(conn, addr, sizeof(addr), 1);
connFormatAddr(conn, laddr, sizeof(addr), 0);
serverLog(LL_VERBOSE,
"Accepted client connection in error state: %s (addr=%s laddr=%s)",
connGetLastError(conn), addr, laddr);
connClose(conn);
return;
}
/* Limit the number of connections we take at the same time.
*
* Admission control will happen before a client is created and connAccept()
* called, because we don't want to even start transport-level negotiation
* if rejected. */
if (listLength(server.clients) + getClusterConnectionsCount()
>= server.maxclients)
{
char *err;
if (server.cluster_enabled)
err = "-ERR max number of clients + cluster "
"connections reached\r\n";
else
err = "-ERR max number of clients reached\r\n";
/* That's a best effort error message, don't check write errors.
* Note that for TLS connections, no handshake was done yet so nothing
* is written and the connection will just drop. */
if (connWrite(conn,err,strlen(err)) == -1) {
/* Nothing to do, Just to avoid the warning... */
}
server.stat_rejected_conn++;
connClose(conn);
return;
}
/* Create connection and client */
if ((c = createClient(conn)) == NULL) {
char addr[NET_ADDR_STR_LEN] = {0};
char laddr[NET_ADDR_STR_LEN] = {0};
connFormatAddr(conn, addr, sizeof(addr), 1);
connFormatAddr(conn, laddr, sizeof(addr), 0);
serverLog(LL_WARNING,
"Error registering fd event for the new client connection: %s (addr=%s laddr=%s)",
connGetLastError(conn), addr, laddr);
connClose(conn); /* May be already closed, just ignore errors */
return;
}
/* Last chance to keep flags */
c->flags |= flags;
/* Initiate accept.
*
* Note that connAccept() is free to do two things here:
* 1. Call clientAcceptHandler() immediately;
* 2. Schedule a future call to clientAcceptHandler().
*
* Because of that, we must do nothing else afterwards.
*/
if (connAccept(conn, clientAcceptHandler) == C_ERR) {
if (connGetState(conn) == CONN_STATE_ERROR)
serverLog(LL_WARNING,
"Error accepting a client connection: %s (addr=%s laddr=%s)",
connGetLastError(conn), getClientPeerId(c), getClientSockname(c));
freeClient(connGetPrivateData(conn));
return;
}
}
void freeClientOriginalArgv(client *c) {
/* We didn't rewrite this client */
if (!c->original_argv) return;
for (int j = 0; j < c->original_argc; j++)
decrRefCount(c->original_argv[j]);
zfree(c->original_argv);
c->original_argv = NULL;
c->original_argc = 0;
}
void freeClientArgv(client *c) {
int j;
for (j = 0; j < c->argc; j++)
decrRefCount(c->argv[j]);
c->argc = 0;
c->cmd = NULL;
c->argv_len_sum = 0;
c->argv_len = 0;
zfree(c->argv);
c->argv = NULL;
}
/* Close all the slaves connections. This is useful in chained replication
* when we resync with our own master and want to force all our slaves to
* resync with us as well. */
void disconnectSlaves(void) {
listIter li;
listNode *ln;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
freeClient((client*)ln->value);
}
}
/* Check if there is any other slave waiting dumping RDB finished expect me.
* This function is useful to judge current dumping RDB can be used for full
* synchronization or not. */
int anyOtherSlaveWaitRdb(client *except_me) {
listIter li;
listNode *ln;
listRewind(server.slaves, &li);
while((ln = listNext(&li))) {
client *slave = ln->value;
if (slave != except_me &&
slave->replstate == SLAVE_STATE_WAIT_BGSAVE_END)
{
return 1;
}
}
return 0;
}
/* Remove the specified client from global lists where the client could
* be referenced, not including the Pub/Sub channels.
* This is used by freeClient() and replicationCacheMaster(). */
void unlinkClient(client *c) {
listNode *ln;
/* If this is marked as current client unset it. */
if (c->conn && server.current_client == c) server.current_client = NULL;
/* Certain operations must be done only if the client has an active connection.
* If the client was already unlinked or if it's a "fake client" the
* conn is already set to NULL. */
if (c->conn) {
/* Remove from the list of active clients. */
if (c->client_list_node) {
uint64_t id = htonu64(c->id);
raxRemove(server.clients_index,(unsigned char*)&id,sizeof(id),NULL);
listDelNode(server.clients,c->client_list_node);
c->client_list_node = NULL;
}
/* Check if this is a replica waiting for diskless replication (rdb pipe),
* in which case it needs to be cleaned from that list */
if (c->flags & CLIENT_SLAVE &&
c->replstate == SLAVE_STATE_WAIT_BGSAVE_END &&
server.rdb_pipe_conns)
{
int i;
for (i=0; i < server.rdb_pipe_numconns; i++) {
if (server.rdb_pipe_conns[i] == c->conn) {
rdbPipeWriteHandlerConnRemoved(c->conn);
server.rdb_pipe_conns[i] = NULL;
break;
}
}
}
/* Only use shutdown when the fork is active and we are the parent. */
if (server.child_type) connShutdown(c->conn);
connClose(c->conn);
c->conn = NULL;
}
/* Remove from the list of pending writes if needed. */
if (c->flags & CLIENT_PENDING_WRITE) {
serverAssert(&c->clients_pending_write_node.next != NULL ||
&c->clients_pending_write_node.prev != NULL);
listUnlinkNode(server.clients_pending_write, &c->clients_pending_write_node);
c->flags &= ~CLIENT_PENDING_WRITE;
}
/* Remove from the list of pending reads if needed. */
serverAssert(!c->conn || io_threads_op == IO_THREADS_OP_IDLE);
if (c->pending_read_list_node != NULL) {
listDelNode(server.clients_pending_read,c->pending_read_list_node);
c->pending_read_list_node = NULL;
}
/* When client was just unblocked because of a blocking operation,
* remove it from the list of unblocked clients. */
if (c->flags & CLIENT_UNBLOCKED) {
ln = listSearchKey(server.unblocked_clients,c);
serverAssert(ln != NULL);
listDelNode(server.unblocked_clients,ln);
c->flags &= ~CLIENT_UNBLOCKED;
}
/* Clear the tracking status. */
if (c->flags & CLIENT_TRACKING) disableTracking(c);
}
/* Clear the client state to resemble a newly connected client. */
void clearClientConnectionState(client *c) {
listNode *ln;
/* MONITOR clients are also marked with CLIENT_SLAVE, we need to
* distinguish between the two.
*/
if (c->flags & CLIENT_MONITOR) {
ln = listSearchKey(server.monitors,c);
serverAssert(ln != NULL);
listDelNode(server.monitors,ln);
c->flags &= ~(CLIENT_MONITOR|CLIENT_SLAVE);
}
serverAssert(!(c->flags &(CLIENT_SLAVE|CLIENT_MASTER)));
if (c->flags & CLIENT_TRACKING) disableTracking(c);
selectDb(c,0);
#ifdef LOG_REQ_RES
c->resp = server.client_default_resp;
#else
c->resp = 2;
#endif
clientSetDefaultAuth(c);
moduleNotifyUserChanged(c);
discardTransaction(c);
pubsubUnsubscribeAllChannels(c,0);
pubsubUnsubscribeShardAllChannels(c, 0);
pubsubUnsubscribeAllPatterns(c,0);
unmarkClientAsPubSub(c);
if (c->name) {
decrRefCount(c->name);
c->name = NULL;
}
/* Note: lib_name and lib_ver are not reset since they still
* represent the client library behind the connection. */
/* Selectively clear state flags not covered above */
c->flags &= ~(CLIENT_ASKING|CLIENT_READONLY|CLIENT_REPLY_OFF|
CLIENT_REPLY_SKIP_NEXT|CLIENT_NO_TOUCH|CLIENT_NO_EVICT);
}
void freeClient(client *c) {
listNode *ln;
/* If a client is protected, yet we need to free it right now, make sure
* to at least use asynchronous freeing. */
if (c->flags & CLIENT_PROTECTED) {
freeClientAsync(c);
return;
}
/* For connected clients, call the disconnection event of modules hooks. */
if (c->conn) {
moduleFireServerEvent(REDISMODULE_EVENT_CLIENT_CHANGE,
REDISMODULE_SUBEVENT_CLIENT_CHANGE_DISCONNECTED,
c);
}
/* Notify module system that this client auth status changed. */
moduleNotifyUserChanged(c);
/* Free the RedisModuleBlockedClient held onto for reprocessing if not already freed. */
zfree(c->module_blocked_client);
/* If this client was scheduled for async freeing we need to remove it
* from the queue. Note that we need to do this here, because later
* we may call replicationCacheMaster() and the client should already
* be removed from the list of clients to free. */
if (c->flags & CLIENT_CLOSE_ASAP) {
ln = listSearchKey(server.clients_to_close,c);
serverAssert(ln != NULL);
listDelNode(server.clients_to_close,ln);
}
/* If it is our master that's being disconnected we should make sure
* to cache the state to try a partial resynchronization later.
*
* Note that before doing this we make sure that the client is not in
* some unexpected state, by checking its flags. */
if (server.master && c->flags & CLIENT_MASTER) {
serverLog(LL_NOTICE,"Connection with master lost.");
if (!(c->flags & (CLIENT_PROTOCOL_ERROR|CLIENT_BLOCKED))) {
c->flags &= ~(CLIENT_CLOSE_ASAP|CLIENT_CLOSE_AFTER_REPLY);
replicationCacheMaster(c);
return;
}
}
/* Log link disconnection with slave */
if (getClientType(c) == CLIENT_TYPE_SLAVE) {
serverLog(LL_NOTICE,"Connection with replica %s lost.",
replicationGetSlaveName(c));
}
/* Free the query buffer */
sdsfree(c->querybuf);
c->querybuf = NULL;
/* Deallocate structures used to block on blocking ops. */
/* If there is any in-flight command, we don't record their duration. */
c->duration = 0;
if (c->flags & CLIENT_BLOCKED) unblockClient(c, 1);
dictRelease(c->bstate.keys);
/* UNWATCH all the keys */
unwatchAllKeys(c);
listRelease(c->watched_keys);
/* Unsubscribe from all the pubsub channels */
pubsubUnsubscribeAllChannels(c,0);
pubsubUnsubscribeShardAllChannels(c, 0);
pubsubUnsubscribeAllPatterns(c,0);
unmarkClientAsPubSub(c);
dictRelease(c->pubsub_channels);
dictRelease(c->pubsub_patterns);
dictRelease(c->pubsubshard_channels);
/* Free data structures. */
listRelease(c->reply);
zfree(c->buf);
freeReplicaReferencedReplBuffer(c);
freeClientArgv(c);
freeClientOriginalArgv(c);
if (c->deferred_reply_errors)
listRelease(c->deferred_reply_errors);
#ifdef LOG_REQ_RES
reqresReset(c, 1);
#endif
/* Remove the contribution that this client gave to our
* incrementally computed memory usage. */
if (c->conn)
server.stat_clients_type_memory[c->last_memory_type] -=
c->last_memory_usage;
/* Unlink the client: this will close the socket, remove the I/O
* handlers, and remove references of the client from different
* places where active clients may be referenced. */
unlinkClient(c);
/* Master/slave cleanup Case 1:
* we lost the connection with a slave. */
if (c->flags & CLIENT_SLAVE) {
/* If there is no any other slave waiting dumping RDB finished, the
* current child process need not continue to dump RDB, then we kill it.
* So child process won't use more memory, and we also can fork a new
* child process asap to dump rdb for next full synchronization or bgsave.
* But we also need to check if users enable 'save' RDB, if enable, we
* should not remove directly since that means RDB is important for users
* to keep data safe and we may delay configured 'save' for full sync. */
if (server.saveparamslen == 0 &&
c->replstate == SLAVE_STATE_WAIT_BGSAVE_END &&
server.child_type == CHILD_TYPE_RDB &&
server.rdb_child_type == RDB_CHILD_TYPE_DISK &&
anyOtherSlaveWaitRdb(c) == 0)
{
killRDBChild();
}
if (c->replstate == SLAVE_STATE_SEND_BULK) {
if (c->repldbfd != -1) close(c->repldbfd);
if (c->replpreamble) sdsfree(c->replpreamble);
}
list *l = (c->flags & CLIENT_MONITOR) ? server.monitors : server.slaves;
ln = listSearchKey(l,c);
serverAssert(ln != NULL);
listDelNode(l,ln);
/* We need to remember the time when we started to have zero
* attached slaves, as after some time we'll free the replication
* backlog. */
if (getClientType(c) == CLIENT_TYPE_SLAVE && listLength(server.slaves) == 0)
server.repl_no_slaves_since = server.unixtime;
refreshGoodSlavesCount();
/* Fire the replica change modules event. */
if (c->replstate == SLAVE_STATE_ONLINE)
moduleFireServerEvent(REDISMODULE_EVENT_REPLICA_CHANGE,
REDISMODULE_SUBEVENT_REPLICA_CHANGE_OFFLINE,
NULL);
}
/* Master/slave cleanup Case 2:
* we lost the connection with the master. */
if (c->flags & CLIENT_MASTER) replicationHandleMasterDisconnection();
/* Remove client from memory usage buckets */
if (c->mem_usage_bucket) {
c->mem_usage_bucket->mem_usage_sum -= c->last_memory_usage;
listDelNode(c->mem_usage_bucket->clients, c->mem_usage_bucket_node);
}
/* Release other dynamically allocated client structure fields,
* and finally release the client structure itself. */
if (c->name) decrRefCount(c->name);
if (c->lib_name) decrRefCount(c->lib_name);
if (c->lib_ver) decrRefCount(c->lib_ver);
freeClientMultiState(c);
sdsfree(c->peerid);
sdsfree(c->sockname);
sdsfree(c->slave_addr);
zfree(c);
}
/* Schedule a client to free it at a safe time in the beforeSleep() function.
* This function is useful when we need to terminate a client but we are in
* a context where calling freeClient() is not possible, because the client
* should be valid for the continuation of the flow of the program. */
void freeClientAsync(client *c) {
/* We need to handle concurrent access to the server.clients_to_close list
* only in the freeClientAsync() function, since it's the only function that
* may access the list while Redis uses I/O threads. All the other accesses
* are in the context of the main thread while the other threads are
* idle. */
if (c->flags & CLIENT_CLOSE_ASAP || c->flags & CLIENT_SCRIPT) return;
c->flags |= CLIENT_CLOSE_ASAP;
if (server.io_threads_num == 1) {
/* no need to bother with locking if there's just one thread (the main thread) */
listAddNodeTail(server.clients_to_close,c);
return;
}
static pthread_mutex_t async_free_queue_mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_lock(&async_free_queue_mutex);
listAddNodeTail(server.clients_to_close,c);
pthread_mutex_unlock(&async_free_queue_mutex);
}
/* Log errors for invalid use and free the client in async way.
* We will add additional information about the client to the message. */
void logInvalidUseAndFreeClientAsync(client *c, const char *fmt, ...) {
va_list ap;
va_start(ap, fmt);
sds info = sdscatvprintf(sdsempty(), fmt, ap);
va_end(ap);
sds client = catClientInfoString(sdsempty(), c);
serverLog(LL_WARNING, "%s, disconnecting it: %s", info, client);
sdsfree(info);
sdsfree(client);
freeClientAsync(c);
}
/* Perform processing of the client before moving on to processing the next client
* this is useful for performing operations that affect the global state but can't
* wait until we're done with all clients. In other words can't wait until beforeSleep()
* return C_ERR in case client is no longer valid after call.
* The input client argument: c, may be NULL in case the previous client was
* freed before the call. */
int beforeNextClient(client *c) {
/* Notice, this code is also called from 'processUnblockedClients'.
* But in case of a module blocked client (see RM_Call 'K' flag) we do not reach this code path.
* So whenever we change the code here we need to consider if we need this change on module
* blocked client as well */
/* Skip the client processing if we're in an IO thread, in that case we'll perform
this operation later (this function is called again) in the fan-in stage of the threading mechanism */
if (io_threads_op != IO_THREADS_OP_IDLE)
return C_OK;
/* Handle async frees */
/* Note: this doesn't make the server.clients_to_close list redundant because of
* cases where we want an async free of a client other than myself. For example
* in ACL modifications we disconnect clients authenticated to non-existent
* users (see ACL LOAD). */
if (c && (c->flags & CLIENT_CLOSE_ASAP)) {
freeClient(c);
return C_ERR;
}
return C_OK;
}
/* Free the clients marked as CLOSE_ASAP, return the number of clients
* freed. */
int freeClientsInAsyncFreeQueue(void) {
int freed = 0;
listIter li;
listNode *ln;
listRewind(server.clients_to_close,&li);
while ((ln = listNext(&li)) != NULL) {
client *c = listNodeValue(ln);
if (c->flags & CLIENT_PROTECTED) continue;
c->flags &= ~CLIENT_CLOSE_ASAP;
freeClient(c);
listDelNode(server.clients_to_close,ln);
freed++;
}
return freed;
}
/* Return a client by ID, or NULL if the client ID is not in the set
* of registered clients. Note that "fake clients", created with -1 as FD,
* are not registered clients. */
client *lookupClientByID(uint64_t id) {
id = htonu64(id);
void *c = NULL;
raxFind(server.clients_index,(unsigned char*)&id,sizeof(id),&c);
return c;
}
/* This function should be called from _writeToClient when the reply list is not empty,
* it gathers the scattered buffers from reply list and sends them away with connWritev.
* If we write successfully, it returns C_OK, otherwise, C_ERR is returned,
* and 'nwritten' is an output parameter, it means how many bytes server write
* to client. */
static int _writevToClient(client *c, ssize_t *nwritten) {
int iovcnt = 0;
int iovmax = min(IOV_MAX, c->conn->iovcnt);
struct iovec iov[iovmax];
size_t iov_bytes_len = 0;
/* If the static reply buffer is not empty,
* add it to the iov array for writev() as well. */
if (c->bufpos > 0) {
iov[iovcnt].iov_base = c->buf + c->sentlen;
iov[iovcnt].iov_len = c->bufpos - c->sentlen;
iov_bytes_len += iov[iovcnt++].iov_len;
}
/* The first node of reply list might be incomplete from the last call,
* thus it needs to be calibrated to get the actual data address and length. */
size_t offset = c->bufpos > 0 ? 0 : c->sentlen;
listIter iter;
listNode *next;
clientReplyBlock *o;
listRewind(c->reply, &iter);
while ((next = listNext(&iter)) && iovcnt < iovmax && iov_bytes_len < NET_MAX_WRITES_PER_EVENT) {
o = listNodeValue(next);
if (o->used == 0) { /* empty node, just release it and skip. */
c->reply_bytes -= o->size;
listDelNode(c->reply, next);
offset = 0;
continue;
}
iov[iovcnt].iov_base = o->buf + offset;
iov[iovcnt].iov_len = o->used - offset;
iov_bytes_len += iov[iovcnt++].iov_len;
offset = 0;
}
if (iovcnt == 0) return C_OK;
*nwritten = connWritev(c->conn, iov, iovcnt);
if (*nwritten <= 0) return C_ERR;
/* Locate the new node which has leftover data and
* release all nodes in front of it. */
ssize_t remaining = *nwritten;
if (c->bufpos > 0) { /* deal with static reply buffer first. */
int buf_len = c->bufpos - c->sentlen;
c->sentlen += remaining;
/* If the buffer was sent, set bufpos to zero to continue with
* the remainder of the reply. */
if (remaining >= buf_len) {
c->bufpos = 0;
c->sentlen = 0;
}
remaining -= buf_len;
}
listRewind(c->reply, &iter);
while (remaining > 0) {
next = listNext(&iter);
o = listNodeValue(next);
if (remaining < (ssize_t)(o->used - c->sentlen)) {
c->sentlen += remaining;
break;
}
remaining -= (ssize_t)(o->used - c->sentlen);
c->reply_bytes -= o->size;
listDelNode(c->reply, next);
c->sentlen = 0;
}
return C_OK;
}
/* This function does actual writing output buffers to different types of
* clients, it is called by writeToClient.
* If we write successfully, it returns C_OK, otherwise, C_ERR is returned,
* and 'nwritten' is an output parameter, it means how many bytes server write
* to client. */
int _writeToClient(client *c, ssize_t *nwritten) {
*nwritten = 0;
if (getClientType(c) == CLIENT_TYPE_SLAVE) {
serverAssert(c->bufpos == 0 && listLength(c->reply) == 0);
replBufBlock *o = listNodeValue(c->ref_repl_buf_node);
serverAssert(o->used >= c->ref_block_pos);
/* Send current block if it is not fully sent. */
if (o->used > c->ref_block_pos) {
*nwritten = connWrite(c->conn, o->buf+c->ref_block_pos,
o->used-c->ref_block_pos);
if (*nwritten <= 0) return C_ERR;
c->ref_block_pos += *nwritten;
}
/* If we fully sent the object on head, go to the next one. */
listNode *next = listNextNode(c->ref_repl_buf_node);
if (next && c->ref_block_pos == o->used) {
o->refcount--;
((replBufBlock *)(listNodeValue(next)))->refcount++;
c->ref_repl_buf_node = next;
c->ref_block_pos = 0;
incrementalTrimReplicationBacklog(REPL_BACKLOG_TRIM_BLOCKS_PER_CALL);
}
return C_OK;
}
/* When the reply list is not empty, it's better to use writev to save us some
* system calls and TCP packets. */
if (listLength(c->reply) > 0) {
int ret = _writevToClient(c, nwritten);
if (ret != C_OK) return ret;
/* If there are no longer objects in the list, we expect
* the count of reply bytes to be exactly zero. */
if (listLength(c->reply) == 0)
serverAssert(c->reply_bytes == 0);
} else if (c->bufpos > 0) {
*nwritten = connWrite(c->conn, c->buf + c->sentlen, c->bufpos - c->sentlen);
if (*nwritten <= 0) return C_ERR;
c->sentlen += *nwritten;
/* If the buffer was sent, set bufpos to zero to continue with
* the remainder of the reply. */
if ((int)c->sentlen == c->bufpos) {
c->bufpos = 0;
c->sentlen = 0;
}
}
return C_OK;
}
/* Write data in output buffers to client. Return C_OK if the client
* is still valid after the call, C_ERR if it was freed because of some
* error. If handler_installed is set, it will attempt to clear the
* write event.
*
* This function is called by threads, but always with handler_installed
* set to 0. So when handler_installed is set to 0 the function must be
* thread safe. */
int writeToClient(client *c, int handler_installed) {
/* Update total number of writes on server */
atomicIncr(server.stat_total_writes_processed, 1);
ssize_t nwritten = 0, totwritten = 0;
while(clientHasPendingReplies(c)) {
int ret = _writeToClient(c, &nwritten);
if (ret == C_ERR) break;
totwritten += nwritten;
/* Note that we avoid to send more than NET_MAX_WRITES_PER_EVENT
* bytes, in a single threaded server it's a good idea to serve
* other clients as well, even if a very large request comes from
* super fast link that is always able to accept data (in real world
* scenario think about 'KEYS *' against the loopback interface).
*
* However if we are over the maxmemory limit we ignore that and
* just deliver as much data as it is possible to deliver.
*
* Moreover, we also send as much as possible if the client is
* a slave or a monitor (otherwise, on high-speed traffic, the
* replication/output buffer will grow indefinitely) */
if (totwritten > NET_MAX_WRITES_PER_EVENT &&
(server.maxmemory == 0 ||
zmalloc_used_memory() < server.maxmemory) &&
!(c->flags & CLIENT_SLAVE)) break;
}
if (getClientType(c) == CLIENT_TYPE_SLAVE) {
atomicIncr(server.stat_net_repl_output_bytes, totwritten);
} else {
atomicIncr(server.stat_net_output_bytes, totwritten);
}
if (nwritten == -1) {
if (connGetState(c->conn) != CONN_STATE_CONNECTED) {
serverLog(LL_VERBOSE,
"Error writing to client: %s", connGetLastError(c->conn));
freeClientAsync(c);
return C_ERR;
}
}
if (totwritten > 0) {
/* For clients representing masters we don't count sending data
* as an interaction, since we always send REPLCONF ACK commands
* that take some time to just fill the socket output buffer.
* We just rely on data / pings received for timeout detection. */
if (!(c->flags & CLIENT_MASTER)) c->lastinteraction = server.unixtime;
}
if (!clientHasPendingReplies(c)) {
c->sentlen = 0;
/* Note that writeToClient() is called in a threaded way, but
* aeDeleteFileEvent() is not thread safe: however writeToClient()
* is always called with handler_installed set to 0 from threads
* so we are fine. */
if (handler_installed) {
serverAssert(io_threads_op == IO_THREADS_OP_IDLE);
connSetWriteHandler(c->conn, NULL);
}
/* Close connection after entire reply has been sent. */
if (c->flags & CLIENT_CLOSE_AFTER_REPLY) {
freeClientAsync(c);
return C_ERR;
}
}
/* Update client's memory usage after writing.
* Since this isn't thread safe we do this conditionally. In case of threaded writes this is done in
* handleClientsWithPendingWritesUsingThreads(). */
if (io_threads_op == IO_THREADS_OP_IDLE)
updateClientMemUsageAndBucket(c);
return C_OK;
}
/* Write event handler. Just send data to the client. */
void sendReplyToClient(connection *conn) {
client *c = connGetPrivateData(conn);
writeToClient(c,1);
}
/* This function is called just before entering the event loop, in the hope
* we can just write the replies to the client output buffer without any
* need to use a syscall in order to install the writable event handler,
* get it called, and so forth. */
int handleClientsWithPendingWrites(void) {
listIter li;
listNode *ln;
int processed = listLength(server.clients_pending_write);
listRewind(server.clients_pending_write,&li);
while((ln = listNext(&li))) {
client *c = listNodeValue(ln);
c->flags &= ~CLIENT_PENDING_WRITE;
listUnlinkNode(server.clients_pending_write,ln);
/* If a client is protected, don't do anything,
* that may trigger write error or recreate handler. */
if (c->flags & CLIENT_PROTECTED) continue;
/* Don't write to clients that are going to be closed anyway. */
if (c->flags & CLIENT_CLOSE_ASAP) continue;
/* Try to write buffers to the client socket. */
if (writeToClient(c,0) == C_ERR) continue;
/* If after the synchronous writes above we still have data to
* output to the client, we need to install the writable handler. */
if (clientHasPendingReplies(c)) {
installClientWriteHandler(c);
}
}
return processed;
}
/* resetClient prepare the client to process the next command */
void resetClient(client *c) {
redisCommandProc *prevcmd = c->cmd ? c->cmd->proc : NULL;
freeClientArgv(c);
c->cur_script = NULL;
c->reqtype = 0;
c->multibulklen = 0;
c->bulklen = -1;
c->slot = -1;
c->flags &= ~CLIENT_EXECUTING_COMMAND;
/* Make sure the duration has been recorded to some command. */
serverAssert(c->duration == 0);
#ifdef LOG_REQ_RES
reqresReset(c, 1);
#endif
if (c->deferred_reply_errors)
listRelease(c->deferred_reply_errors);
c->deferred_reply_errors = NULL;
/* We clear the ASKING flag as well if we are not inside a MULTI, and
* if what we just executed is not the ASKING command itself. */
if (!(c->flags & CLIENT_MULTI) && prevcmd != askingCommand)
c->flags &= ~CLIENT_ASKING;
/* We do the same for the CACHING command as well. It also affects
* the next command or transaction executed, in a way very similar
* to ASKING. */
if (!(c->flags & CLIENT_MULTI) && prevcmd != clientCommand)
c->flags &= ~CLIENT_TRACKING_CACHING;
/* Remove the CLIENT_REPLY_SKIP flag if any so that the reply
* to the next command will be sent, but set the flag if the command
* we just processed was "CLIENT REPLY SKIP". */
c->flags &= ~CLIENT_REPLY_SKIP;
if (c->flags & CLIENT_REPLY_SKIP_NEXT) {
c->flags |= CLIENT_REPLY_SKIP;
c->flags &= ~CLIENT_REPLY_SKIP_NEXT;
}
}
/* This function is used when we want to re-enter the event loop but there
* is the risk that the client we are dealing with will be freed in some
* way. This happens for instance in:
*
* * DEBUG RELOAD and similar.
* * When a Lua script is in -BUSY state.
*
* So the function will protect the client by doing two things:
*
* 1) It removes the file events. This way it is not possible that an
* error is signaled on the socket, freeing the client.
* 2) Moreover it makes sure that if the client is freed in a different code
* path, it is not really released, but only marked for later release. */
void protectClient(client *c) {
c->flags |= CLIENT_PROTECTED;
if (c->conn) {
connSetReadHandler(c->conn,NULL);
connSetWriteHandler(c->conn,NULL);
}
}
/* This will undo the client protection done by protectClient() */
void unprotectClient(client *c) {
if (c->flags & CLIENT_PROTECTED) {
c->flags &= ~CLIENT_PROTECTED;
if (c->conn) {
connSetReadHandler(c->conn,readQueryFromClient);
if (clientHasPendingReplies(c)) putClientInPendingWriteQueue(c);
}
}
}
/* Like processMultibulkBuffer(), but for the inline protocol instead of RESP,
* this function consumes the client query buffer and creates a command ready
* to be executed inside the client structure. Returns C_OK if the command
* is ready to be executed, or C_ERR if there is still protocol to read to
* have a well formed command. The function also returns C_ERR when there is
* a protocol error: in such a case the client structure is setup to reply
* with the error and close the connection. */
int processInlineBuffer(client *c) {
char *newline;
int argc, j, linefeed_chars = 1;
sds *argv, aux;
size_t querylen;
/* Search for end of line */
newline = strchr(c->querybuf+c->qb_pos,'\n');
/* Nothing to do without a \r\n */
if (newline == NULL) {
if (sdslen(c->querybuf)-c->qb_pos > PROTO_INLINE_MAX_SIZE) {
addReplyError(c,"Protocol error: too big inline request");
setProtocolError("too big inline request",c);
}
return C_ERR;
}
/* Handle the \r\n case. */
if (newline != c->querybuf+c->qb_pos && *(newline-1) == '\r')
newline--, linefeed_chars++;
/* Split the input buffer up to the \r\n */
querylen = newline-(c->querybuf+c->qb_pos);
aux = sdsnewlen(c->querybuf+c->qb_pos,querylen);
argv = sdssplitargs(aux,&argc);
sdsfree(aux);
if (argv == NULL) {
addReplyError(c,"Protocol error: unbalanced quotes in request");
setProtocolError("unbalanced quotes in inline request",c);
return C_ERR;
}
/* Newline from slaves can be used to refresh the last ACK time.
* This is useful for a slave to ping back while loading a big
* RDB file. */
if (querylen == 0 && getClientType(c) == CLIENT_TYPE_SLAVE)
c->repl_ack_time = server.unixtime;
/* Masters should never send us inline protocol to run actual
* commands. If this happens, it is likely due to a bug in Redis where
* we got some desynchronization in the protocol, for example
* because of a PSYNC gone bad.
*
* However there is an exception: masters may send us just a newline
* to keep the connection active. */
if (querylen != 0 && c->flags & CLIENT_MASTER) {
sdsfreesplitres(argv,argc);
serverLog(LL_WARNING,"WARNING: Receiving inline protocol from master, master stream corruption? Closing the master connection and discarding the cached master.");
setProtocolError("Master using the inline protocol. Desync?",c);
return C_ERR;
}
/* Move querybuffer position to the next query in the buffer. */
c->qb_pos += querylen+linefeed_chars;
/* Setup argv array on client structure */
if (argc) {
if (c->argv) zfree(c->argv);
c->argv_len = argc;
c->argv = zmalloc(sizeof(robj*)*c->argv_len);
c->argv_len_sum = 0;
}
/* Create redis objects for all arguments. */
for (c->argc = 0, j = 0; j < argc; j++) {
c->argv[c->argc] = createObject(OBJ_STRING,argv[j]);
c->argc++;
c->argv_len_sum += sdslen(argv[j]);
}
zfree(argv);
return C_OK;
}
/* Helper function. Record protocol error details in server log,
* and set the client as CLIENT_CLOSE_AFTER_REPLY and
* CLIENT_PROTOCOL_ERROR. */
#define PROTO_DUMP_LEN 128
static void setProtocolError(const char *errstr, client *c) {
if (server.verbosity <= LL_VERBOSE || c->flags & CLIENT_MASTER) {
sds client = catClientInfoString(sdsempty(),c);
/* Sample some protocol to given an idea about what was inside. */
char buf[256];
if (sdslen(c->querybuf)-c->qb_pos < PROTO_DUMP_LEN) {
snprintf(buf,sizeof(buf),"Query buffer during protocol error: '%s'", c->querybuf+c->qb_pos);
} else {
snprintf(buf,sizeof(buf),"Query buffer during protocol error: '%.*s' (... more %zu bytes ...) '%.*s'", PROTO_DUMP_LEN/2, c->querybuf+c->qb_pos, sdslen(c->querybuf)-c->qb_pos-PROTO_DUMP_LEN, PROTO_DUMP_LEN/2, c->querybuf+sdslen(c->querybuf)-PROTO_DUMP_LEN/2);
}
/* Remove non printable chars. */
char *p = buf;
while (*p != '\0') {
if (!isprint(*p)) *p = '.';
p++;
}
/* Log all the client and protocol info. */
int loglevel = (c->flags & CLIENT_MASTER) ? LL_WARNING :
LL_VERBOSE;
serverLog(loglevel,
"Protocol error (%s) from client: %s. %s", errstr, client, buf);
sdsfree(client);
}
c->flags |= (CLIENT_CLOSE_AFTER_REPLY|CLIENT_PROTOCOL_ERROR);
}
/* Process the query buffer for client 'c', setting up the client argument
* vector for command execution. Returns C_OK if after running the function
* the client has a well-formed ready to be processed command, otherwise
* C_ERR if there is still to read more buffer to get the full command.
* The function also returns C_ERR when there is a protocol error: in such a
* case the client structure is setup to reply with the error and close
* the connection.
*
* This function is called if processInputBuffer() detects that the next
* command is in RESP format, so the first byte in the command is found
* to be '*'. Otherwise for inline commands processInlineBuffer() is called. */
int processMultibulkBuffer(client *c) {
char *newline = NULL;
int ok;
long long ll;
if (c->multibulklen == 0) {
/* The client should have been reset */
serverAssertWithInfo(c,NULL,c->argc == 0);
/* Multi bulk length cannot be read without a \r\n */
newline = strchr(c->querybuf+c->qb_pos,'\r');
if (newline == NULL) {
if (sdslen(c->querybuf)-c->qb_pos > PROTO_INLINE_MAX_SIZE) {
addReplyError(c,"Protocol error: too big mbulk count string");
setProtocolError("too big mbulk count string",c);
}
return C_ERR;
}
/* Buffer should also contain \n */
if (newline-(c->querybuf+c->qb_pos) > (ssize_t)(sdslen(c->querybuf)-c->qb_pos-2))
return C_ERR;
/* We know for sure there is a whole line since newline != NULL,
* so go ahead and find out the multi bulk length. */
serverAssertWithInfo(c,NULL,c->querybuf[c->qb_pos] == '*');
ok = string2ll(c->querybuf+1+c->qb_pos,newline-(c->querybuf+1+c->qb_pos),&ll);
if (!ok || ll > INT_MAX) {
addReplyError(c,"Protocol error: invalid multibulk length");
setProtocolError("invalid mbulk count",c);
return C_ERR;
} else if (ll > 10 && authRequired(c)) {
addReplyError(c, "Protocol error: unauthenticated multibulk length");
setProtocolError("unauth mbulk count", c);
return C_ERR;
}
c->qb_pos = (newline-c->querybuf)+2;
if (ll <= 0) return C_OK;
c->multibulklen = ll;
/* Setup argv array on client structure */
if (c->argv) zfree(c->argv);
c->argv_len = min(c->multibulklen, 1024);
c->argv = zmalloc(sizeof(robj*)*c->argv_len);
c->argv_len_sum = 0;
}
serverAssertWithInfo(c,NULL,c->multibulklen > 0);
while(c->multibulklen) {
/* Read bulk length if unknown */
if (c->bulklen == -1) {
newline = strchr(c->querybuf+c->qb_pos,'\r');
if (newline == NULL) {
if (sdslen(c->querybuf)-c->qb_pos > PROTO_INLINE_MAX_SIZE) {
addReplyError(c,
"Protocol error: too big bulk count string");
setProtocolError("too big bulk count string",c);
return C_ERR;
}
break;
}
/* Buffer should also contain \n */
if (newline-(c->querybuf+c->qb_pos) > (ssize_t)(sdslen(c->querybuf)-c->qb_pos-2))
break;
if (c->querybuf[c->qb_pos] != '$') {
addReplyErrorFormat(c,
"Protocol error: expected '$', got '%c'",
c->querybuf[c->qb_pos]);
setProtocolError("expected $ but got something else",c);
return C_ERR;
}
ok = string2ll(c->querybuf+c->qb_pos+1,newline-(c->querybuf+c->qb_pos+1),&ll);
if (!ok || ll < 0 ||
(!(c->flags & CLIENT_MASTER) && ll > server.proto_max_bulk_len)) {
addReplyError(c,"Protocol error: invalid bulk length");
setProtocolError("invalid bulk length",c);
return C_ERR;
} else if (ll > 16384 && authRequired(c)) {
addReplyError(c, "Protocol error: unauthenticated bulk length");
setProtocolError("unauth bulk length", c);
return C_ERR;
}
c->qb_pos = newline-c->querybuf+2;
if (!(c->flags & CLIENT_MASTER) && ll >= PROTO_MBULK_BIG_ARG) {
/* When the client is not a master client (because master
* client's querybuf can only be trimmed after data applied
* and sent to replicas).
*
* If we are going to read a large object from network
* try to make it likely that it will start at c->querybuf
* boundary so that we can optimize object creation
* avoiding a large copy of data.
*
* But only when the data we have not parsed is less than
* or equal to ll+2. If the data length is greater than
* ll+2, trimming querybuf is just a waste of time, because
* at this time the querybuf contains not only our bulk. */
if (sdslen(c->querybuf)-c->qb_pos <= (size_t)ll+2) {
sdsrange(c->querybuf,c->qb_pos,-1);
c->qb_pos = 0;
/* Hint the sds library about the amount of bytes this string is
* going to contain. */
c->querybuf = sdsMakeRoomForNonGreedy(c->querybuf,ll+2-sdslen(c->querybuf));
/* We later set the peak to the used portion of the buffer, but here we over
* allocated because we know what we need, make sure it'll not be shrunk before used. */
if (c->querybuf_peak < (size_t)ll + 2) c->querybuf_peak = ll + 2;
}
}
c->bulklen = ll;
}
/* Read bulk argument */
if (sdslen(c->querybuf)-c->qb_pos < (size_t)(c->bulklen+2)) {
/* Not enough data (+2 == trailing \r\n) */
break;
} else {
/* Check if we have space in argv, grow if needed */
if (c->argc >= c->argv_len) {
c->argv_len = min(c->argv_len < INT_MAX/2 ? c->argv_len*2 : INT_MAX, c->argc+c->multibulklen);
c->argv = zrealloc(c->argv, sizeof(robj*)*c->argv_len);
}
/* Optimization: if a non-master client's buffer contains JUST our bulk element
* instead of creating a new object by *copying* the sds we
* just use the current sds string. */
if (!(c->flags & CLIENT_MASTER) &&
c->qb_pos == 0 &&
c->bulklen >= PROTO_MBULK_BIG_ARG &&
sdslen(c->querybuf) == (size_t)(c->bulklen+2))
{
c->argv[c->argc++] = createObject(OBJ_STRING,c->querybuf);
c->argv_len_sum += c->bulklen;
sdsIncrLen(c->querybuf,-2); /* remove CRLF */
/* Assume that if we saw a fat argument we'll see another one
* likely... */
c->querybuf = sdsnewlen(SDS_NOINIT,c->bulklen+2);
sdsclear(c->querybuf);
} else {
c->argv[c->argc++] =
createStringObject(c->querybuf+c->qb_pos,c->bulklen);
c->argv_len_sum += c->bulklen;
c->qb_pos += c->bulklen+2;
}
c->bulklen = -1;
c->multibulklen--;
}
}
/* We're done when c->multibulk == 0 */
if (c->multibulklen == 0) return C_OK;
/* Still not ready to process the command */
return C_ERR;
}
/* Perform necessary tasks after a command was executed:
*
* 1. The client is reset unless there are reasons to avoid doing it.
* 2. In the case of master clients, the replication offset is updated.
* 3. Propagate commands we got from our master to replicas down the line. */
void commandProcessed(client *c) {
/* If client is blocked(including paused), just return avoid reset and replicate.
*
* 1. Don't reset the client structure for blocked clients, so that the reply
* callback will still be able to access the client argv and argc fields.
* The client will be reset in unblockClient().
* 2. Don't update replication offset or propagate commands to replicas,
* since we have not applied the command. */
if (c->flags & CLIENT_BLOCKED) return;
reqresAppendResponse(c);
resetClient(c);
long long prev_offset = c->reploff;
if (c->flags & CLIENT_MASTER && !(c->flags & CLIENT_MULTI)) {
/* Update the applied replication offset of our master. */
c->reploff = c->read_reploff - sdslen(c->querybuf) + c->qb_pos;
}
/* If the client is a master we need to compute the difference
* between the applied offset before and after processing the buffer,
* to understand how much of the replication stream was actually
* applied to the master state: this quantity, and its corresponding
* part of the replication stream, will be propagated to the
* sub-replicas and to the replication backlog. */
if (c->flags & CLIENT_MASTER) {
long long applied = c->reploff - prev_offset;
if (applied) {
replicationFeedStreamFromMasterStream(c->querybuf+c->repl_applied,applied);
c->repl_applied += applied;
}
}
}
/* This function calls processCommand(), but also performs a few sub tasks
* for the client that are useful in that context:
*
* 1. It sets the current client to the client 'c'.
* 2. calls commandProcessed() if the command was handled.
*
* The function returns C_ERR in case the client was freed as a side effect
* of processing the command, otherwise C_OK is returned. */
int processCommandAndResetClient(client *c) {
int deadclient = 0;
client *old_client = server.current_client;
server.current_client = c;
if (processCommand(c) == C_OK) {
commandProcessed(c);
/* Update the client's memory to include output buffer growth following the
* processed command. */
if (c->conn) updateClientMemUsageAndBucket(c);
}
if (server.current_client == NULL) deadclient = 1;
/*
* Restore the old client, this is needed because when a script
* times out, we will get into this code from processEventsWhileBlocked.
* Which will cause to set the server.current_client. If not restored
* we will return 1 to our caller which will falsely indicate the client
* is dead and will stop reading from its buffer.
*/
server.current_client = old_client;
/* performEvictions may flush slave output buffers. This may
* result in a slave, that may be the active client, to be
* freed. */
return deadclient ? C_ERR : C_OK;
}
/* This function will execute any fully parsed commands pending on
* the client. Returns C_ERR if the client is no longer valid after executing
* the command, and C_OK for all other cases. */
int processPendingCommandAndInputBuffer(client *c) {
/* Notice, this code is also called from 'processUnblockedClients'.
* But in case of a module blocked client (see RM_Call 'K' flag) we do not reach this code path.
* So whenever we change the code here we need to consider if we need this change on module
* blocked client as well */
if (c->flags & CLIENT_PENDING_COMMAND) {
c->flags &= ~CLIENT_PENDING_COMMAND;
if (processCommandAndResetClient(c) == C_ERR) {
return C_ERR;
}
}
/* Now process client if it has more data in it's buffer.
*
* Note: when a master client steps into this function,
* it can always satisfy this condition, because its querybuf
* contains data not applied. */
if (c->querybuf && sdslen(c->querybuf) > 0) {
return processInputBuffer(c);
}
return C_OK;
}
/* This function is called every time, in the client structure 'c', there is
* more query buffer to process, because we read more data from the socket
* or because a client was blocked and later reactivated, so there could be
* pending query buffer, already representing a full command, to process.
* return C_ERR in case the client was freed during the processing */
int processInputBuffer(client *c) {
/* Keep processing while there is something in the input buffer */
while(c->qb_pos < sdslen(c->querybuf)) {
/* Immediately abort if the client is in the middle of something. */
if (c->flags & CLIENT_BLOCKED) break;
/* Don't process more buffers from clients that have already pending
* commands to execute in c->argv. */
if (c->flags & CLIENT_PENDING_COMMAND) break;
/* Don't process input from the master while there is a busy script
* condition on the slave. We want just to accumulate the replication
* stream (instead of replying -BUSY like we do with other clients) and
* later resume the processing. */
if (isInsideYieldingLongCommand() && c->flags & CLIENT_MASTER) break;
/* CLIENT_CLOSE_AFTER_REPLY closes the connection once the reply is
* written to the client. Make sure to not let the reply grow after
* this flag has been set (i.e. don't process more commands).
*
* The same applies for clients we want to terminate ASAP. */
if (c->flags & (CLIENT_CLOSE_AFTER_REPLY|CLIENT_CLOSE_ASAP)) break;
/* Determine request type when unknown. */
if (!c->reqtype) {
if (c->querybuf[c->qb_pos] == '*') {
c->reqtype = PROTO_REQ_MULTIBULK;
} else {
c->reqtype = PROTO_REQ_INLINE;
}
}
if (c->reqtype == PROTO_REQ_INLINE) {
if (processInlineBuffer(c) != C_OK) break;
} else if (c->reqtype == PROTO_REQ_MULTIBULK) {
if (processMultibulkBuffer(c) != C_OK) break;
} else {
serverPanic("Unknown request type");
}
/* Multibulk processing could see a <= 0 length. */
if (c->argc == 0) {
resetClient(c);
} else {
/* If we are in the context of an I/O thread, we can't really
* execute the command here. All we can do is to flag the client
* as one that needs to process the command. */
if (io_threads_op != IO_THREADS_OP_IDLE) {
serverAssert(io_threads_op == IO_THREADS_OP_READ);
c->flags |= CLIENT_PENDING_COMMAND;
break;
}
/* We are finally ready to execute the command. */
if (processCommandAndResetClient(c) == C_ERR) {
/* If the client is no longer valid, we avoid exiting this
* loop and trimming the client buffer later. So we return
* ASAP in that case. */
return C_ERR;
}
}
}
if (c->flags & CLIENT_MASTER) {
/* If the client is a master, trim the querybuf to repl_applied,
* since master client is very special, its querybuf not only
* used to parse command, but also proxy to sub-replicas.
*
* Here are some scenarios we cannot trim to qb_pos:
* 1. we don't receive complete command from master
* 2. master client blocked cause of client pause
* 3. io threads operate read, master client flagged with CLIENT_PENDING_COMMAND
*
* In these scenarios, qb_pos points to the part of the current command
* or the beginning of next command, and the current command is not applied yet,
* so the repl_applied is not equal to qb_pos. */
if (c->repl_applied) {
sdsrange(c->querybuf,c->repl_applied,-1);
c->qb_pos -= c->repl_applied;
c->repl_applied = 0;
}
} else if (c->qb_pos) {
/* Trim to pos */
sdsrange(c->querybuf,c->qb_pos,-1);
c->qb_pos = 0;
}
/* Update client memory usage after processing the query buffer, this is
* important in case the query buffer is big and wasn't drained during
* the above loop (because of partially sent big commands). */
if (io_threads_op == IO_THREADS_OP_IDLE)
updateClientMemUsageAndBucket(c);
return C_OK;
}
void readQueryFromClient(connection *conn) {
client *c = connGetPrivateData(conn);
int nread, big_arg = 0;
size_t qblen, readlen;
/* Check if we want to read from the client later when exiting from
* the event loop. This is the case if threaded I/O is enabled. */
if (postponeClientRead(c)) return;
/* Update total number of reads on server */
atomicIncr(server.stat_total_reads_processed, 1);
readlen = PROTO_IOBUF_LEN;
/* If this is a multi bulk request, and we are processing a bulk reply
* that is large enough, try to maximize the probability that the query
* buffer contains exactly the SDS string representing the object, even
* at the risk of requiring more read(2) calls. This way the function
* processMultiBulkBuffer() can avoid copying buffers to create the
* Redis Object representing the argument. */
if (c->reqtype == PROTO_REQ_MULTIBULK && c->multibulklen && c->bulklen != -1
&& c->bulklen >= PROTO_MBULK_BIG_ARG)
{
ssize_t remaining = (size_t)(c->bulklen+2)-(sdslen(c->querybuf)-c->qb_pos);
big_arg = 1;
/* Note that the 'remaining' variable may be zero in some edge case,
* for example once we resume a blocked client after CLIENT PAUSE. */
if (remaining > 0) readlen = remaining;
/* Master client needs expand the readlen when meet BIG_ARG(see #9100),
* but doesn't need align to the next arg, we can read more data. */
if (c->flags & CLIENT_MASTER && readlen < PROTO_IOBUF_LEN)
readlen = PROTO_IOBUF_LEN;
}
qblen = sdslen(c->querybuf);
if (!(c->flags & CLIENT_MASTER) && // master client's querybuf can grow greedy.
(big_arg || sdsalloc(c->querybuf) < PROTO_IOBUF_LEN)) {
/* When reading a BIG_ARG we won't be reading more than that one arg
* into the query buffer, so we don't need to pre-allocate more than we
* need, so using the non-greedy growing. For an initial allocation of
* the query buffer, we also don't wanna use the greedy growth, in order
* to avoid collision with the RESIZE_THRESHOLD mechanism. */
c->querybuf = sdsMakeRoomForNonGreedy(c->querybuf, readlen);
/* We later set the peak to the used portion of the buffer, but here we over
* allocated because we know what we need, make sure it'll not be shrunk before used. */
if (c->querybuf_peak < qblen + readlen) c->querybuf_peak = qblen + readlen;
} else {
c->querybuf = sdsMakeRoomFor(c->querybuf, readlen);
/* Read as much as possible from the socket to save read(2) system calls. */
readlen = sdsavail(c->querybuf);
}
nread = connRead(c->conn, c->querybuf+qblen, readlen);
if (nread == -1) {
if (connGetState(conn) == CONN_STATE_CONNECTED) {
return;
} else {
serverLog(LL_VERBOSE, "Reading from client: %s",connGetLastError(c->conn));
freeClientAsync(c);
goto done;
}
} else if (nread == 0) {
if (server.verbosity <= LL_VERBOSE) {
sds info = catClientInfoString(sdsempty(), c);
serverLog(LL_VERBOSE, "Client closed connection %s", info);
sdsfree(info);
}
freeClientAsync(c);
goto done;
}
sdsIncrLen(c->querybuf,nread);
qblen = sdslen(c->querybuf);
if (c->querybuf_peak < qblen) c->querybuf_peak = qblen;
c->lastinteraction = server.unixtime;
if (c->flags & CLIENT_MASTER) {
c->read_reploff += nread;
atomicIncr(server.stat_net_repl_input_bytes, nread);
} else {
atomicIncr(server.stat_net_input_bytes, nread);
}
if (!(c->flags & CLIENT_MASTER) &&
/* The commands cached in the MULTI/EXEC queue have not been executed yet,
* so they are also considered a part of the query buffer in a broader sense.
*
* For unauthenticated clients, the query buffer cannot exceed 1MB at most. */
(c->mstate.argv_len_sums + sdslen(c->querybuf) > server.client_max_querybuf_len ||
(c->mstate.argv_len_sums + sdslen(c->querybuf) > 1024*1024 && authRequired(c)))) {
sds ci = catClientInfoString(sdsempty(),c), bytes = sdsempty();
bytes = sdscatrepr(bytes,c->querybuf,64);
serverLog(LL_WARNING,"Closing client that reached max query buffer length: %s (qbuf initial bytes: %s)", ci, bytes);
sdsfree(ci);
sdsfree(bytes);
freeClientAsync(c);
atomicIncr(server.stat_client_qbuf_limit_disconnections, 1);
goto done;
}
/* There is more data in the client input buffer, continue parsing it
* and check if there is a full command to execute. */
if (processInputBuffer(c) == C_ERR)
c = NULL;
done:
beforeNextClient(c);
}
/* A Redis "Address String" is a colon separated ip:port pair.
* For IPv4 it's in the form x.y.z.k:port, example: "127.0.0.1:1234".
* For IPv6 addresses we use [] around the IP part, like in "[::1]:1234".
* For Unix sockets we use path:0, like in "/tmp/redis:0".
*
* An Address String always fits inside a buffer of NET_ADDR_STR_LEN bytes,
* including the null term.
*
* On failure the function still populates 'addr' with the "?:0" string in case
* you want to relax error checking or need to display something anyway (see
* anetFdToString implementation for more info). */
void genClientAddrString(client *client, char *addr,
size_t addr_len, int remote) {
if (client->flags & CLIENT_UNIX_SOCKET) {
/* Unix socket client. */
snprintf(addr,addr_len,"%s:0",server.unixsocket);
} else {
/* TCP client. */
connFormatAddr(client->conn,addr,addr_len,remote);
}
}
/* This function returns the client peer id, by creating and caching it
* if client->peerid is NULL, otherwise returning the cached value.
* The Peer ID never changes during the life of the client, however it
* is expensive to compute. */
char *getClientPeerId(client *c) {
char peerid[NET_ADDR_STR_LEN] = {0};
if (c->peerid == NULL) {
genClientAddrString(c,peerid,sizeof(peerid),1);
c->peerid = sdsnew(peerid);
}
return c->peerid;
}
/* This function returns the client bound socket name, by creating and caching
* it if client->sockname is NULL, otherwise returning the cached value.
* The Socket Name never changes during the life of the client, however it
* is expensive to compute. */
char *getClientSockname(client *c) {
char sockname[NET_ADDR_STR_LEN] = {0};
if (c->sockname == NULL) {
genClientAddrString(c,sockname,sizeof(sockname),0);
c->sockname = sdsnew(sockname);
}
return c->sockname;
}
/* Concatenate a string representing the state of a client in a human
* readable format, into the sds string 's'. */
sds catClientInfoString(sds s, client *client) {
char flags[17], events[3], conninfo[CONN_INFO_LEN], *p;
p = flags;
if (client->flags & CLIENT_SLAVE) {
if (client->flags & CLIENT_MONITOR)
*p++ = 'O';
else
*p++ = 'S';
}
if (client->flags & CLIENT_MASTER) *p++ = 'M';
if (client->flags & CLIENT_PUBSUB) *p++ = 'P';
if (client->flags & CLIENT_MULTI) *p++ = 'x';
if (client->flags & CLIENT_BLOCKED) *p++ = 'b';
if (client->flags & CLIENT_TRACKING) *p++ = 't';
if (client->flags & CLIENT_TRACKING_BROKEN_REDIR) *p++ = 'R';
if (client->flags & CLIENT_TRACKING_BCAST) *p++ = 'B';
if (client->flags & CLIENT_DIRTY_CAS) *p++ = 'd';
if (client->flags & CLIENT_CLOSE_AFTER_REPLY) *p++ = 'c';
if (client->flags & CLIENT_UNBLOCKED) *p++ = 'u';
if (client->flags & CLIENT_CLOSE_ASAP) *p++ = 'A';
if (client->flags & CLIENT_UNIX_SOCKET) *p++ = 'U';
if (client->flags & CLIENT_READONLY) *p++ = 'r';
if (client->flags & CLIENT_NO_EVICT) *p++ = 'e';
if (client->flags & CLIENT_NO_TOUCH) *p++ = 'T';
if (p == flags) *p++ = 'N';
*p++ = '\0';
p = events;
if (client->conn) {
if (connHasReadHandler(client->conn)) *p++ = 'r';
if (connHasWriteHandler(client->conn)) *p++ = 'w';
}
*p = '\0';
/* Compute the total memory consumed by this client. */
size_t obufmem, total_mem = getClientMemoryUsage(client, &obufmem);
size_t used_blocks_of_repl_buf = 0;
if (client->ref_repl_buf_node) {
replBufBlock *last = listNodeValue(listLast(server.repl_buffer_blocks));
replBufBlock *cur = listNodeValue(client->ref_repl_buf_node);
used_blocks_of_repl_buf = last->id - cur->id + 1;
}
sds ret = sdscatfmt(s, FMTARGS(
"id=%U", (unsigned long long) client->id,
" addr=%s", getClientPeerId(client),
" laddr=%s", getClientSockname(client),
" %s", connGetInfo(client->conn, conninfo, sizeof(conninfo)),
" name=%s", client->name ? (char*)client->name->ptr : "",
" age=%I", (long long)(commandTimeSnapshot() / 1000 - client->ctime),
" idle=%I", (long long)(server.unixtime - client->lastinteraction),
" flags=%s", flags,
" db=%i", client->db->id,
" sub=%i", (int) dictSize(client->pubsub_channels),
" psub=%i", (int) dictSize(client->pubsub_patterns),
" ssub=%i", (int) dictSize(client->pubsubshard_channels),
" multi=%i", (client->flags & CLIENT_MULTI) ? client->mstate.count : -1,
" watch=%i", (int) listLength(client->watched_keys),
" qbuf=%U", (unsigned long long) sdslen(client->querybuf),
" qbuf-free=%U", (unsigned long long) sdsavail(client->querybuf),
" argv-mem=%U", (unsigned long long) client->argv_len_sum,
" multi-mem=%U", (unsigned long long) client->mstate.argv_len_sums,
" rbs=%U", (unsigned long long) client->buf_usable_size,
" rbp=%U", (unsigned long long) client->buf_peak,
" obl=%U", (unsigned long long) client->bufpos,
" oll=%U", (unsigned long long) listLength(client->reply) + used_blocks_of_repl_buf,
" omem=%U", (unsigned long long) obufmem, /* should not include client->buf since we want to see 0 for static clients. */
" tot-mem=%U", (unsigned long long) total_mem,
" events=%s", events,
" cmd=%s", client->lastcmd ? client->lastcmd->fullname : "NULL",
" user=%s", client->user ? client->user->name : "(superuser)",
" redir=%I", (client->flags & CLIENT_TRACKING) ? (long long) client->client_tracking_redirection : -1,
" resp=%i", client->resp,
" lib-name=%s", client->lib_name ? (char*)client->lib_name->ptr : "",
" lib-ver=%s", client->lib_ver ? (char*)client->lib_ver->ptr : ""));
return ret;
}
sds getAllClientsInfoString(int type) {
listNode *ln;
listIter li;
client *client;
sds o = sdsnewlen(SDS_NOINIT,200*listLength(server.clients));
sdsclear(o);
listRewind(server.clients,&li);
while ((ln = listNext(&li)) != NULL) {
client = listNodeValue(ln);
if (type != -1 && getClientType(client) != type) continue;
o = catClientInfoString(o,client);
o = sdscatlen(o,"\n",1);
}
return o;
}
/* Check validity of an attribute that's gonna be shown in CLIENT LIST. */
int validateClientAttr(const char *val) {
/* Check if the charset is ok. We need to do this otherwise
* CLIENT LIST format will break. You should always be able to
* split by space to get the different fields. */
while (*val) {
if (*val < '!' || *val > '~') { /* ASCII is assumed. */
return C_ERR;
}
val++;
}
return C_OK;
}
/* Returns C_OK if the name is valid. Returns C_ERR & sets `err` (when provided) otherwise. */
int validateClientName(robj *name, const char **err) {
const char *err_msg = "Client names cannot contain spaces, newlines or special characters.";
int len = (name != NULL) ? sdslen(name->ptr) : 0;
/* We allow setting the client name to an empty string. */
if (len == 0)
return C_OK;
if (validateClientAttr(name->ptr) == C_ERR) {
if (err) *err = err_msg;
return C_ERR;
}
return C_OK;
}
/* Returns C_OK if the name has been set or C_ERR if the name is invalid. */
int clientSetName(client *c, robj *name, const char **err) {
if (validateClientName(name, err) == C_ERR) {
return C_ERR;
}
int len = (name != NULL) ? sdslen(name->ptr) : 0;
/* Setting the client name to an empty string actually removes
* the current name. */
if (len == 0) {
if (c->name) decrRefCount(c->name);
c->name = NULL;
return C_OK;
}
if (c->name) decrRefCount(c->name);
c->name = name;
incrRefCount(name);
return C_OK;
}
/* This function implements CLIENT SETNAME, including replying to the
* user with an error if the charset is wrong (in that case C_ERR is
* returned). If the function succeeded C_OK is returned, and it's up
* to the caller to send a reply if needed.
*
* Setting an empty string as name has the effect of unsetting the
* currently set name: the client will remain unnamed.
*
* This function is also used to implement the HELLO SETNAME option. */
int clientSetNameOrReply(client *c, robj *name) {
const char *err = NULL;
int result = clientSetName(c, name, &err);
if (result == C_ERR) {
addReplyError(c, err);
}
return result;
}
/* Set client or connection related info */
void clientSetinfoCommand(client *c) {
sds attr = c->argv[2]->ptr;
robj *valob = c->argv[3];
sds val = valob->ptr;
robj **destvar = NULL;
if (!strcasecmp(attr,"lib-name")) {
destvar = &c->lib_name;
} else if (!strcasecmp(attr,"lib-ver")) {
destvar = &c->lib_ver;
} else {
addReplyErrorFormat(c,"Unrecognized option '%s'", attr);
return;
}
if (validateClientAttr(val)==C_ERR) {
addReplyErrorFormat(c,
"%s cannot contain spaces, newlines or special characters.", attr);
return;
}
if (*destvar) decrRefCount(*destvar);
if (sdslen(val)) {
*destvar = valob;
incrRefCount(valob);
} else
*destvar = NULL;
addReply(c,shared.ok);
}
/* Reset the client state to resemble a newly connected client.
*/
void resetCommand(client *c) {
/* MONITOR clients are also marked with CLIENT_SLAVE, we need to
* distinguish between the two.
*/
uint64_t flags = c->flags;
if (flags & CLIENT_MONITOR) flags &= ~(CLIENT_MONITOR|CLIENT_SLAVE);
if (flags & (CLIENT_SLAVE|CLIENT_MASTER|CLIENT_MODULE)) {
addReplyError(c,"can only reset normal client connections");
return;
}
clearClientConnectionState(c);
addReplyStatus(c,"RESET");
}
/* Disconnect the current client */
void quitCommand(client *c) {
addReply(c,shared.ok);
c->flags |= CLIENT_CLOSE_AFTER_REPLY;
}
void clientCommand(client *c) {
listNode *ln;
listIter li;
if (c->argc == 2 && !strcasecmp(c->argv[1]->ptr,"help")) {
const char *help[] = {
"CACHING (YES|NO)",
" Enable/disable tracking of the keys for next command in OPTIN/OPTOUT modes.",
"GETREDIR",
" Return the client ID we are redirecting to when tracking is enabled.",
"GETNAME",
" Return the name of the current connection.",
"ID",
" Return the ID of the current connection.",
"INFO",
" Return information about the current client connection.",
"KILL <ip:port>",
" Kill connection made from <ip:port>.",
"KILL <option> <value> [<option> <value> [...]]",
" Kill connections. Options are:",
" * ADDR (<ip:port>|<unixsocket>:0)",
" Kill connections made from the specified address",
" * LADDR (<ip:port>|<unixsocket>:0)",
" Kill connections made to specified local address",
" * TYPE (NORMAL|MASTER|REPLICA|PUBSUB)",
" Kill connections by type.",
" * USER <username>",
" Kill connections authenticated by <username>.",
" * SKIPME (YES|NO)",
" Skip killing current connection (default: yes).",
" * ID <client-id>",
" Kill connections by client id.",
" * MAXAGE <maxage>",
" Kill connections older than the specified age.",
"LIST [options ...]",
" Return information about client connections. Options:",
" * TYPE (NORMAL|MASTER|REPLICA|PUBSUB)",
" Return clients of specified type.",
"UNPAUSE",
" Stop the current client pause, resuming traffic.",
"PAUSE <timeout> [WRITE|ALL]",
" Suspend all, or just write, clients for <timeout> milliseconds.",
"REPLY (ON|OFF|SKIP)",
" Control the replies sent to the current connection.",
"SETNAME <name>",
" Assign the name <name> to the current connection.",
"SETINFO <option> <value>",
" Set client meta attr. Options are:",
" * LIB-NAME: the client lib name.",
" * LIB-VER: the client lib version.",
"UNBLOCK <clientid> [TIMEOUT|ERROR]",
" Unblock the specified blocked client.",
"TRACKING (ON|OFF) [REDIRECT <id>] [BCAST] [PREFIX <prefix> [...]]",
" [OPTIN] [OPTOUT] [NOLOOP]",
" Control server assisted client side caching.",
"TRACKINGINFO",
" Report tracking status for the current connection.",
"NO-EVICT (ON|OFF)",
" Protect current client connection from eviction.",
"NO-TOUCH (ON|OFF)",
" Will not touch LRU/LFU stats when this mode is on.",
NULL
};
addReplyHelp(c, help);
} else if (!strcasecmp(c->argv[1]->ptr,"id") && c->argc == 2) {
/* CLIENT ID */
addReplyLongLong(c,c->id);
} else if (!strcasecmp(c->argv[1]->ptr,"info") && c->argc == 2) {
/* CLIENT INFO */
sds o = catClientInfoString(sdsempty(), c);
o = sdscatlen(o,"\n",1);
addReplyVerbatim(c,o,sdslen(o),"txt");
sdsfree(o);
} else if (!strcasecmp(c->argv[1]->ptr,"list")) {
/* CLIENT LIST */
int type = -1;
sds o = NULL;
if (c->argc == 4 && !strcasecmp(c->argv[2]->ptr,"type")) {
type = getClientTypeByName(c->argv[3]->ptr);
if (type == -1) {
addReplyErrorFormat(c,"Unknown client type '%s'",
(char*) c->argv[3]->ptr);
return;
}
} else if (c->argc > 3 && !strcasecmp(c->argv[2]->ptr,"id")) {
int j;
o = sdsempty();
for (j = 3; j < c->argc; j++) {
long long cid;
if (getLongLongFromObjectOrReply(c, c->argv[j], &cid,
"Invalid client ID")) {
sdsfree(o);
return;
}
client *cl = lookupClientByID(cid);
if (cl) {
o = catClientInfoString(o, cl);
o = sdscatlen(o, "\n", 1);
}
}
} else if (c->argc != 2) {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
if (!o)
o = getAllClientsInfoString(type);
addReplyVerbatim(c,o,sdslen(o),"txt");
sdsfree(o);
} else if (!strcasecmp(c->argv[1]->ptr,"reply") && c->argc == 3) {
/* CLIENT REPLY ON|OFF|SKIP */
if (!strcasecmp(c->argv[2]->ptr,"on")) {
c->flags &= ~(CLIENT_REPLY_SKIP|CLIENT_REPLY_OFF);
addReply(c,shared.ok);
} else if (!strcasecmp(c->argv[2]->ptr,"off")) {
c->flags |= CLIENT_REPLY_OFF;
} else if (!strcasecmp(c->argv[2]->ptr,"skip")) {
if (!(c->flags & CLIENT_REPLY_OFF))
c->flags |= CLIENT_REPLY_SKIP_NEXT;
} else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
} else if (!strcasecmp(c->argv[1]->ptr,"no-evict") && c->argc == 3) {
/* CLIENT NO-EVICT ON|OFF */
if (!strcasecmp(c->argv[2]->ptr,"on")) {
c->flags |= CLIENT_NO_EVICT;
removeClientFromMemUsageBucket(c, 0);
addReply(c,shared.ok);
} else if (!strcasecmp(c->argv[2]->ptr,"off")) {
c->flags &= ~CLIENT_NO_EVICT;
updateClientMemUsageAndBucket(c);
addReply(c,shared.ok);
} else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
} else if (!strcasecmp(c->argv[1]->ptr,"kill")) {
/* CLIENT KILL <ip:port>
* CLIENT KILL <option> [value] ... <option> [value] */
char *addr = NULL;
char *laddr = NULL;
user *user = NULL;
int type = -1;
uint64_t id = 0;
long long max_age = 0;
int skipme = 1;
int killed = 0, close_this_client = 0;
if (c->argc == 3) {
/* Old style syntax: CLIENT KILL <addr> */
addr = c->argv[2]->ptr;
skipme = 0; /* With the old form, you can kill yourself. */
} else if (c->argc > 3) {
int i = 2; /* Next option index. */
/* New style syntax: parse options. */
while(i < c->argc) {
int moreargs = c->argc > i+1;
if (!strcasecmp(c->argv[i]->ptr,"id") && moreargs) {
long tmp;
if (getRangeLongFromObjectOrReply(c, c->argv[i+1], 1, LONG_MAX, &tmp,
"client-id should be greater than 0") != C_OK)
return;
id = tmp;
} else if (!strcasecmp(c->argv[i]->ptr,"maxage") && moreargs) {
long long tmp;
if (getLongLongFromObjectOrReply(c, c->argv[i+1], &tmp,
"maxage is not an integer or out of range") != C_OK)
return;
if (tmp <= 0) {
addReplyError(c, "maxage should be greater than 0");
return;
}
max_age = tmp;
} else if (!strcasecmp(c->argv[i]->ptr,"type") && moreargs) {
type = getClientTypeByName(c->argv[i+1]->ptr);
if (type == -1) {
addReplyErrorFormat(c,"Unknown client type '%s'",
(char*) c->argv[i+1]->ptr);
return;
}
} else if (!strcasecmp(c->argv[i]->ptr,"addr") && moreargs) {
addr = c->argv[i+1]->ptr;
} else if (!strcasecmp(c->argv[i]->ptr,"laddr") && moreargs) {
laddr = c->argv[i+1]->ptr;
} else if (!strcasecmp(c->argv[i]->ptr,"user") && moreargs) {
user = ACLGetUserByName(c->argv[i+1]->ptr,
sdslen(c->argv[i+1]->ptr));
if (user == NULL) {
addReplyErrorFormat(c,"No such user '%s'",
(char*) c->argv[i+1]->ptr);
return;
}
} else if (!strcasecmp(c->argv[i]->ptr,"skipme") && moreargs) {
if (!strcasecmp(c->argv[i+1]->ptr,"yes")) {
skipme = 1;
} else if (!strcasecmp(c->argv[i+1]->ptr,"no")) {
skipme = 0;
} else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
} else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
i += 2;
}
} else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
/* Iterate clients killing all the matching clients. */
listRewind(server.clients,&li);
while ((ln = listNext(&li)) != NULL) {
client *client = listNodeValue(ln);
if (addr && strcmp(getClientPeerId(client),addr) != 0) continue;
if (laddr && strcmp(getClientSockname(client),laddr) != 0) continue;
if (type != -1 && getClientType(client) != type) continue;
if (id != 0 && client->id != id) continue;
if (user && client->user != user) continue;
if (c == client && skipme) continue;
if (max_age != 0 && (long long)(commandTimeSnapshot() / 1000 - client->ctime) < max_age) continue;
/* Kill it. */
if (c == client) {
close_this_client = 1;
} else {
freeClient(client);
}
killed++;
}
/* Reply according to old/new format. */
if (c->argc == 3) {
if (killed == 0)
addReplyError(c,"No such client");
else
addReply(c,shared.ok);
} else {
addReplyLongLong(c,killed);
}
/* If this client has to be closed, flag it as CLOSE_AFTER_REPLY
* only after we queued the reply to its output buffers. */
if (close_this_client) c->flags |= CLIENT_CLOSE_AFTER_REPLY;
} else if (!strcasecmp(c->argv[1]->ptr,"unblock") && (c->argc == 3 ||
c->argc == 4))
{
/* CLIENT UNBLOCK <id> [timeout|error] */
long long id;
int unblock_error = 0;
if (c->argc == 4) {
if (!strcasecmp(c->argv[3]->ptr,"timeout")) {
unblock_error = 0;
} else if (!strcasecmp(c->argv[3]->ptr,"error")) {
unblock_error = 1;
} else {
addReplyError(c,
"CLIENT UNBLOCK reason should be TIMEOUT or ERROR");
return;
}
}
if (getLongLongFromObjectOrReply(c,c->argv[2],&id,NULL)
!= C_OK) return;
struct client *target = lookupClientByID(id);
/* Note that we never try to unblock a client blocked on a module command, which
* doesn't have a timeout callback (even in the case of UNBLOCK ERROR).
* The reason is that we assume that if a command doesn't expect to be timedout,
* it also doesn't expect to be unblocked by CLIENT UNBLOCK */
if (target && target->flags & CLIENT_BLOCKED && moduleBlockedClientMayTimeout(target)) {
if (unblock_error)
unblockClientOnError(target,
"-UNBLOCKED client unblocked via CLIENT UNBLOCK");
else
unblockClientOnTimeout(target);
addReply(c,shared.cone);
} else {
addReply(c,shared.czero);
}
} else if (!strcasecmp(c->argv[1]->ptr,"setname") && c->argc == 3) {
/* CLIENT SETNAME */
if (clientSetNameOrReply(c,c->argv[2]) == C_OK)
addReply(c,shared.ok);
} else if (!strcasecmp(c->argv[1]->ptr,"getname") && c->argc == 2) {
/* CLIENT GETNAME */
if (c->name)
addReplyBulk(c,c->name);
else
addReplyNull(c);
} else if (!strcasecmp(c->argv[1]->ptr,"unpause") && c->argc == 2) {
/* CLIENT UNPAUSE */
unpauseActions(PAUSE_BY_CLIENT_COMMAND);
addReply(c,shared.ok);
} else if (!strcasecmp(c->argv[1]->ptr,"pause") && (c->argc == 3 ||
c->argc == 4))
{
/* CLIENT PAUSE TIMEOUT [WRITE|ALL] */
mstime_t end;
int isPauseClientAll = 1;
if (c->argc == 4) {
if (!strcasecmp(c->argv[3]->ptr,"write")) {
isPauseClientAll = 0;
} else if (strcasecmp(c->argv[3]->ptr,"all")) {
addReplyError(c,
"CLIENT PAUSE mode must be WRITE or ALL");
return;
}
}
if (getTimeoutFromObjectOrReply(c,c->argv[2],&end,
UNIT_MILLISECONDS) != C_OK) return;
pauseClientsByClient(end, isPauseClientAll);
addReply(c,shared.ok);
} else if (!strcasecmp(c->argv[1]->ptr,"tracking") && c->argc >= 3) {
/* CLIENT TRACKING (on|off) [REDIRECT <id>] [BCAST] [PREFIX first]
* [PREFIX second] [OPTIN] [OPTOUT] [NOLOOP]... */
long long redir = 0;
uint64_t options = 0;
robj **prefix = NULL;
size_t numprefix = 0;
/* Parse the options. */
for (int j = 3; j < c->argc; j++) {
int moreargs = (c->argc-1) - j;
if (!strcasecmp(c->argv[j]->ptr,"redirect") && moreargs) {
j++;
if (redir != 0) {
addReplyError(c,"A client can only redirect to a single "
"other client");
zfree(prefix);
return;
}
if (getLongLongFromObjectOrReply(c,c->argv[j],&redir,NULL) !=
C_OK)
{
zfree(prefix);
return;
}
/* We will require the client with the specified ID to exist
* right now, even if it is possible that it gets disconnected
* later. Still a valid sanity check. */
if (lookupClientByID(redir) == NULL) {
addReplyError(c,"The client ID you want redirect to "
"does not exist");
zfree(prefix);
return;
}
} else if (!strcasecmp(c->argv[j]->ptr,"bcast")) {
options |= CLIENT_TRACKING_BCAST;
} else if (!strcasecmp(c->argv[j]->ptr,"optin")) {
options |= CLIENT_TRACKING_OPTIN;
} else if (!strcasecmp(c->argv[j]->ptr,"optout")) {
options |= CLIENT_TRACKING_OPTOUT;
} else if (!strcasecmp(c->argv[j]->ptr,"noloop")) {
options |= CLIENT_TRACKING_NOLOOP;
} else if (!strcasecmp(c->argv[j]->ptr,"prefix") && moreargs) {
j++;
prefix = zrealloc(prefix,sizeof(robj*)*(numprefix+1));
prefix[numprefix++] = c->argv[j];
} else {
zfree(prefix);
addReplyErrorObject(c,shared.syntaxerr);
return;
}
}
/* Options are ok: enable or disable the tracking for this client. */
if (!strcasecmp(c->argv[2]->ptr,"on")) {
/* Before enabling tracking, make sure options are compatible
* among each other and with the current state of the client. */
if (!(options & CLIENT_TRACKING_BCAST) && numprefix) {
addReplyError(c,
"PREFIX option requires BCAST mode to be enabled");
zfree(prefix);
return;
}
if (c->flags & CLIENT_TRACKING) {
int oldbcast = !!(c->flags & CLIENT_TRACKING_BCAST);
int newbcast = !!(options & CLIENT_TRACKING_BCAST);
if (oldbcast != newbcast) {
addReplyError(c,
"You can't switch BCAST mode on/off before disabling "
"tracking for this client, and then re-enabling it with "
"a different mode.");
zfree(prefix);
return;
}
}
if (options & CLIENT_TRACKING_BCAST &&
options & (CLIENT_TRACKING_OPTIN|CLIENT_TRACKING_OPTOUT))
{
addReplyError(c,
"OPTIN and OPTOUT are not compatible with BCAST");
zfree(prefix);
return;
}
if (options & CLIENT_TRACKING_OPTIN && options & CLIENT_TRACKING_OPTOUT)
{
addReplyError(c,
"You can't specify both OPTIN mode and OPTOUT mode");
zfree(prefix);
return;
}
if ((options & CLIENT_TRACKING_OPTIN && c->flags & CLIENT_TRACKING_OPTOUT) ||
(options & CLIENT_TRACKING_OPTOUT && c->flags & CLIENT_TRACKING_OPTIN))
{
addReplyError(c,
"You can't switch OPTIN/OPTOUT mode before disabling "
"tracking for this client, and then re-enabling it with "
"a different mode.");
zfree(prefix);
return;
}
if (options & CLIENT_TRACKING_BCAST) {
if (!checkPrefixCollisionsOrReply(c,prefix,numprefix)) {
zfree(prefix);
return;
}
}
enableTracking(c,redir,options,prefix,numprefix);
} else if (!strcasecmp(c->argv[2]->ptr,"off")) {
disableTracking(c);
} else {
zfree(prefix);
addReplyErrorObject(c,shared.syntaxerr);
return;
}
zfree(prefix);
addReply(c,shared.ok);
} else if (!strcasecmp(c->argv[1]->ptr,"caching") && c->argc >= 3) {
if (!(c->flags & CLIENT_TRACKING)) {
addReplyError(c,"CLIENT CACHING can be called only when the "
"client is in tracking mode with OPTIN or "
"OPTOUT mode enabled");
return;
}
char *opt = c->argv[2]->ptr;
if (!strcasecmp(opt,"yes")) {
if (c->flags & CLIENT_TRACKING_OPTIN) {
c->flags |= CLIENT_TRACKING_CACHING;
} else {
addReplyError(c,"CLIENT CACHING YES is only valid when tracking is enabled in OPTIN mode.");
return;
}
} else if (!strcasecmp(opt,"no")) {
if (c->flags & CLIENT_TRACKING_OPTOUT) {
c->flags |= CLIENT_TRACKING_CACHING;
} else {
addReplyError(c,"CLIENT CACHING NO is only valid when tracking is enabled in OPTOUT mode.");
return;
}
} else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
/* Common reply for when we succeeded. */
addReply(c,shared.ok);
} else if (!strcasecmp(c->argv[1]->ptr,"getredir") && c->argc == 2) {
/* CLIENT GETREDIR */
if (c->flags & CLIENT_TRACKING) {
addReplyLongLong(c,c->client_tracking_redirection);
} else {
addReplyLongLong(c,-1);
}
} else if (!strcasecmp(c->argv[1]->ptr,"trackinginfo") && c->argc == 2) {
addReplyMapLen(c,3);
/* Flags */
addReplyBulkCString(c,"flags");
void *arraylen_ptr = addReplyDeferredLen(c);
int numflags = 0;
addReplyBulkCString(c,c->flags & CLIENT_TRACKING ? "on" : "off");
numflags++;
if (c->flags & CLIENT_TRACKING_BCAST) {
addReplyBulkCString(c,"bcast");
numflags++;
}
if (c->flags & CLIENT_TRACKING_OPTIN) {
addReplyBulkCString(c,"optin");
numflags++;
if (c->flags & CLIENT_TRACKING_CACHING) {
addReplyBulkCString(c,"caching-yes");
numflags++;
}
}
if (c->flags & CLIENT_TRACKING_OPTOUT) {
addReplyBulkCString(c,"optout");
numflags++;
if (c->flags & CLIENT_TRACKING_CACHING) {
addReplyBulkCString(c,"caching-no");
numflags++;
}
}
if (c->flags & CLIENT_TRACKING_NOLOOP) {
addReplyBulkCString(c,"noloop");
numflags++;
}
if (c->flags & CLIENT_TRACKING_BROKEN_REDIR) {
addReplyBulkCString(c,"broken_redirect");
numflags++;
}
setDeferredSetLen(c,arraylen_ptr,numflags);
/* Redirect */
addReplyBulkCString(c,"redirect");
if (c->flags & CLIENT_TRACKING) {
addReplyLongLong(c,c->client_tracking_redirection);
} else {
addReplyLongLong(c,-1);
}
/* Prefixes */
addReplyBulkCString(c,"prefixes");
if (c->client_tracking_prefixes) {
addReplyArrayLen(c,raxSize(c->client_tracking_prefixes));
raxIterator ri;
raxStart(&ri,c->client_tracking_prefixes);
raxSeek(&ri,"^",NULL,0);
while(raxNext(&ri)) {
addReplyBulkCBuffer(c,ri.key,ri.key_len);
}
raxStop(&ri);
} else {
addReplyArrayLen(c,0);
}
} else if (!strcasecmp(c->argv[1]->ptr, "no-touch")) {
/* CLIENT NO-TOUCH ON|OFF */
if (!strcasecmp(c->argv[2]->ptr,"on")) {
c->flags |= CLIENT_NO_TOUCH;
addReply(c,shared.ok);
} else if (!strcasecmp(c->argv[2]->ptr,"off")) {
c->flags &= ~CLIENT_NO_TOUCH;
addReply(c,shared.ok);
} else {
addReplyErrorObject(c,shared.syntaxerr);
}
} else {
addReplySubcommandSyntaxError(c);
}
}
/* HELLO [<protocol-version> [AUTH <user> <password>] [SETNAME <name>] ] */
void helloCommand(client *c) {
long long ver = 0;
int next_arg = 1;
if (c->argc >= 2) {
if (getLongLongFromObjectOrReply(c, c->argv[next_arg++], &ver,
"Protocol version is not an integer or out of range") != C_OK) {
return;
}
if (ver < 2 || ver > 3) {
addReplyError(c,"-NOPROTO unsupported protocol version");
return;
}
}
robj *username = NULL;
robj *password = NULL;
robj *clientname = NULL;
for (int j = next_arg; j < c->argc; j++) {
int moreargs = (c->argc-1) - j;
const char *opt = c->argv[j]->ptr;
if (!strcasecmp(opt,"AUTH") && moreargs >= 2) {
redactClientCommandArgument(c, j+1);
redactClientCommandArgument(c, j+2);
username = c->argv[j+1];
password = c->argv[j+2];
j += 2;
} else if (!strcasecmp(opt,"SETNAME") && moreargs) {
clientname = c->argv[j+1];
const char *err = NULL;
if (validateClientName(clientname, &err) == C_ERR) {
addReplyError(c, err);
return;
}
j++;
} else {
addReplyErrorFormat(c,"Syntax error in HELLO option '%s'",opt);
return;
}
}
if (username && password) {
robj *err = NULL;
int auth_result = ACLAuthenticateUser(c, username, password, &err);
if (auth_result == AUTH_ERR) {
addAuthErrReply(c, err);
}
if (err) decrRefCount(err);
/* In case of auth errors, return early since we already replied with an ERR.
* In case of blocking module auth, we reply to the client/setname later upon unblocking. */
if (auth_result == AUTH_ERR || auth_result == AUTH_BLOCKED) {
return;
}
}
/* At this point we need to be authenticated to continue. */
if (!c->authenticated) {
addReplyError(c,"-NOAUTH HELLO must be called with the client already "
"authenticated, otherwise the HELLO <proto> AUTH <user> <pass> "
"option can be used to authenticate the client and "
"select the RESP protocol version at the same time");
return;
}
/* Now that we're authenticated, set the client name. */
if (clientname) clientSetName(c, clientname, NULL);
/* Let's switch to the specified RESP mode. */
if (ver) c->resp = ver;
addReplyMapLen(c,6 + !server.sentinel_mode);
addReplyBulkCString(c,"server");
addReplyBulkCString(c,"redis");
addReplyBulkCString(c,"version");
addReplyBulkCString(c,REDIS_VERSION);
addReplyBulkCString(c,"proto");
addReplyLongLong(c,c->resp);
addReplyBulkCString(c,"id");
addReplyLongLong(c,c->id);
addReplyBulkCString(c,"mode");
if (server.sentinel_mode) addReplyBulkCString(c,"sentinel");
else if (server.cluster_enabled) addReplyBulkCString(c,"cluster");
else addReplyBulkCString(c,"standalone");
if (!server.sentinel_mode) {
addReplyBulkCString(c,"role");
addReplyBulkCString(c,server.masterhost ? "replica" : "master");
}
addReplyBulkCString(c,"modules");
addReplyLoadedModules(c);
}
/* This callback is bound to POST and "Host:" command names. Those are not
* really commands, but are used in security attacks in order to talk to
* Redis instances via HTTP, with a technique called "cross protocol scripting"
* which exploits the fact that services like Redis will discard invalid
* HTTP headers and will process what follows.
*
* As a protection against this attack, Redis will terminate the connection
* when a POST or "Host:" header is seen, and will log the event from
* time to time (to avoid creating a DOS as a result of too many logs). */
void securityWarningCommand(client *c) {
static time_t logged_time = 0;
time_t now = time(NULL);
if (llabs(now-logged_time) > 60) {
char ip[NET_IP_STR_LEN];
int port;
if (connAddrPeerName(c->conn, ip, sizeof(ip), &port) == -1) {
serverLog(LL_WARNING,"Possible SECURITY ATTACK detected. It looks like somebody is sending POST or Host: commands to Redis. This is likely due to an attacker attempting to use Cross Protocol Scripting to compromise your Redis instance. Connection aborted.");
} else {
serverLog(LL_WARNING,"Possible SECURITY ATTACK detected. It looks like somebody is sending POST or Host: commands to Redis. This is likely due to an attacker attempting to use Cross Protocol Scripting to compromise your Redis instance. Connection from %s:%d aborted.", ip, port);
}
logged_time = now;
}
freeClientAsync(c);
}
/* Keep track of the original command arguments so that we can generate
* an accurate slowlog entry after the command has been executed. */
static void retainOriginalCommandVector(client *c) {
/* We already rewrote this command, so don't rewrite it again */
if (c->original_argv) return;
c->original_argc = c->argc;
c->original_argv = zmalloc(sizeof(robj*)*(c->argc));
for (int j = 0; j < c->argc; j++) {
c->original_argv[j] = c->argv[j];
incrRefCount(c->argv[j]);
}
}
/* Redact a given argument to prevent it from being shown
* in the slowlog. This information is stored in the
* original_argv array. */
void redactClientCommandArgument(client *c, int argc) {
retainOriginalCommandVector(c);
if (c->original_argv[argc] == shared.redacted) {
/* This argument has already been redacted */
return;
}
decrRefCount(c->original_argv[argc]);
c->original_argv[argc] = shared.redacted;
}
/* Rewrite the command vector of the client. All the new objects ref count
* is incremented. The old command vector is freed, and the old objects
* ref count is decremented. */
void rewriteClientCommandVector(client *c, int argc, ...) {
va_list ap;
int j;
robj **argv; /* The new argument vector */
argv = zmalloc(sizeof(robj*)*argc);
va_start(ap,argc);
for (j = 0; j < argc; j++) {
robj *a;
a = va_arg(ap, robj*);
argv[j] = a;
incrRefCount(a);
}
replaceClientCommandVector(c, argc, argv);
va_end(ap);
}
/* Completely replace the client command vector with the provided one. */
void replaceClientCommandVector(client *c, int argc, robj **argv) {
int j;
retainOriginalCommandVector(c);
freeClientArgv(c);
c->argv = argv;
c->argc = argc;
c->argv_len_sum = 0;
for (j = 0; j < c->argc; j++)
if (c->argv[j])
c->argv_len_sum += getStringObjectLen(c->argv[j]);
c->cmd = lookupCommandOrOriginal(c->argv,c->argc);
serverAssertWithInfo(c,NULL,c->cmd != NULL);
}
/* Rewrite a single item in the command vector.
* The new val ref count is incremented, and the old decremented.
*
* It is possible to specify an argument over the current size of the
* argument vector: in this case the array of objects gets reallocated
* and c->argc set to the max value. However it's up to the caller to
*
* 1. Make sure there are no "holes" and all the arguments are set.
* 2. If the original argument vector was longer than the one we
* want to end with, it's up to the caller to set c->argc and
* free the no longer used objects on c->argv. */
void rewriteClientCommandArgument(client *c, int i, robj *newval) {
robj *oldval;
retainOriginalCommandVector(c);
/* We need to handle both extending beyond argc (just update it and
* initialize the new element) or beyond argv_len (realloc is needed).
*/
if (i >= c->argc) {
if (i >= c->argv_len) {
c->argv = zrealloc(c->argv,sizeof(robj*)*(i+1));
c->argv_len = i+1;
}
c->argc = i+1;
c->argv[i] = NULL;
}
oldval = c->argv[i];
if (oldval) c->argv_len_sum -= getStringObjectLen(oldval);
if (newval) c->argv_len_sum += getStringObjectLen(newval);
c->argv[i] = newval;
incrRefCount(newval);
if (oldval) decrRefCount(oldval);
/* If this is the command name make sure to fix c->cmd. */
if (i == 0) {
c->cmd = lookupCommandOrOriginal(c->argv,c->argc);
serverAssertWithInfo(c,NULL,c->cmd != NULL);
}
}
/* This function returns the number of bytes that Redis is
* using to store the reply still not read by the client.
*
* Note: this function is very fast so can be called as many time as
* the caller wishes. The main usage of this function currently is
* enforcing the client output length limits. */
size_t getClientOutputBufferMemoryUsage(client *c) {
if (getClientType(c) == CLIENT_TYPE_SLAVE) {
size_t repl_buf_size = 0;
size_t repl_node_num = 0;
size_t repl_node_size = sizeof(listNode) + sizeof(replBufBlock);
if (c->ref_repl_buf_node) {
replBufBlock *last = listNodeValue(listLast(server.repl_buffer_blocks));
replBufBlock *cur = listNodeValue(c->ref_repl_buf_node);
repl_buf_size = last->repl_offset + last->size - cur->repl_offset;
repl_node_num = last->id - cur->id + 1;
}
return repl_buf_size + (repl_node_size*repl_node_num);
} else {
size_t list_item_size = sizeof(listNode) + sizeof(clientReplyBlock);
return c->reply_bytes + (list_item_size*listLength(c->reply));
}
}
/* Returns the total client's memory usage.
* Optionally, if output_buffer_mem_usage is not NULL, it fills it with
* the client output buffer memory usage portion of the total. */
size_t getClientMemoryUsage(client *c, size_t *output_buffer_mem_usage) {
size_t mem = getClientOutputBufferMemoryUsage(c);
if (output_buffer_mem_usage != NULL)
*output_buffer_mem_usage = mem;
mem += sdsZmallocSize(c->querybuf);
mem += zmalloc_size(c);
mem += c->buf_usable_size;
/* For efficiency (less work keeping track of the argv memory), it doesn't include the used memory
* i.e. unused sds space and internal fragmentation, just the string length. but this is enough to
* spot problematic clients. */
mem += c->argv_len_sum + sizeof(robj*)*c->argc;
mem += multiStateMemOverhead(c);
/* Add memory overhead of pubsub channels and patterns. Note: this is just the overhead of the robj pointers
* to the strings themselves because they aren't stored per client. */
mem += pubsubMemOverhead(c);
/* Add memory overhead of the tracking prefixes, this is an underestimation so we don't need to traverse the entire rax */
if (c->client_tracking_prefixes)
mem += c->client_tracking_prefixes->numnodes * (sizeof(raxNode) * sizeof(raxNode*));
return mem;
}
/* Get the class of a client, used in order to enforce limits to different
* classes of clients.
*
* The function will return one of the following:
* CLIENT_TYPE_NORMAL -> Normal client, including MONITOR
* CLIENT_TYPE_SLAVE -> Slave
* CLIENT_TYPE_PUBSUB -> Client subscribed to Pub/Sub channels
* CLIENT_TYPE_MASTER -> The client representing our replication master.
*/
int getClientType(client *c) {
if (c->flags & CLIENT_MASTER) return CLIENT_TYPE_MASTER;
/* Even though MONITOR clients are marked as replicas, we
* want the expose them as normal clients. */
if ((c->flags & CLIENT_SLAVE) && !(c->flags & CLIENT_MONITOR))
return CLIENT_TYPE_SLAVE;
if (c->flags & CLIENT_PUBSUB) return CLIENT_TYPE_PUBSUB;
return CLIENT_TYPE_NORMAL;
}
int getClientTypeByName(char *name) {
if (!strcasecmp(name,"normal")) return CLIENT_TYPE_NORMAL;
else if (!strcasecmp(name,"slave")) return CLIENT_TYPE_SLAVE;
else if (!strcasecmp(name,"replica")) return CLIENT_TYPE_SLAVE;
else if (!strcasecmp(name,"pubsub")) return CLIENT_TYPE_PUBSUB;
else if (!strcasecmp(name,"master")) return CLIENT_TYPE_MASTER;
else return -1;
}
char *getClientTypeName(int class) {
switch(class) {
case CLIENT_TYPE_NORMAL: return "normal";
case CLIENT_TYPE_SLAVE: return "slave";
case CLIENT_TYPE_PUBSUB: return "pubsub";
case CLIENT_TYPE_MASTER: return "master";
default: return NULL;
}
}
/* The function checks if the client reached output buffer soft or hard
* limit, and also update the state needed to check the soft limit as
* a side effect.
*
* Return value: non-zero if the client reached the soft or the hard limit.
* Otherwise zero is returned. */
int checkClientOutputBufferLimits(client *c) {
int soft = 0, hard = 0, class;
unsigned long used_mem = getClientOutputBufferMemoryUsage(c);
class = getClientType(c);
/* For the purpose of output buffer limiting, masters are handled
* like normal clients. */
if (class == CLIENT_TYPE_MASTER) class = CLIENT_TYPE_NORMAL;
/* Note that it doesn't make sense to set the replica clients output buffer
* limit lower than the repl-backlog-size config (partial sync will succeed
* and then replica will get disconnected).
* Such a configuration is ignored (the size of repl-backlog-size will be used).
* This doesn't have memory consumption implications since the replica client
* will share the backlog buffers memory. */
size_t hard_limit_bytes = server.client_obuf_limits[class].hard_limit_bytes;
if (class == CLIENT_TYPE_SLAVE && hard_limit_bytes &&
(long long)hard_limit_bytes < server.repl_backlog_size)
hard_limit_bytes = server.repl_backlog_size;
if (server.client_obuf_limits[class].hard_limit_bytes &&
used_mem >= hard_limit_bytes)
hard = 1;
if (server.client_obuf_limits[class].soft_limit_bytes &&
used_mem >= server.client_obuf_limits[class].soft_limit_bytes)
soft = 1;
/* We need to check if the soft limit is reached continuously for the
* specified amount of seconds. */
if (soft) {
if (c->obuf_soft_limit_reached_time == 0) {
c->obuf_soft_limit_reached_time = server.unixtime;
soft = 0; /* First time we see the soft limit reached */
} else {
time_t elapsed = server.unixtime - c->obuf_soft_limit_reached_time;
if (elapsed <=
server.client_obuf_limits[class].soft_limit_seconds) {
soft = 0; /* The client still did not reached the max number of
seconds for the soft limit to be considered
reached. */
}
}
} else {
c->obuf_soft_limit_reached_time = 0;
}
return soft || hard;
}
/* Asynchronously close a client if soft or hard limit is reached on the
* output buffer size. The caller can check if the client will be closed
* checking if the client CLIENT_CLOSE_ASAP flag is set.
*
* Note: we need to close the client asynchronously because this function is
* called from contexts where the client can't be freed safely, i.e. from the
* lower level functions pushing data inside the client output buffers.
* When `async` is set to 0, we close the client immediately, this is
* useful when called from cron.
*
* Returns 1 if client was (flagged) closed. */
int closeClientOnOutputBufferLimitReached(client *c, int async) {
if (!c->conn) return 0; /* It is unsafe to free fake clients. */
serverAssert(c->reply_bytes < SIZE_MAX-(1024*64));
/* Note that c->reply_bytes is irrelevant for replica clients
* (they use the global repl buffers). */
if ((c->reply_bytes == 0 && getClientType(c) != CLIENT_TYPE_SLAVE) ||
c->flags & CLIENT_CLOSE_ASAP) return 0;
if (checkClientOutputBufferLimits(c)) {
sds client = catClientInfoString(sdsempty(),c);
if (async) {
freeClientAsync(c);
serverLog(LL_WARNING,
"Client %s scheduled to be closed ASAP for overcoming of output buffer limits.",
client);
} else {
freeClient(c);
serverLog(LL_WARNING,
"Client %s closed for overcoming of output buffer limits.",
client);
}
sdsfree(client);
server.stat_client_outbuf_limit_disconnections++;
return 1;
}
return 0;
}
/* Helper function used by performEvictions() in order to flush slaves
* output buffers without returning control to the event loop.
* This is also called by SHUTDOWN for a best-effort attempt to send
* slaves the latest writes. */
void flushSlavesOutputBuffers(void) {
listIter li;
listNode *ln;
listRewind(server.slaves,&li);
while((ln = listNext(&li))) {
client *slave = listNodeValue(ln);
int can_receive_writes = connHasWriteHandler(slave->conn) ||
(slave->flags & CLIENT_PENDING_WRITE);
/* We don't want to send the pending data to the replica in a few
* cases:
*
* 1. For some reason there is neither the write handler installed
* nor the client is flagged as to have pending writes: for some
* reason this replica may not be set to receive data. This is
* just for the sake of defensive programming.
*
* 2. The put_online_on_ack flag is true. To know why we don't want
* to send data to the replica in this case, please grep for the
* flag for this flag.
*
* 3. Obviously if the slave is not ONLINE.
*/
if (slave->replstate == SLAVE_STATE_ONLINE &&
!(slave->flags & CLIENT_CLOSE_ASAP) &&
can_receive_writes &&
!slave->repl_start_cmd_stream_on_ack &&
clientHasPendingReplies(slave))
{
writeToClient(slave,0);
}
}
}
/* Compute current paused actions and its end time, aggregated for
* all pause purposes. */
void updatePausedActions(void) {
uint32_t prev_paused_actions = server.paused_actions;
server.paused_actions = 0;
for (int i = 0; i < NUM_PAUSE_PURPOSES; i++) {
pause_event *p = &(server.client_pause_per_purpose[i]);
if (p->end > server.mstime)
server.paused_actions |= p->paused_actions;
else {
p->paused_actions = 0;
p->end = 0;
}
}
/* If the pause type is less restrictive than before, we unblock all clients
* so they are reprocessed (may get re-paused). */
uint32_t mask_cli = (PAUSE_ACTION_CLIENT_WRITE|PAUSE_ACTION_CLIENT_ALL);
if ((server.paused_actions & mask_cli) < (prev_paused_actions & mask_cli)) {
unblockPostponedClients();
}
}
/* Unblock all paused clients (ones that where blocked by BLOCKED_POSTPONE (possibly in processCommand).
* This means they'll get re-processed in beforeSleep, and may get paused again if needed. */
void unblockPostponedClients(void) {
listNode *ln;
listIter li;
listRewind(server.postponed_clients, &li);
while ((ln = listNext(&li)) != NULL) {
client *c = listNodeValue(ln);
unblockClient(c, 1);
}
}
/* Set pause-client end-time and restricted action. If already paused, then:
* 1. Keep higher end-time value between configured and the new one
* 2. Keep most restrictive action between configured and the new one */
static void pauseClientsByClient(mstime_t endTime, int isPauseClientAll) {
uint32_t actions;
pause_event *p = &server.client_pause_per_purpose[PAUSE_BY_CLIENT_COMMAND];
if (isPauseClientAll)
actions = PAUSE_ACTIONS_CLIENT_ALL_SET;
else {
actions = PAUSE_ACTIONS_CLIENT_WRITE_SET;
/* If currently configured most restrictive client pause, then keep it */
if (p->paused_actions & PAUSE_ACTION_CLIENT_ALL)
actions = PAUSE_ACTIONS_CLIENT_ALL_SET;
}
pauseActions(PAUSE_BY_CLIENT_COMMAND, endTime, actions);
}
/* Pause actions up to the specified unixtime (in ms) for a given type of
* commands.
*
* A main use case of this function is to allow pausing replication traffic
* so that a failover without data loss to occur. Replicas will continue to receive
* traffic to facilitate this functionality.
*
* This function is also internally used by Redis Cluster for the manual
* failover procedure implemented by CLUSTER FAILOVER.
*
* The function always succeed, even if there is already a pause in progress.
* The new paused_actions of a given 'purpose' will override the old ones and
* end time will be updated if new end time is bigger than currently configured */
void pauseActions(pause_purpose purpose, mstime_t end, uint32_t actions) {
/* Manage pause type and end time per pause purpose. */
server.client_pause_per_purpose[purpose].paused_actions = actions;
/* If currently configured end time bigger than new one, then keep it */
if (server.client_pause_per_purpose[purpose].end < end)
server.client_pause_per_purpose[purpose].end = end;
updatePausedActions();
/* We allow write commands that were queued
* up before and after to execute. We need
* to track this state so that we don't assert
* in propagateNow(). */
if (server.in_exec) {
server.client_pause_in_transaction = 1;
}
}
/* Unpause actions and queue them for reprocessing. */
void unpauseActions(pause_purpose purpose) {
server.client_pause_per_purpose[purpose].end = 0;
server.client_pause_per_purpose[purpose].paused_actions = 0;
updatePausedActions();
}
/* Returns bitmask of paused actions */
uint32_t isPausedActions(uint32_t actions_bitmask) {
return (server.paused_actions & actions_bitmask);
}
/* Returns bitmask of paused actions */
uint32_t isPausedActionsWithUpdate(uint32_t actions_bitmask) {
if (!(server.paused_actions & actions_bitmask)) return 0;
updatePausedActions();
return (server.paused_actions & actions_bitmask);
}
/* This function is called by Redis in order to process a few events from
* time to time while blocked into some not interruptible operation.
* This allows to reply to clients with the -LOADING error while loading the
* data set at startup or after a full resynchronization with the master
* and so forth.
*
* It calls the event loop in order to process a few events. Specifically we
* try to call the event loop 4 times as long as we receive acknowledge that
* some event was processed, in order to go forward with the accept, read,
* write, close sequence needed to serve a client.
*
* The function returns the total number of events processed. */
void processEventsWhileBlocked(void) {
int iterations = 4; /* See the function top-comment. */
/* Update our cached time since it is used to create and update the last
* interaction time with clients and for other important things. */
updateCachedTime(0);
/* For the few commands that are allowed during busy scripts, we rather
* provide a fresher time than the one from when the script started (they
* still won't get it from the call due to execution_nesting. For commands
* during loading this doesn't matter. */
mstime_t prev_cmd_time_snapshot = server.cmd_time_snapshot;
server.cmd_time_snapshot = server.mstime;
/* Note: when we are processing events while blocked (for instance during
* busy Lua scripts), we set a global flag. When such flag is set, we
* avoid handling the read part of clients using threaded I/O.
* See https://github.com/redis/redis/issues/6988 for more info.
* Note that there could be cases of nested calls to this function,
* specifically on a busy script during async_loading rdb, and scripts
* that came from AOF. */
ProcessingEventsWhileBlocked++;
while (iterations--) {
long long startval = server.events_processed_while_blocked;
long long ae_events = aeProcessEvents(server.el,
AE_FILE_EVENTS|AE_DONT_WAIT|
AE_CALL_BEFORE_SLEEP|AE_CALL_AFTER_SLEEP);
/* Note that server.events_processed_while_blocked will also get
* incremented by callbacks called by the event loop handlers. */
server.events_processed_while_blocked += ae_events;
long long events = server.events_processed_while_blocked - startval;
if (!events) break;
}
whileBlockedCron();
ProcessingEventsWhileBlocked--;
serverAssert(ProcessingEventsWhileBlocked >= 0);
server.cmd_time_snapshot = prev_cmd_time_snapshot;
}
/* ==========================================================================
* Threaded I/O
* ========================================================================== */
#define IO_THREADS_MAX_NUM 128
#ifndef CACHE_LINE_SIZE
#if defined(__aarch64__) && defined(__APPLE__)
#define CACHE_LINE_SIZE 128
#else
#define CACHE_LINE_SIZE 64
#endif
#endif
typedef struct __attribute__((aligned(CACHE_LINE_SIZE))) threads_pending {
redisAtomic unsigned long value;
} threads_pending;
pthread_t io_threads[IO_THREADS_MAX_NUM];
pthread_mutex_t io_threads_mutex[IO_THREADS_MAX_NUM];
threads_pending io_threads_pending[IO_THREADS_MAX_NUM];
int io_threads_op; /* IO_THREADS_OP_IDLE, IO_THREADS_OP_READ or IO_THREADS_OP_WRITE. */ // TODO: should access to this be atomic??!
/* This is the list of clients each thread will serve when threaded I/O is
* used. We spawn io_threads_num-1 threads, since one is the main thread
* itself. */
list *io_threads_list[IO_THREADS_MAX_NUM];
static inline unsigned long getIOPendingCount(int i) {
unsigned long count = 0;
atomicGetWithSync(io_threads_pending[i].value, count);
return count;
}
static inline void setIOPendingCount(int i, unsigned long count) {
atomicSetWithSync(io_threads_pending[i].value, count);
}
void *IOThreadMain(void *myid) {
/* The ID is the thread number (from 0 to server.io_threads_num-1), and is
* used by the thread to just manipulate a single sub-array of clients. */
long id = (unsigned long)myid;
char thdname[16];
snprintf(thdname, sizeof(thdname), "io_thd_%ld", id);
redis_set_thread_title(thdname);
redisSetCpuAffinity(server.server_cpulist);
makeThreadKillable();
while(1) {
/* Wait for start */
for (int j = 0; j < 1000000; j++) {
if (getIOPendingCount(id) != 0) break;
}
/* Give the main thread a chance to stop this thread. */
if (getIOPendingCount(id) == 0) {
pthread_mutex_lock(&io_threads_mutex[id]);
pthread_mutex_unlock(&io_threads_mutex[id]);
continue;
}
serverAssert(getIOPendingCount(id) != 0);
/* Process: note that the main thread will never touch our list
* before we drop the pending count to 0. */
listIter li;
listNode *ln;
listRewind(io_threads_list[id],&li);
while((ln = listNext(&li))) {
client *c = listNodeValue(ln);
if (io_threads_op == IO_THREADS_OP_WRITE) {
writeToClient(c,0);
} else if (io_threads_op == IO_THREADS_OP_READ) {
readQueryFromClient(c->conn);
} else {
serverPanic("io_threads_op value is unknown");
}
}
listEmpty(io_threads_list[id]);
setIOPendingCount(id, 0);
}
}
/* Initialize the data structures needed for threaded I/O. */
void initThreadedIO(void) {
server.io_threads_active = 0; /* We start with threads not active. */
/* Indicate that io-threads are currently idle */
io_threads_op = IO_THREADS_OP_IDLE;
/* Don't spawn any thread if the user selected a single thread:
* we'll handle I/O directly from the main thread. */
if (server.io_threads_num == 1) return;
if (server.io_threads_num > IO_THREADS_MAX_NUM) {
serverLog(LL_WARNING,"Fatal: too many I/O threads configured. "
"The maximum number is %d.", IO_THREADS_MAX_NUM);
exit(1);
}
/* Spawn and initialize the I/O threads. */
for (int i = 0; i < server.io_threads_num; i++) {
/* Things we do for all the threads including the main thread. */
io_threads_list[i] = listCreate();
if (i == 0) continue; /* Thread 0 is the main thread. */
/* Things we do only for the additional threads. */
pthread_t tid;
pthread_mutex_init(&io_threads_mutex[i],NULL);
setIOPendingCount(i, 0);
pthread_mutex_lock(&io_threads_mutex[i]); /* Thread will be stopped. */
if (pthread_create(&tid,NULL,IOThreadMain,(void*)(long)i) != 0) {
serverLog(LL_WARNING,"Fatal: Can't initialize IO thread.");
exit(1);
}
io_threads[i] = tid;
}
}
void killIOThreads(void) {
int err, j;
for (j = 0; j < server.io_threads_num; j++) {
if (io_threads[j] == pthread_self()) continue;
if (io_threads[j] && pthread_cancel(io_threads[j]) == 0) {
if ((err = pthread_join(io_threads[j],NULL)) != 0) {
serverLog(LL_WARNING,
"IO thread(tid:%lu) can not be joined: %s",
(unsigned long)io_threads[j], strerror(err));
} else {
serverLog(LL_WARNING,
"IO thread(tid:%lu) terminated",(unsigned long)io_threads[j]);
}
}
}
}
void startThreadedIO(void) {
serverAssert(server.io_threads_active == 0);
for (int j = 1; j < server.io_threads_num; j++)
pthread_mutex_unlock(&io_threads_mutex[j]);
server.io_threads_active = 1;
}
void stopThreadedIO(void) {
/* We may have still clients with pending reads when this function
* is called: handle them before stopping the threads. */
handleClientsWithPendingReadsUsingThreads();
serverAssert(server.io_threads_active == 1);
for (int j = 1; j < server.io_threads_num; j++)
pthread_mutex_lock(&io_threads_mutex[j]);
server.io_threads_active = 0;
}
/* This function checks if there are not enough pending clients to justify
* taking the I/O threads active: in that case I/O threads are stopped if
* currently active. We track the pending writes as a measure of clients
* we need to handle in parallel, however the I/O threading is disabled
* globally for reads as well if we have too little pending clients.
*
* The function returns 0 if the I/O threading should be used because there
* are enough active threads, otherwise 1 is returned and the I/O threads
* could be possibly stopped (if already active) as a side effect. */
int stopThreadedIOIfNeeded(void) {
int pending = listLength(server.clients_pending_write);
/* Return ASAP if IO threads are disabled (single threaded mode). */
if (server.io_threads_num == 1) return 1;
if (pending < (server.io_threads_num*2)) {
if (server.io_threads_active) stopThreadedIO();
return 1;
} else {
return 0;
}
}
/* This function achieves thread safety using a fan-out -> fan-in paradigm:
* Fan out: The main thread fans out work to the io-threads which block until
* setIOPendingCount() is called with a value larger than 0 by the main thread.
* Fan in: The main thread waits until getIOPendingCount() returns 0. Then
* it can safely perform post-processing and return to normal synchronous
* work. */
int handleClientsWithPendingWritesUsingThreads(void) {
int processed = listLength(server.clients_pending_write);
if (processed == 0) return 0; /* Return ASAP if there are no clients. */
/* If I/O threads are disabled or we have few clients to serve, don't
* use I/O threads, but the boring synchronous code. */
if (server.io_threads_num == 1 || stopThreadedIOIfNeeded()) {
return handleClientsWithPendingWrites();
}
/* Start threads if needed. */
if (!server.io_threads_active) startThreadedIO();
/* Distribute the clients across N different lists. */
listIter li;
listNode *ln;
listRewind(server.clients_pending_write,&li);
int item_id = 0;
while((ln = listNext(&li))) {
client *c = listNodeValue(ln);
c->flags &= ~CLIENT_PENDING_WRITE;
/* Remove clients from the list of pending writes since
* they are going to be closed ASAP. */
if (c->flags & CLIENT_CLOSE_ASAP) {
listUnlinkNode(server.clients_pending_write, ln);
continue;
}
/* Since all replicas and replication backlog use global replication
* buffer, to guarantee data accessing thread safe, we must put all
* replicas client into io_threads_list[0] i.e. main thread handles
* sending the output buffer of all replicas. */
if (getClientType(c) == CLIENT_TYPE_SLAVE) {
listAddNodeTail(io_threads_list[0],c);
continue;
}
int target_id = item_id % server.io_threads_num;
listAddNodeTail(io_threads_list[target_id],c);
item_id++;
}
/* Give the start condition to the waiting threads, by setting the
* start condition atomic var. */
io_threads_op = IO_THREADS_OP_WRITE;
for (int j = 1; j < server.io_threads_num; j++) {
int count = listLength(io_threads_list[j]);
setIOPendingCount(j, count);
}
/* Also use the main thread to process a slice of clients. */
listRewind(io_threads_list[0],&li);
while((ln = listNext(&li))) {
client *c = listNodeValue(ln);
writeToClient(c,0);
}
listEmpty(io_threads_list[0]);
/* Wait for all the other threads to end their work. */
while(1) {
unsigned long pending = 0;
for (int j = 1; j < server.io_threads_num; j++)
pending += getIOPendingCount(j);
if (pending == 0) break;
}
io_threads_op = IO_THREADS_OP_IDLE;
/* Run the list of clients again to install the write handler where
* needed. */
listRewind(server.clients_pending_write,&li);
while((ln = listNext(&li))) {
client *c = listNodeValue(ln);
/* Update the client in the mem usage after we're done processing it in the io-threads */
updateClientMemUsageAndBucket(c);
/* Install the write handler if there are pending writes in some
* of the clients. */
if (clientHasPendingReplies(c)) {
installClientWriteHandler(c);
}
}
while(listLength(server.clients_pending_write) > 0) {
listUnlinkNode(server.clients_pending_write, server.clients_pending_write->head);
}
/* Update processed count on server */
server.stat_io_writes_processed += processed;
return processed;
}
/* Return 1 if we want to handle the client read later using threaded I/O.
* This is called by the readable handler of the event loop.
* As a side effect of calling this function the client is put in the
* pending read clients and flagged as such. */
int postponeClientRead(client *c) {
if (server.io_threads_active &&
server.io_threads_do_reads &&
!ProcessingEventsWhileBlocked &&
!(c->flags & (CLIENT_MASTER|CLIENT_SLAVE|CLIENT_BLOCKED)) &&
io_threads_op == IO_THREADS_OP_IDLE)
{
listAddNodeHead(server.clients_pending_read,c);
c->pending_read_list_node = listFirst(server.clients_pending_read);
return 1;
} else {
return 0;
}
}
/* When threaded I/O is also enabled for the reading + parsing side, the
* readable handler will just put normal clients into a queue of clients to
* process (instead of serving them synchronously). This function runs
* the queue using the I/O threads, and process them in order to accumulate
* the reads in the buffers, and also parse the first command available
* rendering it in the client structures.
* This function achieves thread safety using a fan-out -> fan-in paradigm:
* Fan out: The main thread fans out work to the io-threads which block until
* setIOPendingCount() is called with a value larger than 0 by the main thread.
* Fan in: The main thread waits until getIOPendingCount() returns 0. Then
* it can safely perform post-processing and return to normal synchronous
* work. */
int handleClientsWithPendingReadsUsingThreads(void) {
if (!server.io_threads_active || !server.io_threads_do_reads) return 0;
int processed = listLength(server.clients_pending_read);
if (processed == 0) return 0;
/* Distribute the clients across N different lists. */
listIter li;
listNode *ln;
listRewind(server.clients_pending_read,&li);
int item_id = 0;
while((ln = listNext(&li))) {
client *c = listNodeValue(ln);
int target_id = item_id % server.io_threads_num;
listAddNodeTail(io_threads_list[target_id],c);
item_id++;
}
/* Give the start condition to the waiting threads, by setting the
* start condition atomic var. */
io_threads_op = IO_THREADS_OP_READ;
for (int j = 1; j < server.io_threads_num; j++) {
int count = listLength(io_threads_list[j]);
setIOPendingCount(j, count);
}
/* Also use the main thread to process a slice of clients. */
listRewind(io_threads_list[0],&li);
while((ln = listNext(&li))) {
client *c = listNodeValue(ln);
readQueryFromClient(c->conn);
}
listEmpty(io_threads_list[0]);
/* Wait for all the other threads to end their work. */
while(1) {
unsigned long pending = 0;
for (int j = 1; j < server.io_threads_num; j++)
pending += getIOPendingCount(j);
if (pending == 0) break;
}
io_threads_op = IO_THREADS_OP_IDLE;
/* Run the list of clients again to process the new buffers. */
while(listLength(server.clients_pending_read)) {
ln = listFirst(server.clients_pending_read);
client *c = listNodeValue(ln);
listDelNode(server.clients_pending_read,ln);
c->pending_read_list_node = NULL;
serverAssert(!(c->flags & CLIENT_BLOCKED));
if (beforeNextClient(c) == C_ERR) {
/* If the client is no longer valid, we avoid
* processing the client later. So we just go
* to the next. */
continue;
}
/* Once io-threads are idle we can update the client in the mem usage */
updateClientMemUsageAndBucket(c);
if (processPendingCommandAndInputBuffer(c) == C_ERR) {
/* If the client is no longer valid, we avoid
* processing the client later. So we just go
* to the next. */
continue;
}
/* We may have pending replies if a thread readQueryFromClient() produced
* replies and did not put the client in pending write queue (it can't).
*/
if (!(c->flags & CLIENT_PENDING_WRITE) && clientHasPendingReplies(c))
putClientInPendingWriteQueue(c);
}
/* Update processed count on server */
server.stat_io_reads_processed += processed;
return processed;
}
/* Returns the actual client eviction limit based on current configuration or
* 0 if no limit. */
size_t getClientEvictionLimit(void) {
size_t maxmemory_clients_actual = SIZE_MAX;
/* Handle percentage of maxmemory*/
if (server.maxmemory_clients < 0 && server.maxmemory > 0) {
unsigned long long maxmemory_clients_bytes = (unsigned long long)((double)server.maxmemory * -(double) server.maxmemory_clients / 100);
if (maxmemory_clients_bytes <= SIZE_MAX)
maxmemory_clients_actual = maxmemory_clients_bytes;
}
else if (server.maxmemory_clients > 0)
maxmemory_clients_actual = server.maxmemory_clients;
else
return 0;
/* Don't allow a too small maxmemory-clients to avoid cases where we can't communicate
* at all with the server because of bad configuration */
if (maxmemory_clients_actual < 1024*128)
maxmemory_clients_actual = 1024*128;
return maxmemory_clients_actual;
}
void evictClients(void) {
if (!server.client_mem_usage_buckets)
return;
/* Start eviction from topmost bucket (largest clients) */
int curr_bucket = CLIENT_MEM_USAGE_BUCKETS-1;
listIter bucket_iter;
listRewind(server.client_mem_usage_buckets[curr_bucket].clients, &bucket_iter);
size_t client_eviction_limit = getClientEvictionLimit();
if (client_eviction_limit == 0)
return;
while (server.stat_clients_type_memory[CLIENT_TYPE_NORMAL] +
server.stat_clients_type_memory[CLIENT_TYPE_PUBSUB] >= client_eviction_limit) {
listNode *ln = listNext(&bucket_iter);
if (ln) {
client *c = ln->value;
sds ci = catClientInfoString(sdsempty(),c);
serverLog(LL_NOTICE, "Evicting client: %s", ci);
freeClient(c);
sdsfree(ci);
server.stat_evictedclients++;
} else {
curr_bucket--;
if (curr_bucket < 0) {
serverLog(LL_WARNING, "Over client maxmemory after evicting all evictable clients");
break;
}
listRewind(server.client_mem_usage_buckets[curr_bucket].clients, &bucket_iter);
}
}
}