/* Bit operations. * * Copyright (c) 2009-2012, Salvatore Sanfilippo * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #include "server.h" /* ----------------------------------------------------------------------------- * Helpers and low level bit functions. * -------------------------------------------------------------------------- */ /* Count number of bits set in the binary array pointed by 's' and long * 'count' bytes. The implementation of this function is required to * work with an input string length up to 512 MB or more (server.proto_max_bulk_len) */ size_t redisPopcount(void *s, long count) { size_t bits = 0; unsigned char *p = s; uint32_t *p4; static const unsigned char bitsinbyte[256] = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8}; /* Count initial bytes not aligned to 32 bit. */ while((unsigned long)p & 3 && count) { bits += bitsinbyte[*p++]; count--; } /* Count bits 28 bytes at a time */ p4 = (uint32_t*)p; while(count>=28) { uint32_t aux1, aux2, aux3, aux4, aux5, aux6, aux7; aux1 = *p4++; aux2 = *p4++; aux3 = *p4++; aux4 = *p4++; aux5 = *p4++; aux6 = *p4++; aux7 = *p4++; count -= 28; aux1 = aux1 - ((aux1 >> 1) & 0x55555555); aux1 = (aux1 & 0x33333333) + ((aux1 >> 2) & 0x33333333); aux2 = aux2 - ((aux2 >> 1) & 0x55555555); aux2 = (aux2 & 0x33333333) + ((aux2 >> 2) & 0x33333333); aux3 = aux3 - ((aux3 >> 1) & 0x55555555); aux3 = (aux3 & 0x33333333) + ((aux3 >> 2) & 0x33333333); aux4 = aux4 - ((aux4 >> 1) & 0x55555555); aux4 = (aux4 & 0x33333333) + ((aux4 >> 2) & 0x33333333); aux5 = aux5 - ((aux5 >> 1) & 0x55555555); aux5 = (aux5 & 0x33333333) + ((aux5 >> 2) & 0x33333333); aux6 = aux6 - ((aux6 >> 1) & 0x55555555); aux6 = (aux6 & 0x33333333) + ((aux6 >> 2) & 0x33333333); aux7 = aux7 - ((aux7 >> 1) & 0x55555555); aux7 = (aux7 & 0x33333333) + ((aux7 >> 2) & 0x33333333); bits += ((((aux1 + (aux1 >> 4)) & 0x0F0F0F0F) + ((aux2 + (aux2 >> 4)) & 0x0F0F0F0F) + ((aux3 + (aux3 >> 4)) & 0x0F0F0F0F) + ((aux4 + (aux4 >> 4)) & 0x0F0F0F0F) + ((aux5 + (aux5 >> 4)) & 0x0F0F0F0F) + ((aux6 + (aux6 >> 4)) & 0x0F0F0F0F) + ((aux7 + (aux7 >> 4)) & 0x0F0F0F0F))* 0x01010101) >> 24; } /* Count the remaining bytes. */ p = (unsigned char*)p4; while(count--) bits += bitsinbyte[*p++]; return bits; } /* Return the position of the first bit set to one (if 'bit' is 1) or * zero (if 'bit' is 0) in the bitmap starting at 's' and long 'count' bytes. * * The function is guaranteed to return a value >= 0 if 'bit' is 0 since if * no zero bit is found, it returns count*8 assuming the string is zero * padded on the right. However if 'bit' is 1 it is possible that there is * not a single set bit in the bitmap. In this special case -1 is returned. */ long redisBitpos(void *s, unsigned long count, int bit) { unsigned long *l; unsigned char *c; unsigned long skipval, word = 0, one; long pos = 0; /* Position of bit, to return to the caller. */ unsigned long j; int found; /* Process whole words first, seeking for first word that is not * all ones or all zeros respectively if we are looking for zeros * or ones. This is much faster with large strings having contiguous * blocks of 1 or 0 bits compared to the vanilla bit per bit processing. * * Note that if we start from an address that is not aligned * to sizeof(unsigned long) we consume it byte by byte until it is * aligned. */ /* Skip initial bits not aligned to sizeof(unsigned long) byte by byte. */ skipval = bit ? 0 : UCHAR_MAX; c = (unsigned char*) s; found = 0; while((unsigned long)c & (sizeof(*l)-1) && count) { if (*c != skipval) { found = 1; break; } c++; count--; pos += 8; } /* Skip bits with full word step. */ l = (unsigned long*) c; if (!found) { skipval = bit ? 0 : ULONG_MAX; while (count >= sizeof(*l)) { if (*l != skipval) break; l++; count -= sizeof(*l); pos += sizeof(*l)*8; } } /* Load bytes into "word" considering the first byte as the most significant * (we basically consider it as written in big endian, since we consider the * string as a set of bits from left to right, with the first bit at position * zero. * * Note that the loading is designed to work even when the bytes left * (count) are less than a full word. We pad it with zero on the right. */ c = (unsigned char*)l; for (j = 0; j < sizeof(*l); j++) { word <<= 8; if (count) { word |= *c; c++; count--; } } /* Special case: * If bits in the string are all zero and we are looking for one, * return -1 to signal that there is not a single "1" in the whole * string. This can't happen when we are looking for "0" as we assume * that the right of the string is zero padded. */ if (bit == 1 && word == 0) return -1; /* Last word left, scan bit by bit. The first thing we need is to * have a single "1" set in the most significant position in an * unsigned long. We don't know the size of the long so we use a * simple trick. */ one = ULONG_MAX; /* All bits set to 1.*/ one >>= 1; /* All bits set to 1 but the MSB. */ one = ~one; /* All bits set to 0 but the MSB. */ while(one) { if (((one & word) != 0) == bit) return pos; pos++; one >>= 1; } /* If we reached this point, there is a bug in the algorithm, since * the case of no match is handled as a special case before. */ serverPanic("End of redisBitpos() reached."); return 0; /* Just to avoid warnings. */ } /* The following set.*Bitfield and get.*Bitfield functions implement setting * and getting arbitrary size (up to 64 bits) signed and unsigned integers * at arbitrary positions into a bitmap. * * The representation considers the bitmap as having the bit number 0 to be * the most significant bit of the first byte, and so forth, so for example * setting a 5 bits unsigned integer to value 23 at offset 7 into a bitmap * previously set to all zeroes, will produce the following representation: * * +--------+--------+ * |00000001|01110000| * +--------+--------+ * * When offsets and integer sizes are aligned to bytes boundaries, this is the * same as big endian, however when such alignment does not exist, its important * to also understand how the bits inside a byte are ordered. * * Note that this format follows the same convention as SETBIT and related * commands. */ void setUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, uint64_t value) { uint64_t byte, bit, byteval, bitval, j; for (j = 0; j < bits; j++) { bitval = (value & ((uint64_t)1<<(bits-1-j))) != 0; byte = offset >> 3; bit = 7 - (offset & 0x7); byteval = p[byte]; byteval &= ~(1 << bit); byteval |= bitval << bit; p[byte] = byteval & 0xff; offset++; } } void setSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits, int64_t value) { uint64_t uv = value; /* Casting will add UINT64_MAX + 1 if v is negative. */ setUnsignedBitfield(p,offset,bits,uv); } uint64_t getUnsignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) { uint64_t byte, bit, byteval, bitval, j, value = 0; for (j = 0; j < bits; j++) { byte = offset >> 3; bit = 7 - (offset & 0x7); byteval = p[byte]; bitval = (byteval >> bit) & 1; value = (value<<1) | bitval; offset++; } return value; } int64_t getSignedBitfield(unsigned char *p, uint64_t offset, uint64_t bits) { int64_t value; union {uint64_t u; int64_t i;} conv; /* Converting from unsigned to signed is undefined when the value does * not fit, however here we assume two's complement and the original value * was obtained from signed -> unsigned conversion, so we'll find the * most significant bit set if the original value was negative. * * Note that two's complement is mandatory for exact-width types * according to the C99 standard. */ conv.u = getUnsignedBitfield(p,offset,bits); value = conv.i; /* If the top significant bit is 1, propagate it to all the * higher bits for two's complement representation of signed * integers. */ if (bits < 64 && (value & ((uint64_t)1 << (bits-1)))) value |= ((uint64_t)-1) << bits; return value; } /* The following two functions detect overflow of a value in the context * of storing it as an unsigned or signed integer with the specified * number of bits. The functions both take the value and a possible increment. * If no overflow could happen and the value+increment fit inside the limits, * then zero is returned, otherwise in case of overflow, 1 is returned, * otherwise in case of underflow, -1 is returned. * * When non-zero is returned (overflow or underflow), if not NULL, *limit is * set to the value the operation should result when an overflow happens, * depending on the specified overflow semantics: * * For BFOVERFLOW_SAT if 1 is returned, *limit it is set maximum value that * you can store in that integer. when -1 is returned, *limit is set to the * minimum value that an integer of that size can represent. * * For BFOVERFLOW_WRAP *limit is set by performing the operation in order to * "wrap" around towards zero for unsigned integers, or towards the most * negative number that is possible to represent for signed integers. */ #define BFOVERFLOW_WRAP 0 #define BFOVERFLOW_SAT 1 #define BFOVERFLOW_FAIL 2 /* Used by the BITFIELD command implementation. */ int checkUnsignedBitfieldOverflow(uint64_t value, int64_t incr, uint64_t bits, int owtype, uint64_t *limit) { uint64_t max = (bits == 64) ? UINT64_MAX : (((uint64_t)1< max || (incr > 0 && incr > maxincr)) { if (limit) { if (owtype == BFOVERFLOW_WRAP) { goto handle_wrap; } else if (owtype == BFOVERFLOW_SAT) { *limit = max; } } return 1; } else if (incr < 0 && incr < minincr) { if (limit) { if (owtype == BFOVERFLOW_WRAP) { goto handle_wrap; } else if (owtype == BFOVERFLOW_SAT) { *limit = 0; } } return -1; } return 0; handle_wrap: { uint64_t mask = ((uint64_t)-1) << bits; uint64_t res = value+incr; res &= ~mask; *limit = res; } return 1; } int checkSignedBitfieldOverflow(int64_t value, int64_t incr, uint64_t bits, int owtype, int64_t *limit) { int64_t max = (bits == 64) ? INT64_MAX : (((int64_t)1<<(bits-1))-1); int64_t min = (-max)-1; /* Note that maxincr and minincr could overflow, but we use the values * only after checking 'value' range, so when we use it no overflow * happens. */ int64_t maxincr = max-value; int64_t minincr = min-value; if (value > max || (bits != 64 && incr > maxincr) || (value >= 0 && incr > 0 && incr > maxincr)) { if (limit) { if (owtype == BFOVERFLOW_WRAP) { goto handle_wrap; } else if (owtype == BFOVERFLOW_SAT) { *limit = max; } } return 1; } else if (value < min || (bits != 64 && incr < minincr) || (value < 0 && incr < 0 && incr < minincr)) { if (limit) { if (owtype == BFOVERFLOW_WRAP) { goto handle_wrap; } else if (owtype == BFOVERFLOW_SAT) { *limit = min; } } return -1; } return 0; handle_wrap: { uint64_t msb = (uint64_t)1 << (bits-1); uint64_t a = value, b = incr, c; c = a+b; /* Perform addition as unsigned so that's defined. */ /* If the sign bit is set, propagate to all the higher order * bits, to cap the negative value. If it's clear, mask to * the positive integer limit. */ if (bits < 64) { uint64_t mask = ((uint64_t)-1) << bits; if (c & msb) { c |= mask; } else { c &= ~mask; } } *limit = c; } return 1; } /* Debugging function. Just show bits in the specified bitmap. Not used * but here for not having to rewrite it when debugging is needed. */ void printBits(unsigned char *p, unsigned long count) { unsigned long j, i, byte; for (j = 0; j < count; j++) { byte = p[j]; for (i = 0x80; i > 0; i /= 2) printf("%c", (byte & i) ? '1' : '0'); printf("|"); } printf("\n"); } /* ----------------------------------------------------------------------------- * Bits related string commands: GETBIT, SETBIT, BITCOUNT, BITOP. * -------------------------------------------------------------------------- */ #define BITOP_AND 0 #define BITOP_OR 1 #define BITOP_XOR 2 #define BITOP_NOT 3 #define BITFIELDOP_GET 0 #define BITFIELDOP_SET 1 #define BITFIELDOP_INCRBY 2 /* This helper function used by GETBIT / SETBIT parses the bit offset argument * making sure an error is returned if it is negative or if it overflows * Redis 512 MB limit for the string value or more (server.proto_max_bulk_len). * * If the 'hash' argument is true, and 'bits is positive, then the command * will also parse bit offsets prefixed by "#". In such a case the offset * is multiplied by 'bits'. This is useful for the BITFIELD command. */ int getBitOffsetFromArgument(client *c, robj *o, size_t *offset, int hash, int bits) { long long loffset; char *err = "bit offset is not an integer or out of range"; char *p = o->ptr; size_t plen = sdslen(p); int usehash = 0; /* Handle # form. */ if (p[0] == '#' && hash && bits > 0) usehash = 1; if (string2ll(p+usehash,plen-usehash,&loffset) == 0) { addReplyError(c,err); return C_ERR; } /* Adjust the offset by 'bits' for # form. */ if (usehash) loffset *= bits; /* Limit offset to server.proto_max_bulk_len (512MB in bytes by default) */ if ((loffset < 0) || (loffset >> 3) >= server.proto_max_bulk_len) { addReplyError(c,err); return C_ERR; } *offset = (size_t)loffset; return C_OK; } /* This helper function for BITFIELD parses a bitfield type in the form * where sign is 'u' or 'i' for unsigned and signed, and * the bits is a value between 1 and 64. However 64 bits unsigned integers * are reported as an error because of current limitations of Redis protocol * to return unsigned integer values greater than INT64_MAX. * * On error C_ERR is returned and an error is sent to the client. */ int getBitfieldTypeFromArgument(client *c, robj *o, int *sign, int *bits) { char *p = o->ptr; char *err = "Invalid bitfield type. Use something like i16 u8. Note that u64 is not supported but i64 is."; long long llbits; if (p[0] == 'i') { *sign = 1; } else if (p[0] == 'u') { *sign = 0; } else { addReplyError(c,err); return C_ERR; } if ((string2ll(p+1,strlen(p+1),&llbits)) == 0 || llbits < 1 || (*sign == 1 && llbits > 64) || (*sign == 0 && llbits > 63)) { addReplyError(c,err); return C_ERR; } *bits = llbits; return C_OK; } /* This is a helper function for commands implementations that need to write * bits to a string object. The command creates or pad with zeroes the string * so that the 'maxbit' bit can be addressed. The object is finally * returned. Otherwise if the key holds a wrong type NULL is returned and * an error is sent to the client. */ robj *lookupStringForBitCommand(client *c, size_t maxbit) { size_t byte = maxbit >> 3; robj *o = lookupKeyWrite(c->db,c->argv[1]); if (checkType(c,o,OBJ_STRING)) return NULL; if (o == NULL) { o = createObject(OBJ_STRING,sdsnewlen(NULL, byte+1)); dbAdd(c->db,c->argv[1],o); } else { o = dbUnshareStringValue(c->db,c->argv[1],o); o->ptr = sdsgrowzero(o->ptr,byte+1); } return o; } /* Return a pointer to the string object content, and stores its length * in 'len'. The user is required to pass (likely stack allocated) buffer * 'llbuf' of at least LONG_STR_SIZE bytes. Such a buffer is used in the case * the object is integer encoded in order to provide the representation * without using heap allocation. * * The function returns the pointer to the object array of bytes representing * the string it contains, that may be a pointer to 'llbuf' or to the * internal object representation. As a side effect 'len' is filled with * the length of such buffer. * * If the source object is NULL the function is guaranteed to return NULL * and set 'len' to 0. */ unsigned char *getObjectReadOnlyString(robj *o, long *len, char *llbuf) { serverAssert(o->type == OBJ_STRING); unsigned char *p = NULL; /* Set the 'p' pointer to the string, that can be just a stack allocated * array if our string was integer encoded. */ if (o && o->encoding == OBJ_ENCODING_INT) { p = (unsigned char*) llbuf; if (len) *len = ll2string(llbuf,LONG_STR_SIZE,(long)o->ptr); } else if (o) { p = (unsigned char*) o->ptr; if (len) *len = sdslen(o->ptr); } else { if (len) *len = 0; } return p; } /* SETBIT key offset bitvalue */ void setbitCommand(client *c) { robj *o; char *err = "bit is not an integer or out of range"; size_t bitoffset; ssize_t byte, bit; int byteval, bitval; long on; if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK) return; if (getLongFromObjectOrReply(c,c->argv[3],&on,err) != C_OK) return; /* Bits can only be set or cleared... */ if (on & ~1) { addReplyError(c,err); return; } if ((o = lookupStringForBitCommand(c,bitoffset)) == NULL) return; /* Get current values */ byte = bitoffset >> 3; byteval = ((uint8_t*)o->ptr)[byte]; bit = 7 - (bitoffset & 0x7); bitval = byteval & (1 << bit); /* Update byte with new bit value and return original value */ byteval &= ~(1 << bit); byteval |= ((on & 0x1) << bit); ((uint8_t*)o->ptr)[byte] = byteval; signalModifiedKey(c,c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id); server.dirty++; addReply(c, bitval ? shared.cone : shared.czero); } /* GETBIT key offset */ void getbitCommand(client *c) { robj *o; char llbuf[32]; size_t bitoffset; size_t byte, bit; size_t bitval = 0; if (getBitOffsetFromArgument(c,c->argv[2],&bitoffset,0,0) != C_OK) return; if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,o,OBJ_STRING)) return; byte = bitoffset >> 3; bit = 7 - (bitoffset & 0x7); if (sdsEncodedObject(o)) { if (byte < sdslen(o->ptr)) bitval = ((uint8_t*)o->ptr)[byte] & (1 << bit); } else { if (byte < (size_t)ll2string(llbuf,sizeof(llbuf),(long)o->ptr)) bitval = llbuf[byte] & (1 << bit); } addReply(c, bitval ? shared.cone : shared.czero); } /* BITOP op_name target_key src_key1 src_key2 src_key3 ... src_keyN */ void bitopCommand(client *c) { char *opname = c->argv[1]->ptr; robj *o, *targetkey = c->argv[2]; unsigned long op, j, numkeys; robj **objects; /* Array of source objects. */ unsigned char **src; /* Array of source strings pointers. */ unsigned long *len, maxlen = 0; /* Array of length of src strings, and max len. */ unsigned long minlen = 0; /* Min len among the input keys. */ unsigned char *res = NULL; /* Resulting string. */ /* Parse the operation name. */ if ((opname[0] == 'a' || opname[0] == 'A') && !strcasecmp(opname,"and")) op = BITOP_AND; else if((opname[0] == 'o' || opname[0] == 'O') && !strcasecmp(opname,"or")) op = BITOP_OR; else if((opname[0] == 'x' || opname[0] == 'X') && !strcasecmp(opname,"xor")) op = BITOP_XOR; else if((opname[0] == 'n' || opname[0] == 'N') && !strcasecmp(opname,"not")) op = BITOP_NOT; else { addReplyErrorObject(c,shared.syntaxerr); return; } /* Sanity check: NOT accepts only a single key argument. */ if (op == BITOP_NOT && c->argc != 4) { addReplyError(c,"BITOP NOT must be called with a single source key."); return; } /* Lookup keys, and store pointers to the string objects into an array. */ numkeys = c->argc - 3; src = zmalloc(sizeof(unsigned char*) * numkeys); len = zmalloc(sizeof(long) * numkeys); objects = zmalloc(sizeof(robj*) * numkeys); for (j = 0; j < numkeys; j++) { o = lookupKeyRead(c->db,c->argv[j+3]); /* Handle non-existing keys as empty strings. */ if (o == NULL) { objects[j] = NULL; src[j] = NULL; len[j] = 0; minlen = 0; continue; } /* Return an error if one of the keys is not a string. */ if (checkType(c,o,OBJ_STRING)) { unsigned long i; for (i = 0; i < j; i++) { if (objects[i]) decrRefCount(objects[i]); } zfree(src); zfree(len); zfree(objects); return; } objects[j] = getDecodedObject(o); src[j] = objects[j]->ptr; len[j] = sdslen(objects[j]->ptr); if (len[j] > maxlen) maxlen = len[j]; if (j == 0 || len[j] < minlen) minlen = len[j]; } /* Compute the bit operation, if at least one string is not empty. */ if (maxlen) { res = (unsigned char*) sdsnewlen(NULL,maxlen); unsigned char output, byte; unsigned long i; /* Fast path: as far as we have data for all the input bitmaps we * can take a fast path that performs much better than the * vanilla algorithm. On ARM we skip the fast path since it will * result in GCC compiling the code using multiple-words load/store * operations that are not supported even in ARM >= v6. */ j = 0; #ifndef USE_ALIGNED_ACCESS if (minlen >= sizeof(unsigned long)*4 && numkeys <= 16) { unsigned long *lp[16]; unsigned long *lres = (unsigned long*) res; /* Note: sds pointer is always aligned to 8 byte boundary. */ memcpy(lp,src,sizeof(unsigned long*)*numkeys); memcpy(res,src[0],minlen); /* Different branches per different operations for speed (sorry). */ if (op == BITOP_AND) { while(minlen >= sizeof(unsigned long)*4) { for (i = 1; i < numkeys; i++) { lres[0] &= lp[i][0]; lres[1] &= lp[i][1]; lres[2] &= lp[i][2]; lres[3] &= lp[i][3]; lp[i]+=4; } lres+=4; j += sizeof(unsigned long)*4; minlen -= sizeof(unsigned long)*4; } } else if (op == BITOP_OR) { while(minlen >= sizeof(unsigned long)*4) { for (i = 1; i < numkeys; i++) { lres[0] |= lp[i][0]; lres[1] |= lp[i][1]; lres[2] |= lp[i][2]; lres[3] |= lp[i][3]; lp[i]+=4; } lres+=4; j += sizeof(unsigned long)*4; minlen -= sizeof(unsigned long)*4; } } else if (op == BITOP_XOR) { while(minlen >= sizeof(unsigned long)*4) { for (i = 1; i < numkeys; i++) { lres[0] ^= lp[i][0]; lres[1] ^= lp[i][1]; lres[2] ^= lp[i][2]; lres[3] ^= lp[i][3]; lp[i]+=4; } lres+=4; j += sizeof(unsigned long)*4; minlen -= sizeof(unsigned long)*4; } } else if (op == BITOP_NOT) { while(minlen >= sizeof(unsigned long)*4) { lres[0] = ~lres[0]; lres[1] = ~lres[1]; lres[2] = ~lres[2]; lres[3] = ~lres[3]; lres+=4; j += sizeof(unsigned long)*4; minlen -= sizeof(unsigned long)*4; } } } #endif /* j is set to the next byte to process by the previous loop. */ for (; j < maxlen; j++) { output = (len[0] <= j) ? 0 : src[0][j]; if (op == BITOP_NOT) output = ~output; for (i = 1; i < numkeys; i++) { int skip = 0; byte = (len[i] <= j) ? 0 : src[i][j]; switch(op) { case BITOP_AND: output &= byte; skip = (output == 0); break; case BITOP_OR: output |= byte; skip = (output == 0xff); break; case BITOP_XOR: output ^= byte; break; } if (skip) { break; } } res[j] = output; } } for (j = 0; j < numkeys; j++) { if (objects[j]) decrRefCount(objects[j]); } zfree(src); zfree(len); zfree(objects); /* Store the computed value into the target key */ if (maxlen) { o = createObject(OBJ_STRING,res); setKey(c,c->db,targetkey,o); notifyKeyspaceEvent(NOTIFY_STRING,"set",targetkey,c->db->id); decrRefCount(o); server.dirty++; } else if (dbDelete(c->db,targetkey)) { signalModifiedKey(c,c->db,targetkey); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",targetkey,c->db->id); server.dirty++; } addReplyLongLong(c,maxlen); /* Return the output string length in bytes. */ } /* BITCOUNT key [start end] */ void bitcountCommand(client *c) { robj *o; long start, end, strlen; unsigned char *p; char llbuf[LONG_STR_SIZE]; /* Lookup, check for type, and return 0 for non existing keys. */ if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.czero)) == NULL || checkType(c,o,OBJ_STRING)) return; p = getObjectReadOnlyString(o,&strlen,llbuf); /* Parse start/end range if any. */ if (c->argc == 4) { if (getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK) return; if (getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK) return; /* Convert negative indexes */ if (start < 0 && end < 0 && start > end) { addReply(c,shared.czero); return; } if (start < 0) start = strlen+start; if (end < 0) end = strlen+end; if (start < 0) start = 0; if (end < 0) end = 0; if (end >= strlen) end = strlen-1; } else if (c->argc == 2) { /* The whole string. */ start = 0; end = strlen-1; } else { /* Syntax error. */ addReplyErrorObject(c,shared.syntaxerr); return; } /* Precondition: end >= 0 && end < strlen, so the only condition where * zero can be returned is: start > end. */ if (start > end) { addReply(c,shared.czero); } else { long bytes = end-start+1; addReplyLongLong(c,redisPopcount(p+start,bytes)); } } /* BITPOS key bit [start [end]] */ void bitposCommand(client *c) { robj *o; long bit, start, end, strlen; unsigned char *p; char llbuf[LONG_STR_SIZE]; int end_given = 0; /* Parse the bit argument to understand what we are looking for, set * or clear bits. */ if (getLongFromObjectOrReply(c,c->argv[2],&bit,NULL) != C_OK) return; if (bit != 0 && bit != 1) { addReplyError(c, "The bit argument must be 1 or 0."); return; } /* If the key does not exist, from our point of view it is an infinite * array of 0 bits. If the user is looking for the fist clear bit return 0, * If the user is looking for the first set bit, return -1. */ if ((o = lookupKeyRead(c->db,c->argv[1])) == NULL) { addReplyLongLong(c, bit ? -1 : 0); return; } if (checkType(c,o,OBJ_STRING)) return; p = getObjectReadOnlyString(o,&strlen,llbuf); /* Parse start/end range if any. */ if (c->argc == 4 || c->argc == 5) { if (getLongFromObjectOrReply(c,c->argv[3],&start,NULL) != C_OK) return; if (c->argc == 5) { if (getLongFromObjectOrReply(c,c->argv[4],&end,NULL) != C_OK) return; end_given = 1; } else { end = strlen-1; } /* Convert negative indexes */ if (start < 0) start = strlen+start; if (end < 0) end = strlen+end; if (start < 0) start = 0; if (end < 0) end = 0; if (end >= strlen) end = strlen-1; } else if (c->argc == 3) { /* The whole string. */ start = 0; end = strlen-1; } else { /* Syntax error. */ addReplyErrorObject(c,shared.syntaxerr); return; } /* For empty ranges (start > end) we return -1 as an empty range does * not contain a 0 nor a 1. */ if (start > end) { addReplyLongLong(c, -1); } else { long bytes = end-start+1; long pos = redisBitpos(p+start,bytes,bit); /* If we are looking for clear bits, and the user specified an exact * range with start-end, we can't consider the right of the range as * zero padded (as we do when no explicit end is given). * * So if redisBitpos() returns the first bit outside the range, * we return -1 to the caller, to mean, in the specified range there * is not a single "0" bit. */ if (end_given && bit == 0 && pos == bytes*8) { addReplyLongLong(c,-1); return; } if (pos != -1) pos += start*8; /* Adjust for the bytes we skipped. */ addReplyLongLong(c,pos); } } /* BITFIELD key subcommmand-1 arg ... subcommand-2 arg ... subcommand-N ... * * Supported subcommands: * * GET * SET * INCRBY * OVERFLOW [WRAP|SAT|FAIL] */ #define BITFIELD_FLAG_NONE 0 #define BITFIELD_FLAG_READONLY (1<<0) struct bitfieldOp { uint64_t offset; /* Bitfield offset. */ int64_t i64; /* Increment amount (INCRBY) or SET value */ int opcode; /* Operation id. */ int owtype; /* Overflow type to use. */ int bits; /* Integer bitfield bits width. */ int sign; /* True if signed, otherwise unsigned op. */ }; /* This implements both the BITFIELD command and the BITFIELD_RO command * when flags is set to BITFIELD_FLAG_READONLY: in this case only the * GET subcommand is allowed, other subcommands will return an error. */ void bitfieldGeneric(client *c, int flags) { robj *o; size_t bitoffset; int j, numops = 0, changes = 0; struct bitfieldOp *ops = NULL; /* Array of ops to execute at end. */ int owtype = BFOVERFLOW_WRAP; /* Overflow type. */ int readonly = 1; size_t highest_write_offset = 0; for (j = 2; j < c->argc; j++) { int remargs = c->argc-j-1; /* Remaining args other than current. */ char *subcmd = c->argv[j]->ptr; /* Current command name. */ int opcode; /* Current operation code. */ long long i64 = 0; /* Signed SET value. */ int sign = 0; /* Signed or unsigned type? */ int bits = 0; /* Bitfield width in bits. */ if (!strcasecmp(subcmd,"get") && remargs >= 2) opcode = BITFIELDOP_GET; else if (!strcasecmp(subcmd,"set") && remargs >= 3) opcode = BITFIELDOP_SET; else if (!strcasecmp(subcmd,"incrby") && remargs >= 3) opcode = BITFIELDOP_INCRBY; else if (!strcasecmp(subcmd,"overflow") && remargs >= 1) { char *owtypename = c->argv[j+1]->ptr; j++; if (!strcasecmp(owtypename,"wrap")) owtype = BFOVERFLOW_WRAP; else if (!strcasecmp(owtypename,"sat")) owtype = BFOVERFLOW_SAT; else if (!strcasecmp(owtypename,"fail")) owtype = BFOVERFLOW_FAIL; else { addReplyError(c,"Invalid OVERFLOW type specified"); zfree(ops); return; } continue; } else { addReplyErrorObject(c,shared.syntaxerr); zfree(ops); return; } /* Get the type and offset arguments, common to all the ops. */ if (getBitfieldTypeFromArgument(c,c->argv[j+1],&sign,&bits) != C_OK) { zfree(ops); return; } if (getBitOffsetFromArgument(c,c->argv[j+2],&bitoffset,1,bits) != C_OK){ zfree(ops); return; } if (opcode != BITFIELDOP_GET) { readonly = 0; if (highest_write_offset < bitoffset + bits - 1) highest_write_offset = bitoffset + bits - 1; /* INCRBY and SET require another argument. */ if (getLongLongFromObjectOrReply(c,c->argv[j+3],&i64,NULL) != C_OK){ zfree(ops); return; } } /* Populate the array of operations we'll process. */ ops = zrealloc(ops,sizeof(*ops)*(numops+1)); ops[numops].offset = bitoffset; ops[numops].i64 = i64; ops[numops].opcode = opcode; ops[numops].owtype = owtype; ops[numops].bits = bits; ops[numops].sign = sign; numops++; j += 3 - (opcode == BITFIELDOP_GET); } if (readonly) { /* Lookup for read is ok if key doesn't exit, but errors * if it's not a string. */ o = lookupKeyRead(c->db,c->argv[1]); if (o != NULL && checkType(c,o,OBJ_STRING)) { zfree(ops); return; } } else { if (flags & BITFIELD_FLAG_READONLY) { zfree(ops); addReplyError(c, "BITFIELD_RO only supports the GET subcommand"); return; } /* Lookup by making room up to the farthest bit reached by * this operation. */ if ((o = lookupStringForBitCommand(c, highest_write_offset)) == NULL) { zfree(ops); return; } } addReplyArrayLen(c,numops); /* Actually process the operations. */ for (j = 0; j < numops; j++) { struct bitfieldOp *thisop = ops+j; /* Execute the operation. */ if (thisop->opcode == BITFIELDOP_SET || thisop->opcode == BITFIELDOP_INCRBY) { /* SET and INCRBY: We handle both with the same code path * for simplicity. SET return value is the previous value so * we need fetch & store as well. */ /* We need two different but very similar code paths for signed * and unsigned operations, since the set of functions to get/set * the integers and the used variables types are different. */ if (thisop->sign) { int64_t oldval, newval, wrapped, retval; int overflow; oldval = getSignedBitfield(o->ptr,thisop->offset, thisop->bits); if (thisop->opcode == BITFIELDOP_INCRBY) { newval = oldval + thisop->i64; overflow = checkSignedBitfieldOverflow(oldval, thisop->i64,thisop->bits,thisop->owtype,&wrapped); if (overflow) newval = wrapped; retval = newval; } else { newval = thisop->i64; overflow = checkSignedBitfieldOverflow(newval, 0,thisop->bits,thisop->owtype,&wrapped); if (overflow) newval = wrapped; retval = oldval; } /* On overflow of type is "FAIL", don't write and return * NULL to signal the condition. */ if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) { addReplyLongLong(c,retval); setSignedBitfield(o->ptr,thisop->offset, thisop->bits,newval); } else { addReplyNull(c); } } else { uint64_t oldval, newval, wrapped, retval; int overflow; oldval = getUnsignedBitfield(o->ptr,thisop->offset, thisop->bits); if (thisop->opcode == BITFIELDOP_INCRBY) { newval = oldval + thisop->i64; overflow = checkUnsignedBitfieldOverflow(oldval, thisop->i64,thisop->bits,thisop->owtype,&wrapped); if (overflow) newval = wrapped; retval = newval; } else { newval = thisop->i64; overflow = checkUnsignedBitfieldOverflow(newval, 0,thisop->bits,thisop->owtype,&wrapped); if (overflow) newval = wrapped; retval = oldval; } /* On overflow of type is "FAIL", don't write and return * NULL to signal the condition. */ if (!(overflow && thisop->owtype == BFOVERFLOW_FAIL)) { addReplyLongLong(c,retval); setUnsignedBitfield(o->ptr,thisop->offset, thisop->bits,newval); } else { addReplyNull(c); } } changes++; } else { /* GET */ unsigned char buf[9]; long strlen = 0; unsigned char *src = NULL; char llbuf[LONG_STR_SIZE]; if (o != NULL) src = getObjectReadOnlyString(o,&strlen,llbuf); /* For GET we use a trick: before executing the operation * copy up to 9 bytes to a local buffer, so that we can easily * execute up to 64 bit operations that are at actual string * object boundaries. */ memset(buf,0,9); int i; size_t byte = thisop->offset >> 3; for (i = 0; i < 9; i++) { if (src == NULL || i+byte >= (size_t)strlen) break; buf[i] = src[i+byte]; } /* Now operate on the copied buffer which is guaranteed * to be zero-padded. */ if (thisop->sign) { int64_t val = getSignedBitfield(buf,thisop->offset-(byte*8), thisop->bits); addReplyLongLong(c,val); } else { uint64_t val = getUnsignedBitfield(buf,thisop->offset-(byte*8), thisop->bits); addReplyLongLong(c,val); } } } if (changes) { signalModifiedKey(c,c->db,c->argv[1]); notifyKeyspaceEvent(NOTIFY_STRING,"setbit",c->argv[1],c->db->id); server.dirty += changes; } zfree(ops); } void bitfieldCommand(client *c) { bitfieldGeneric(c, BITFIELD_FLAG_NONE); } void bitfieldroCommand(client *c) { bitfieldGeneric(c, BITFIELD_FLAG_READONLY); }