redis/src/bitops.c

1270 lines
45 KiB
C

/* Bit operations.
*
* Copyright (c) 2009-Present, Redis Ltd.
* All rights reserved.
*
* Licensed under your choice of the Redis Source Available License 2.0
* (RSALv2) or the Server Side Public License v1 (SSPLv1).
*/
#include "server.h"
/* -----------------------------------------------------------------------------
* Helpers and low level bit functions.
* -------------------------------------------------------------------------- */
/* Count number of bits set in the binary array pointed by 's' and long
* 'count' bytes. The implementation of this function is required to
* work with an input string length up to 512 MB or more (server.proto_max_bulk_len) */
long long redisPopcount(void *s, long count) {
long long bits = 0;
unsigned char *p = s;
uint32_t *p4;
static const unsigned char bitsinbyte[256] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8};
/* Count initial bytes not aligned to 32 bit. */
while((unsigned long)p & 3 && count) {
bits += bitsinbyte[*p++];
count--;
}
/* Count bits 28 bytes at a time */
p4 = (uint32_t*)p;
while(count>=28) {
uint32_t aux1, aux2, aux3, aux4, aux5, aux6, aux7;
aux1 = *p4++;
aux2 = *p4++;
aux3 = *p4++;
aux4 = *p4++;
aux5 = *p4++;
aux6 = *p4++;
aux7 = *p4++;
count -= 28;
aux1 = aux1 - ((aux1 >> 1) & 0x55555555);
aux1 = (aux1 & 0x33333333) + ((aux1 >> 2) & 0x33333333);
aux2 = aux2 - ((aux2 >> 1) & 0x55555555);
aux2 = (aux2 & 0x33333333) + ((aux2 >> 2) & 0x33333333);
aux3 = aux3 - ((aux3 >> 1) & 0x55555555);
aux3 = (aux3 & 0x33333333) + ((aux3 >> 2) & 0x33333333);
aux4 = aux4 - ((aux4 >> 1) & 0x55555555);
aux4 = (aux4 & 0x33333333) + ((aux4 >> 2) & 0x33333333);
aux5 = aux5 - ((aux5 >> 1) & 0x55555555);
aux5 = (aux5 & 0x33333333) + ((aux5 >> 2) & 0x33333333);
aux6 = aux6 - ((aux6 >> 1) & 0x55555555);
aux6 = (aux6 & 0x33333333) + ((aux6 >> 2) & 0x33333333);
aux7 = aux7 - ((aux7 >> 1) & 0x55555555);
aux7 = (aux7 & 0x33333333) + ((aux7 >> 2) & 0x33333333);
bits += ((((aux1 + (aux1 >> 4)) & 0x0F0F0F0F) +
((aux2 + (aux2 >> 4)) & 0x0F0F0F0F) +
((aux3 + (aux3 >> 4)) & 0x0F0F0F0F) +
((aux4 + (aux4 >> 4)) & 0x0F0F0F0F) +
((aux5 + (aux5 >> 4)) & 0x0F0F0F0F) +
((aux6 + (aux6 >> 4)) & 0x0F0F0F0F) +
((aux7 + (aux7 >> 4)) & 0x0F0F0F0F))* 0x01010101) >> 24;
}
/* Count the remaining bytes. */
p = (unsigned char*)p4;
while(count--) bits += bitsinbyte[*p++];
return bits;
}
/* Return the position of the first bit set to one (if 'bit' is 1) or
* zero (if 'bit' is 0) in the bitmap starting at 's' and long 'count' bytes.
*
* The function is guaranteed to return a value >= 0 if 'bit' is 0 since if
* no zero bit is found, it returns count*8 assuming the string is zero
* padded on the right. However if 'bit' is 1 it is possible that there is
* not a single set bit in the bitmap. In this special case -1 is returned. */
long long redisBitpos(void *s, unsigned long count, int bit) {
unsigned long *l;
unsigned char *c;
unsigned long skipval, word = 0, one;
long long pos = 0; /* Position of bit, to return to the caller. */
unsigned long j;
int found;
/* Process whole words first, seeking for first word that is not
* all ones or all zeros respectively if we are looking for zeros
* or ones. This is much faster with large strings having contiguous
* blocks of 1 or 0 bits compared to the vanilla bit per bit processing.
*
* Note that if we start from an address that is not aligned
* to sizeof(unsigned long) we consume it byte by byte until it is
* aligned. */
/* Skip initial bits not aligned to sizeof(unsigned long) byte by byte. */
skipval = bit ? 0 : UCHAR_MAX;
c = (unsigned char*) s;
found = 0;
while((unsigned long)c & (sizeof(*l)-1) && count) {
if (*c != skipval) {
found = 1;
break;
}
c++;
count--;
pos += 8;
}
/* Skip bits with full word step. */
l = (unsigned long*) c;
if (!found) {
skipval = bit ? 0 : ULONG_MAX;
while (count >= sizeof(*l)) {
if (*l != skipval) break;
l++;
count -= sizeof(*l);
pos += sizeof(*l)*8;
}
}
/* Load bytes into "word" considering the first byte as the most significant
* (we basically consider it as written in big endian, since we consider the
* string as a set of bits from left to right, with the first bit at position
* zero.
*
* Note that the loading is designed to work even when the bytes left
* (count) are less than a full word. We pad it with zero on the right. */
c = (unsigned char*)l;
for (j = 0; j < sizeof(*l); j++) {
word <<= 8;
if (count) {
word |= *c;
c++;
count--;
}
}
/* Special case:
* If bits in the string are all zero and we are looking for one,
* return -1 to signal that there is not a single "1" in the whole
* string. This can't happen when we are looking for "0" as we assume
* that the right of the string is zero padded. */
if (bit == 1 && word == 0) return -1;
/* Last word left, scan bit by bit. The first thing we need is to
* have a single "1" set in the most significant position in an
* unsigned long. We don't know the size of the long so we use a
* simple trick. */
one = ULONG_MAX; /* All bits set to 1.*/
one >>= 1; /* All bits set to 1 but the MSB. */
one = ~one; /* All bits set to 0 but the MSB. */
while(one) {
if (((one & word) != 0) == bit) return pos;
pos++;
one >>= 1;
}
/* If we reached this point, there is a bug in the algorithm, since
* the case of no match is handled as a special case before. */
serverPanic("End of redisBitpos() reached.");
return 0; /* Just to avoid warnings. */
}
/* The following set.*Bitfield and get.*Bitfield functions implement setting
* and getting arbitrary size (up to 64 bits) signed and unsigned integers
* at arbitrary positions into a bitmap.
*
* The representation considers the bitmap as having the bit number 0 to be
* the most significant bit of the first byte, and so forth, so for example
* setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap
* previously set to all zeroes, will produce the following representation:
*
* +--------+--------+
* |00000001|01110000|
* +--------+--------+
*
* When offsets and integer sizes are aligned to bytes boundaries, this is the
* same as big endian, however when such alignment does not exist, its important
* to also understand how the bits inside a byte are ordered.
*
* Note that this format follows the same convention as SETBIT and related
* commands.
*/
void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) {
uint64_t byte, bit, byteval, bitval, j;
for (j = 0; j < bits; j++) {
bitval = (value & ((uint64_t)1<<(bits-1-j))) != 0;
byte = offset >> 3;
bit = 7 - (offset & 0x7);
byteval = p[byte];
byteval &= ~(1 << bit);
byteval |= bitval << bit;
p[byte] = byteval & 0xff;
offset++;
}
}
void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) {
uint64_t uv = value; /* Casting will add UINT64_MAX + 1 if v is negative. */
setUnsignedBitfield(p,offset,bits,uv);
}
uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
uint64_t byte, bit, byteval, bitval, j, value = 0;
for (j = 0; j < bits; j++) {
byte = offset >> 3;
bit = 7 - (offset & 0x7);
byteval = p[byte];
bitval = (byteval >> bit) & 1;
value = (value<<1) | bitval;
offset++;
}
return value;
}
int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) {
int64_t value;
union {uint64_t u; int64_t i;} conv;
/* Converting from unsigned to signed is undefined when the value does
* not fit, however here we assume two's complement and the original value
* was obtained from signed -> unsigned conversion, so we'll find the
* most significant bit set if the original value was negative.
*
* Note that two's complement is mandatory for exact-width types
* according to the C99 standard. */
conv.u = getUnsignedBitfield(p,offset,bits);
value = conv.i;
/* If the top significant bit is 1, propagate it to all the
* higher bits for two's complement representation of signed
* integers. */
if (bits < 64 && (value & ((uint64_t)1 << (bits-1))))
value |= ((uint64_t)-1) << bits;
return value;
}
/* The following two functions detect overflow of a value in the context
* of storing it as an unsigned or signed integer with the specified
* number of bits. The functions both take the value and a possible increment.
* If no overflow could happen and the value+increment fit inside the limits,
* then zero is returned, otherwise in case of overflow, 1 is returned,
* otherwise in case of underflow, -1 is returned.
*
* When non-zero is returned (overflow or underflow), if not NULL, *limit is
* set to the value the operation should result when an overflow happens,
* depending on the specified overflow semantics:
*
* For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that
* you can store in that integer. when -1 is returned, *limit is set to the
* minimum value that an integer of that size can represent.
*
* For BFOVERFLOW_WRAP *limit is set by performing the operation in order to
* "wrap" around towards zero for unsigned integers, or towards the most
* negative number that is possible to represent for signed integers. */
#define BFOVERFLOW_WRAP 0
#define BFOVERFLOW_SAT 1
#define BFOVERFLOW_FAIL 2 /* Used by the BITFIELD command implementation. */
int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) {
uint64_t max = (bits == 64) ? UINT64_MAX : (((uint64_t)1<<bits)-1);
int64_t maxincr = max-value;
int64_t minincr = -value;
if (value > max || (incr > 0 && incr > maxincr)) {
if (limit) {
if (owtype == BFOVERFLOW_WRAP) {
goto handle_wrap;
} else if (owtype == BFOVERFLOW_SAT) {
*limit = max;
}
}
return 1;
} else if (incr < 0 && incr < minincr) {
if (limit) {
if (owtype == BFOVERFLOW_WRAP) {
goto handle_wrap;
} else if (owtype == BFOVERFLOW_SAT) {
*limit = 0;
}
}
return -1;
}
return 0;
handle_wrap:
{
uint64_t mask = ((uint64_t)-1) << bits;
uint64_t res = value+incr;
res &= ~mask;
*limit = res;
}
return 1;
}
int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) {
int64_t max = (bits == 64) ? INT64_MAX : (((int64_t)1<<(bits-1))-1);
int64_t min = (-max)-1;
/* Note that maxincr and minincr could overflow, but we use the values
* only after checking 'value' range, so when we use it no overflow
* happens. 'uint64_t' cast is there just to prevent undefined behavior on
* overflow */
int64_t maxincr = (uint64_t)max-value;
int64_t minincr = min-value;
if (value > max || (bits != 64 && incr > maxincr) || (value >= 0 && incr > 0 && incr > maxincr))
{
if (limit) {
if (owtype == BFOVERFLOW_WRAP) {
goto handle_wrap;
} else if (owtype == BFOVERFLOW_SAT) {
*limit = max;
}
}
return 1;
} else if (value < min || (bits != 64 && incr < minincr) || (value < 0 && incr < 0 && incr < minincr)) {
if (limit) {
if (owtype == BFOVERFLOW_WRAP) {
goto handle_wrap;
} else if (owtype == BFOVERFLOW_SAT) {
*limit = min;
}
}
return -1;
}
return 0;
handle_wrap:
{
uint64_t msb = (uint64_t)1 << (bits-1);
uint64_t a = value, b = incr, c;
c = a+b; /* Perform addition as unsigned so that's defined. */
/* If the sign bit is set, propagate to all the higher order
* bits, to cap the negative value. If it's clear, mask to
* the positive integer limit. */
if (bits < 64) {
uint64_t mask = ((uint64_t)-1) << bits;
if (c & msb) {
c |= mask;
} else {
c &= ~mask;
}
}
*limit = c;
}
return 1;
}
/* Debugging function. Just show bits in the specified bitmap. Not used
* but here for not having to rewrite it when debugging is needed. */
void printBits(unsigned char *p, unsigned long count) {
unsigned long j, i, byte;
for (j = 0; j < count; j++) {
byte = p[j];
for (i = 0x80; i > 0; i /= 2)
printf("%c", (byte & i) ? '1' : '0');
printf("|");
}
printf("\n");
}
/* -----------------------------------------------------------------------------
* Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP.
* -------------------------------------------------------------------------- */
#define BITOP_AND 0
#define BITOP_OR 1
#define BITOP_XOR 2
#define BITOP_NOT 3
#define BITFIELDOP_GET 0
#define BITFIELDOP_SET 1
#define BITFIELDOP_INCRBY 2
/* This helper function used by GETBIT / SETBIT parses the bit offset argument
* making sure an error is returned if it is negative or if it overflows
* Redis 512 MB limit for the string value or more (server.proto_max_bulk_len).
*
* If the 'hash' argument is true, and 'bits is positive, then the command
* will also parse bit offsets prefixed by "#". In such a case the offset
* is multiplied by 'bits'. This is useful for the BITFIELD command. */
int getBitOffsetFromArgument(client *c, robj *o, uint64_t *offset, int hash, int bits) {
long long loffset;
char *err = "bit offset is not an integer or out of range";
char *p = o->ptr;
size_t plen = sdslen(p);
int usehash = 0;
/* Handle #<offset> form. */
if (p[0] == '#' && hash && bits > 0) usehash = 1;
if (string2ll(p+usehash,plen-usehash,&loffset) == 0) {
addReplyError(c,err);
return C_ERR;
}
/* Adjust the offset by 'bits' for #<offset> form. */
if (usehash) loffset *= bits;
/* Limit offset to server.proto_max_bulk_len (512MB in bytes by default) */
if (loffset < 0 || (!mustObeyClient(c) && (loffset >> 3) >= server.proto_max_bulk_len))
{
addReplyError(c,err);
return C_ERR;
}
*offset = loffset;
return C_OK;
}
/* This helper function for BITFIELD parses a bitfield type in the form
* <sign><bits> where sign is 'u' or 'i' for unsigned and signed, and
* the bits is a value between 1 and 64. However 64 bits unsigned integers
* are reported as an error because of current limitations of Redis protocol
* to return unsigned integer values greater than INT64_MAX.
*
* On error C_ERR is returned and an error is sent to the client. */
int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) {
char *p = o->ptr;
char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is.";
long long llbits;
if (p[0] == 'i') {
*sign = 1;
} else if (p[0] == 'u') {
*sign = 0;
} else {
addReplyError(c,err);
return C_ERR;
}
if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 ||
llbits < 1 ||
(*sign == 1 && llbits > 64) ||
(*sign == 0 && llbits > 63))
{
addReplyError(c,err);
return C_ERR;
}
*bits = llbits;
return C_OK;
}
/* This is a helper function for commands implementations that need to write
* bits to a string object. The command creates or pad with zeroes the string
* so that the 'maxbit' bit can be addressed. The object is finally
* returned. Otherwise if the key holds a wrong type NULL is returned and
* an error is sent to the client. */
robj *lookupStringForBitCommand(client *c, uint64_t maxbit, int *dirty) {
size_t byte = maxbit >> 3;
robj *o = lookupKeyWrite(c->db,c->argv[1]);
if (checkType(c,o,OBJ_STRING)) return NULL;
if (dirty) *dirty = 0;
if (o == NULL) {
o = createObject(OBJ_STRING,sdsnewlen(NULL, byte+1));
dbAdd(c->db,c->argv[1],o);
if (dirty) *dirty = 1;
} else {
o = dbUnshareStringValue(c->db,c->argv[1],o);
size_t oldlen = sdslen(o->ptr);
o->ptr = sdsgrowzero(o->ptr,byte+1);
if (dirty && oldlen != sdslen(o->ptr)) *dirty = 1;
}
return o;
}
/* Return a pointer to the string object content, and stores its length
* in 'len'. The user is required to pass (likely stack allocated) buffer
* 'llbuf' of at least LONG_STR_SIZE bytes. Such a buffer is used in the case
* the object is integer encoded in order to provide the representation
* without using heap allocation.
*
* The function returns the pointer to the object array of bytes representing
* the string it contains, that may be a pointer to 'llbuf' or to the
* internal object representation. As a side effect 'len' is filled with
* the length of such buffer.
*
* If the source object is NULL the function is guaranteed to return NULL
* and set 'len' to 0. */
unsigned char *getObjectReadOnlyString(robj *o, long *len, char *llbuf) {
serverAssert(!o || o->type == OBJ_STRING);
unsigned char *p = NULL;
/* Set the 'p' pointer to the string, that can be just a stack allocated
* array if our string was integer encoded. */
if (o && o->encoding == OBJ_ENCODING_INT) {
p = (unsigned char*) llbuf;
if (len) *len = ll2string(llbuf,LONG_STR_SIZE,(long)o->ptr);
} else if (o) {
p = (unsigned char*) o->ptr;
if (len) *len = sdslen(o->ptr);
} else {
if (len) *len = 0;
}
return p;
}
/* SETBIT key offset bitvalue */
void setbitCommand(client *c) {
robj *o;
char *err = "bit is not an integer or out of range";
uint64_t bitoffset;
ssize_t byte, bit;
int byteval, bitval;
long on;
if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
return;
if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK)
return;
/* Bits can only be set or cleared... */
if (on & ~1) {
addReplyError(c,err);
return;
}
int dirty;
if ((o = lookupStringForBitCommand(c,bitoffset,&dirty)) == NULL) return;
/* Get current values */
byte = bitoffset >> 3;
byteval = ((uint8_t*)o->ptr)[byte];
bit = 7 - (bitoffset & 0x7);
bitval = byteval & (1 << bit);
/* Either it is newly created, changed length, or the bit changes before and after.
* Note that the bitval here is actually a decimal number.
* So we need to use `!!` to convert it to 0 or 1 for comparison. */
if (dirty || (!!bitval != on)) {
/* Update byte with new bit value. */
byteval &= ~(1 << bit);
byteval |= ((on & 0x1) << bit);
((uint8_t*)o->ptr)[byte] = byteval;
signalModifiedKey(c,c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
server.dirty++;
}
/* Return original value. */
addReply(c, bitval ? shared.cone : shared.czero);
}
/* GETBIT key offset */
void getbitCommand(client *c) {
robj *o;
char llbuf[32];
uint64_t bitoffset;
size_t byte, bit;
size_t bitval = 0;
if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK)
return;
if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL ||
checkType(c,o,OBJ_STRING)) return;
byte = bitoffset >> 3;
bit = 7 - (bitoffset & 0x7);
if (sdsEncodedObject(o)) {
if (byte < sdslen(o->ptr))
bitval = ((uint8_t*)o->ptr)[byte] & (1 << bit);
} else {
if (byte < (size_t)ll2string(llbuf,sizeof(llbuf),(long)o->ptr))
bitval = llbuf[byte] & (1 << bit);
}
addReply(c, bitval ? shared.cone : shared.czero);
}
/* BITOP op_name target_key src_key1 src_key2 src_key3 ... src_keyN */
REDIS_NO_SANITIZE("alignment")
void bitopCommand(client *c) {
char *opname = c->argv[1]->ptr;
robj *o, *targetkey = c->argv[2];
unsigned long op, j, numkeys;
robj **objects; /* Array of source objects. */
unsigned char **src; /* Array of source strings pointers. */
unsigned long *len, maxlen = 0; /* Array of length of src strings,
and max len. */
unsigned long minlen = 0; /* Min len among the input keys. */
unsigned char *res = NULL; /* Resulting string. */
/* Parse the operation name. */
if ((opname[0] == 'a' || opname[0] == 'A') && !strcasecmp(opname,"and"))
op = BITOP_AND;
else if((opname[0] == 'o' || opname[0] == 'O') && !strcasecmp(opname,"or"))
op = BITOP_OR;
else if((opname[0] == 'x' || opname[0] == 'X') && !strcasecmp(opname,"xor"))
op = BITOP_XOR;
else if((opname[0] == 'n' || opname[0] == 'N') && !strcasecmp(opname,"not"))
op = BITOP_NOT;
else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
/* Sanity check: NOT accepts only a single key argument. */
if (op == BITOP_NOT && c->argc != 4) {
addReplyError(c,"BITOP NOT must be called with a single source key.");
return;
}
/* Lookup keys, and store pointers to the string objects into an array. */
numkeys = c->argc - 3;
src = zmalloc(sizeof(unsigned char*) * numkeys);
len = zmalloc(sizeof(long) * numkeys);
objects = zmalloc(sizeof(robj*) * numkeys);
for (j = 0; j < numkeys; j++) {
o = lookupKeyRead(c->db,c->argv[j+3]);
/* Handle non-existing keys as empty strings. */
if (o == NULL) {
objects[j] = NULL;
src[j] = NULL;
len[j] = 0;
minlen = 0;
continue;
}
/* Return an error if one of the keys is not a string. */
if (checkType(c,o,OBJ_STRING)) {
unsigned long i;
for (i = 0; i < j; i++) {
if (objects[i])
decrRefCount(objects[i]);
}
zfree(src);
zfree(len);
zfree(objects);
return;
}
objects[j] = getDecodedObject(o);
src[j] = objects[j]->ptr;
len[j] = sdslen(objects[j]->ptr);
if (len[j] > maxlen) maxlen = len[j];
if (j == 0 || len[j] < minlen) minlen = len[j];
}
/* Compute the bit operation, if at least one string is not empty. */
if (maxlen) {
res = (unsigned char*) sdsnewlen(NULL,maxlen);
unsigned char output, byte;
unsigned long i;
/* Fast path: as far as we have data for all the input bitmaps we
* can take a fast path that performs much better than the
* vanilla algorithm. On ARM we skip the fast path since it will
* result in GCC compiling the code using multiple-words load/store
* operations that are not supported even in ARM >= v6. */
j = 0;
#ifndef USE_ALIGNED_ACCESS
if (minlen >= sizeof(unsigned long)*4 && numkeys <= 16) {
unsigned long *lp[16];
unsigned long *lres = (unsigned long*) res;
memcpy(lp,src,sizeof(unsigned long*)*numkeys);
memcpy(res,src[0],minlen);
/* Different branches per different operations for speed (sorry). */
if (op == BITOP_AND) {
while(minlen >= sizeof(unsigned long)*4) {
for (i = 1; i < numkeys; i++) {
lres[0] &= lp[i][0];
lres[1] &= lp[i][1];
lres[2] &= lp[i][2];
lres[3] &= lp[i][3];
lp[i]+=4;
}
lres+=4;
j += sizeof(unsigned long)*4;
minlen -= sizeof(unsigned long)*4;
}
} else if (op == BITOP_OR) {
while(minlen >= sizeof(unsigned long)*4) {
for (i = 1; i < numkeys; i++) {
lres[0] |= lp[i][0];
lres[1] |= lp[i][1];
lres[2] |= lp[i][2];
lres[3] |= lp[i][3];
lp[i]+=4;
}
lres+=4;
j += sizeof(unsigned long)*4;
minlen -= sizeof(unsigned long)*4;
}
} else if (op == BITOP_XOR) {
while(minlen >= sizeof(unsigned long)*4) {
for (i = 1; i < numkeys; i++) {
lres[0] ^= lp[i][0];
lres[1] ^= lp[i][1];
lres[2] ^= lp[i][2];
lres[3] ^= lp[i][3];
lp[i]+=4;
}
lres+=4;
j += sizeof(unsigned long)*4;
minlen -= sizeof(unsigned long)*4;
}
} else if (op == BITOP_NOT) {
while(minlen >= sizeof(unsigned long)*4) {
lres[0] = ~lres[0];
lres[1] = ~lres[1];
lres[2] = ~lres[2];
lres[3] = ~lres[3];
lres+=4;
j += sizeof(unsigned long)*4;
minlen -= sizeof(unsigned long)*4;
}
}
}
#endif
/* j is set to the next byte to process by the previous loop. */
for (; j < maxlen; j++) {
output = (len[0] <= j) ? 0 : src[0][j];
if (op == BITOP_NOT) output = ~output;
for (i = 1; i < numkeys; i++) {
int skip = 0;
byte = (len[i] <= j) ? 0 : src[i][j];
switch(op) {
case BITOP_AND:
output &= byte;
skip = (output == 0);
break;
case BITOP_OR:
output |= byte;
skip = (output == 0xff);
break;
case BITOP_XOR: output ^= byte; break;
}
if (skip) {
break;
}
}
res[j] = output;
}
}
for (j = 0; j < numkeys; j++) {
if (objects[j])
decrRefCount(objects[j]);
}
zfree(src);
zfree(len);
zfree(objects);
/* Store the computed value into the target key */
if (maxlen) {
o = createObject(OBJ_STRING,res);
setKey(c,c->db,targetkey,o,0);
notifyKeyspaceEvent(NOTIFY_STRING,"set",targetkey,c->db->id);
decrRefCount(o);
server.dirty++;
} else if (dbDelete(c->db,targetkey)) {
signalModifiedKey(c,c->db,targetkey);
notifyKeyspaceEvent(NOTIFY_GENERIC,"del",targetkey,c->db->id);
server.dirty++;
}
addReplyLongLong(c,maxlen); /* Return the output string length in bytes. */
}
/* BITCOUNT key [start end [BIT|BYTE]] */
void bitcountCommand(client *c) {
robj *o;
long long start, end;
long strlen;
unsigned char *p;
char llbuf[LONG_STR_SIZE];
int isbit = 0;
unsigned char first_byte_neg_mask = 0, last_byte_neg_mask = 0;
/* Parse start/end range if any. */
if (c->argc == 4 || c->argc == 5) {
if (getLongLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK)
return;
if (getLongLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK)
return;
if (c->argc == 5) {
if (!strcasecmp(c->argv[4]->ptr,"bit")) isbit = 1;
else if (!strcasecmp(c->argv[4]->ptr,"byte")) isbit = 0;
else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
}
/* Lookup, check for type. */
o = lookupKeyRead(c->db, c->argv[1]);
if (checkType(c, o, OBJ_STRING)) return;
p = getObjectReadOnlyString(o,&strlen,llbuf);
long long totlen = strlen;
/* Make sure we will not overflow */
serverAssert(totlen <= LLONG_MAX >> 3);
/* Convert negative indexes */
if (start < 0 && end < 0 && start > end) {
addReply(c,shared.czero);
return;
}
if (isbit) totlen <<= 3;
if (start < 0) start = totlen+start;
if (end < 0) end = totlen+end;
if (start < 0) start = 0;
if (end < 0) end = 0;
if (end >= totlen) end = totlen-1;
if (isbit && start <= end) {
/* Before converting bit offset to byte offset, create negative masks
* for the edges. */
first_byte_neg_mask = ~((1<<(8-(start&7)))-1) & 0xFF;
last_byte_neg_mask = (1<<(7-(end&7)))-1;
start >>= 3;
end >>= 3;
}
} else if (c->argc == 2) {
/* Lookup, check for type. */
o = lookupKeyRead(c->db, c->argv[1]);
if (checkType(c, o, OBJ_STRING)) return;
p = getObjectReadOnlyString(o,&strlen,llbuf);
/* The whole string. */
start = 0;
end = strlen-1;
} else {
/* Syntax error. */
addReplyErrorObject(c,shared.syntaxerr);
return;
}
/* Return 0 for non existing keys. */
if (o == NULL) {
addReply(c, shared.czero);
return;
}
/* Precondition: end >= 0 && end < strlen, so the only condition where
* zero can be returned is: start > end. */
if (start > end) {
addReply(c,shared.czero);
} else {
long bytes = (long)(end-start+1);
long long count = redisPopcount(p+start,bytes);
if (first_byte_neg_mask != 0 || last_byte_neg_mask != 0) {
unsigned char firstlast[2] = {0, 0};
/* We may count bits of first byte and last byte which are out of
* range. So we need to subtract them. Here we use a trick. We set
* bits in the range to zero. So these bit will not be excluded. */
if (first_byte_neg_mask != 0) firstlast[0] = p[start] & first_byte_neg_mask;
if (last_byte_neg_mask != 0) firstlast[1] = p[end] & last_byte_neg_mask;
count -= redisPopcount(firstlast,2);
}
addReplyLongLong(c,count);
}
}
/* BITPOS key bit [start [end [BIT|BYTE]]] */
void bitposCommand(client *c) {
robj *o;
long long start, end;
long bit, strlen;
unsigned char *p;
char llbuf[LONG_STR_SIZE];
int isbit = 0, end_given = 0;
unsigned char first_byte_neg_mask = 0, last_byte_neg_mask = 0;
/* Parse the bit argument to understand what we are looking for, set
* or clear bits. */
if (getLongFromObjectOrReply(c,c->argv[2],&bit,NULL) != C_OK)
return;
if (bit != 0 && bit != 1) {
addReplyError(c, "The bit argument must be 1 or 0.");
return;
}
/* Parse start/end range if any. */
if (c->argc == 4 || c->argc == 5 || c->argc == 6) {
if (getLongLongFromObjectOrReply(c,c->argv[3],&start,NULL) != C_OK)
return;
if (c->argc == 6) {
if (!strcasecmp(c->argv[5]->ptr,"bit")) isbit = 1;
else if (!strcasecmp(c->argv[5]->ptr,"byte")) isbit = 0;
else {
addReplyErrorObject(c,shared.syntaxerr);
return;
}
}
if (c->argc >= 5) {
if (getLongLongFromObjectOrReply(c,c->argv[4],&end,NULL) != C_OK)
return;
end_given = 1;
}
/* Lookup, check for type. */
o = lookupKeyRead(c->db, c->argv[1]);
if (checkType(c, o, OBJ_STRING)) return;
p = getObjectReadOnlyString(o, &strlen, llbuf);
/* Make sure we will not overflow */
long long totlen = strlen;
serverAssert(totlen <= LLONG_MAX >> 3);
if (c->argc < 5) {
if (isbit) end = (totlen<<3) + 7;
else end = totlen-1;
}
if (isbit) totlen <<= 3;
/* Convert negative indexes */
if (start < 0) start = totlen+start;
if (end < 0) end = totlen+end;
if (start < 0) start = 0;
if (end < 0) end = 0;
if (end >= totlen) end = totlen-1;
if (isbit && start <= end) {
/* Before converting bit offset to byte offset, create negative masks
* for the edges. */
first_byte_neg_mask = ~((1<<(8-(start&7)))-1) & 0xFF;
last_byte_neg_mask = (1<<(7-(end&7)))-1;
start >>= 3;
end >>= 3;
}
} else if (c->argc == 3) {
/* Lookup, check for type. */
o = lookupKeyRead(c->db, c->argv[1]);
if (checkType(c,o,OBJ_STRING)) return;
p = getObjectReadOnlyString(o,&strlen,llbuf);
/* The whole string. */
start = 0;
end = strlen-1;
} else {
/* Syntax error. */
addReplyErrorObject(c,shared.syntaxerr);
return;
}
/* If the key does not exist, from our point of view it is an infinite
* array of 0 bits. If the user is looking for the first clear bit return 0,
* If the user is looking for the first set bit, return -1. */
if (o == NULL) {
addReplyLongLong(c, bit ? -1 : 0);
return;
}
/* For empty ranges (start > end) we return -1 as an empty range does
* not contain a 0 nor a 1. */
if (start > end) {
addReplyLongLong(c, -1);
} else {
long bytes = end-start+1;
long long pos;
unsigned char tmpchar;
if (first_byte_neg_mask) {
if (bit) tmpchar = p[start] & ~first_byte_neg_mask;
else tmpchar = p[start] | first_byte_neg_mask;
/* Special case, there is only one byte */
if (last_byte_neg_mask && bytes == 1) {
if (bit) tmpchar = tmpchar & ~last_byte_neg_mask;
else tmpchar = tmpchar | last_byte_neg_mask;
}
pos = redisBitpos(&tmpchar,1,bit);
/* If there are no more bytes or we get valid pos, we can exit early */
if (bytes == 1 || (pos != -1 && pos != 8)) goto result;
start++;
bytes--;
}
/* If the last byte has not bits in the range, we should exclude it */
long curbytes = bytes - (last_byte_neg_mask ? 1 : 0);
if (curbytes > 0) {
pos = redisBitpos(p+start,curbytes,bit);
/* If there is no more bytes or we get valid pos, we can exit early */
if (bytes == curbytes || (pos != -1 && pos != (long long)curbytes<<3)) goto result;
start += curbytes;
bytes -= curbytes;
}
if (bit) tmpchar = p[end] & ~last_byte_neg_mask;
else tmpchar = p[end] | last_byte_neg_mask;
pos = redisBitpos(&tmpchar,1,bit);
result:
/* If we are looking for clear bits, and the user specified an exact
* range with start-end, we can't consider the right of the range as
* zero padded (as we do when no explicit end is given).
*
* So if redisBitpos() returns the first bit outside the range,
* we return -1 to the caller, to mean, in the specified range there
* is not a single "0" bit. */
if (end_given && bit == 0 && pos == (long long)bytes<<3) {
addReplyLongLong(c,-1);
return;
}
if (pos != -1) pos += (long long)start<<3; /* Adjust for the bytes we skipped. */
addReplyLongLong(c,pos);
}
}
/* BITFIELD key subcommand-1 arg ... subcommand-2 arg ... subcommand-N ...
*
* Supported subcommands:
*
* GET <type> <offset>
* SET <type> <offset> <value>
* INCRBY <type> <offset> <increment>
* OVERFLOW [WRAP|SAT|FAIL]
*/
#define BITFIELD_FLAG_NONE 0
#define BITFIELD_FLAG_READONLY (1<<0)
struct bitfieldOp {
uint64_t offset; /* Bitfield offset. */
int64_t i64; /* Increment amount (INCRBY) or SET value */
int opcode; /* Operation id. */
int owtype; /* Overflow type to use. */
int bits; /* Integer bitfield bits width. */
int sign; /* True if signed, otherwise unsigned op. */
};
/* This implements both the BITFIELD command and the BITFIELD_RO command
* when flags is set to BITFIELD_FLAG_READONLY: in this case only the
* GET subcommand is allowed, other subcommands will return an error. */
void bitfieldGeneric(client *c, int flags) {
robj *o;
uint64_t bitoffset;
int j, numops = 0, changes = 0, dirty = 0;
struct bitfieldOp *ops = NULL; /* Array of ops to execute at end. */
int owtype = BFOVERFLOW_WRAP; /* Overflow type. */
int readonly = 1;
uint64_t highest_write_offset = 0;
for (j = 2; j < c->argc; j++) {
int remargs = c->argc-j-1; /* Remaining args other than current. */
char *subcmd = c->argv[j]->ptr; /* Current command name. */
int opcode; /* Current operation code. */
long long i64 = 0; /* Signed SET value. */
int sign = 0; /* Signed or unsigned type? */
int bits = 0; /* Bitfield width in bits. */
if (!strcasecmp(subcmd,"get") && remargs >= 2)
opcode = BITFIELDOP_GET;
else if (!strcasecmp(subcmd,"set") && remargs >= 3)
opcode = BITFIELDOP_SET;
else if (!strcasecmp(subcmd,"incrby") && remargs >= 3)
opcode = BITFIELDOP_INCRBY;
else if (!strcasecmp(subcmd,"overflow") && remargs >= 1) {
char *owtypename = c->argv[j+1]->ptr;
j++;
if (!strcasecmp(owtypename,"wrap"))
owtype = BFOVERFLOW_WRAP;
else if (!strcasecmp(owtypename,"sat"))
owtype = BFOVERFLOW_SAT;
else if (!strcasecmp(owtypename,"fail"))
owtype = BFOVERFLOW_FAIL;
else {
addReplyError(c,"Invalid OVERFLOW type specified");
zfree(ops);
return;
}
continue;
} else {
addReplyErrorObject(c,shared.syntaxerr);
zfree(ops);
return;
}
/* Get the type and offset arguments, common to all the ops. */
if (getBitfieldTypeFromArgument(c,c->argv[j+1],&sign,&bits) != C_OK) {
zfree(ops);
return;
}
if (getBitOffsetFromArgument(c,c->argv[j+2],&bitoffset,1,bits) != C_OK){
zfree(ops);
return;
}
if (opcode != BITFIELDOP_GET) {
readonly = 0;
if (highest_write_offset < bitoffset + bits - 1)
highest_write_offset = bitoffset + bits - 1;
/* INCRBY and SET require another argument. */
if (getLongLongFromObjectOrReply(c,c->argv[j+3],&i64,NULL) != C_OK){
zfree(ops);
return;
}
}
/* Populate the array of operations we'll process. */
ops = zrealloc(ops,sizeof(*ops)*(numops+1));
ops[numops].offset = bitoffset;
ops[numops].i64 = i64;
ops[numops].opcode = opcode;
ops[numops].owtype = owtype;
ops[numops].bits = bits;
ops[numops].sign = sign;
numops++;
j += 3 - (opcode == BITFIELDOP_GET);
}
if (readonly) {
/* Lookup for read is ok if key doesn't exit, but errors
* if it's not a string. */
o = lookupKeyRead(c->db,c->argv[1]);
if (o != NULL && checkType(c,o,OBJ_STRING)) {
zfree(ops);
return;
}
} else {
if (flags & BITFIELD_FLAG_READONLY) {
zfree(ops);
addReplyError(c, "BITFIELD_RO only supports the GET subcommand");
return;
}
/* Lookup by making room up to the farthest bit reached by
* this operation. */
if ((o = lookupStringForBitCommand(c,
highest_write_offset,&dirty)) == NULL) {
zfree(ops);
return;
}
}
addReplyArrayLen(c,numops);
/* Actually process the operations. */
for (j = 0; j < numops; j++) {
struct bitfieldOp *thisop = ops+j;
/* Execute the operation. */
if (thisop->opcode == BITFIELDOP_SET ||
thisop->opcode == BITFIELDOP_INCRBY)
{
/* SET and INCRBY: We handle both with the same code path
* for simplicity. SET return value is the previous value so
* we need fetch & store as well. */
/* We need two different but very similar code paths for signed
* and unsigned operations, since the set of functions to get/set
* the integers and the used variables types are different. */
if (thisop->sign) {
int64_t oldval, newval, wrapped, retval;
int overflow;
oldval = getSignedBitfield(o->ptr,thisop->offset,
thisop->bits);
if (thisop->opcode == BITFIELDOP_INCRBY) {
overflow = checkSignedBitfieldOverflow(oldval,
thisop->i64,thisop->bits,thisop->owtype,&wrapped);
newval = overflow ? wrapped : oldval + thisop->i64;
retval = newval;
} else {
newval = thisop->i64;
overflow = checkSignedBitfieldOverflow(newval,
0,thisop->bits,thisop->owtype,&wrapped);
if (overflow) newval = wrapped;
retval = oldval;
}
/* On overflow of type is "FAIL", don't write and return
* NULL to signal the condition. */
if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) {
addReplyLongLong(c,retval);
setSignedBitfield(o->ptr,thisop->offset,
thisop->bits,newval);
if (dirty || (oldval != newval))
changes++;
} else {
addReplyNull(c);
}
} else {
/* Initialization of 'wrapped' is required to avoid
* false-positive warning "-Wmaybe-uninitialized" */
uint64_t oldval, newval, retval, wrapped = 0;
int overflow;
oldval = getUnsignedBitfield(o->ptr,thisop->offset,
thisop->bits);
if (thisop->opcode == BITFIELDOP_INCRBY) {
newval = oldval + thisop->i64;
overflow = checkUnsignedBitfieldOverflow(oldval,
thisop->i64,thisop->bits,thisop->owtype,&wrapped);
if (overflow) newval = wrapped;
retval = newval;
} else {
newval = thisop->i64;
overflow = checkUnsignedBitfieldOverflow(newval,
0,thisop->bits,thisop->owtype,&wrapped);
if (overflow) newval = wrapped;
retval = oldval;
}
/* On overflow of type is "FAIL", don't write and return
* NULL to signal the condition. */
if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) {
addReplyLongLong(c,retval);
setUnsignedBitfield(o->ptr,thisop->offset,
thisop->bits,newval);
if (dirty || (oldval != newval))
changes++;
} else {
addReplyNull(c);
}
}
} else {
/* GET */
unsigned char buf[9];
long strlen = 0;
unsigned char *src = NULL;
char llbuf[LONG_STR_SIZE];
if (o != NULL)
src = getObjectReadOnlyString(o,&strlen,llbuf);
/* For GET we use a trick: before executing the operation
* copy up to 9 bytes to a local buffer, so that we can easily
* execute up to 64 bit operations that are at actual string
* object boundaries. */
memset(buf,0,9);
int i;
uint64_t byte = thisop->offset >> 3;
for (i = 0; i < 9; i++) {
if (src == NULL || i+byte >= (uint64_t)strlen) break;
buf[i] = src[i+byte];
}
/* Now operate on the copied buffer which is guaranteed
* to be zero-padded. */
if (thisop->sign) {
int64_t val = getSignedBitfield(buf,thisop->offset-(byte*8),
thisop->bits);
addReplyLongLong(c,val);
} else {
uint64_t val = getUnsignedBitfield(buf,thisop->offset-(byte*8),
thisop->bits);
addReplyLongLong(c,val);
}
}
}
if (changes) {
signalModifiedKey(c,c->db,c->argv[1]);
notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id);
server.dirty += changes;
}
zfree(ops);
}
void bitfieldCommand(client *c) {
bitfieldGeneric(c, BITFIELD_FLAG_NONE);
}
void bitfieldroCommand(client *c) {
bitfieldGeneric(c, BITFIELD_FLAG_READONLY);
}