/* * Copyright (c) 2009-current, Redis Ltd. * Copyright (c) 2009-2012, Pieter Noordhuis * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of Redis nor the names of its contributors may be used * to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /*----------------------------------------------------------------------------- * Sorted set API *----------------------------------------------------------------------------*/ /* ZSETs are ordered sets using two data structures to hold the same elements * in order to get O(log(N)) INSERT and REMOVE operations into a sorted * data structure. * * The elements are added to a hash table mapping Redis objects to scores. * At the same time the elements are added to a skip list mapping scores * to Redis objects (so objects are sorted by scores in this "view"). * * Note that the SDS string representing the element is the same in both * the hash table and skiplist in order to save memory. What we do in order * to manage the shared SDS string more easily is to free the SDS string * only in zslFreeNode(). The dictionary has no value free method set. * So we should always remove an element from the dictionary, and later from * the skiplist. * * This skiplist implementation is almost a C translation of the original * algorithm described by William Pugh in "Skip Lists: A Probabilistic * Alternative to Balanced Trees", modified in three ways: * a) this implementation allows for repeated scores. * b) the comparison is not just by key (our 'score') but by satellite data. * c) there is a back pointer, so it's a doubly linked list with the back * pointers being only at "level 1". This allows to traverse the list * from tail to head, useful for ZREVRANGE. */ #include "server.h" #include "intset.h" /* Compact integer set structure */ #include /*----------------------------------------------------------------------------- * Skiplist implementation of the low level API *----------------------------------------------------------------------------*/ int zslLexValueGteMin(sds value, zlexrangespec *spec); int zslLexValueLteMax(sds value, zlexrangespec *spec); void zsetConvertAndExpand(robj *zobj, int encoding, unsigned long cap); zskiplistNode *zslGetElementByRankFromNode(zskiplistNode *start_node, int start_level, unsigned long rank); zskiplistNode *zslGetElementByRank(zskiplist *zsl, unsigned long rank); /* Create a skiplist node with the specified number of levels. * The SDS string 'ele' is referenced by the node after the call. */ zskiplistNode *zslCreateNode(int level, double score, sds ele) { zskiplistNode *zn = zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel)); zn->score = score; zn->ele = ele; return zn; } /* Create a new skiplist. */ zskiplist *zslCreate(void) { int j; zskiplist *zsl; zsl = zmalloc(sizeof(*zsl)); zsl->level = 1; zsl->length = 0; zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL); for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) { zsl->header->level[j].forward = NULL; zsl->header->level[j].span = 0; } zsl->header->backward = NULL; zsl->tail = NULL; return zsl; } /* Free the specified skiplist node. The referenced SDS string representation * of the element is freed too, unless node->ele is set to NULL before calling * this function. */ void zslFreeNode(zskiplistNode *node) { sdsfree(node->ele); zfree(node); } /* Free a whole skiplist. */ void zslFree(zskiplist *zsl) { zskiplistNode *node = zsl->header->level[0].forward, *next; zfree(zsl->header); while(node) { next = node->level[0].forward; zslFreeNode(node); node = next; } zfree(zsl); } /* Returns a random level for the new skiplist node we are going to create. * The return value of this function is between 1 and ZSKIPLIST_MAXLEVEL * (both inclusive), with a powerlaw-alike distribution where higher * levels are less likely to be returned. */ int zslRandomLevel(void) { static const int threshold = ZSKIPLIST_P*RAND_MAX; int level = 1; while (random() < threshold) level += 1; return (levelheader; for (i = zsl->level-1; i >= 0; i--) { /* store rank that is crossed to reach the insert position */ rank[i] = i == (zsl->level-1) ? 0 : rank[i+1]; while (x->level[i].forward && (x->level[i].forward->score < score || (x->level[i].forward->score == score && sdscmp(x->level[i].forward->ele,ele) < 0))) { rank[i] += x->level[i].span; x = x->level[i].forward; } update[i] = x; } /* we assume the element is not already inside, since we allow duplicated * scores, reinserting the same element should never happen since the * caller of zslInsert() should test in the hash table if the element is * already inside or not. */ level = zslRandomLevel(); if (level > zsl->level) { for (i = zsl->level; i < level; i++) { rank[i] = 0; update[i] = zsl->header; update[i]->level[i].span = zsl->length; } zsl->level = level; } x = zslCreateNode(level,score,ele); for (i = 0; i < level; i++) { x->level[i].forward = update[i]->level[i].forward; update[i]->level[i].forward = x; /* update span covered by update[i] as x is inserted here */ x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]); update[i]->level[i].span = (rank[0] - rank[i]) + 1; } /* increment span for untouched levels */ for (i = level; i < zsl->level; i++) { update[i]->level[i].span++; } x->backward = (update[0] == zsl->header) ? NULL : update[0]; if (x->level[0].forward) x->level[0].forward->backward = x; else zsl->tail = x; zsl->length++; return x; } /* Internal function used by zslDelete, zslDeleteRangeByScore and * zslDeleteRangeByRank. */ void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) { int i; for (i = 0; i < zsl->level; i++) { if (update[i]->level[i].forward == x) { update[i]->level[i].span += x->level[i].span - 1; update[i]->level[i].forward = x->level[i].forward; } else { update[i]->level[i].span -= 1; } } if (x->level[0].forward) { x->level[0].forward->backward = x->backward; } else { zsl->tail = x->backward; } while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL) zsl->level--; zsl->length--; } /* Delete an element with matching score/element from the skiplist. * The function returns 1 if the node was found and deleted, otherwise * 0 is returned. * * If 'node' is NULL the deleted node is freed by zslFreeNode(), otherwise * it is not freed (but just unlinked) and *node is set to the node pointer, * so that it is possible for the caller to reuse the node (including the * referenced SDS string at node->ele). */ int zslDelete(zskiplist *zsl, double score, sds ele, zskiplistNode **node) { zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x; int i; x = zsl->header; for (i = zsl->level-1; i >= 0; i--) { while (x->level[i].forward && (x->level[i].forward->score < score || (x->level[i].forward->score == score && sdscmp(x->level[i].forward->ele,ele) < 0))) { x = x->level[i].forward; } update[i] = x; } /* We may have multiple elements with the same score, what we need * is to find the element with both the right score and object. */ x = x->level[0].forward; if (x && score == x->score && sdscmp(x->ele,ele) == 0) { zslDeleteNode(zsl, x, update); if (!node) zslFreeNode(x); else *node = x; return 1; } return 0; /* not found */ } /* Update the score of an element inside the sorted set skiplist. * Note that the element must exist and must match 'score'. * This function does not update the score in the hash table side, the * caller should take care of it. * * Note that this function attempts to just update the node, in case after * the score update, the node would be exactly at the same position. * Otherwise the skiplist is modified by removing and re-adding a new * element, which is more costly. * * The function returns the updated element skiplist node pointer. */ zskiplistNode *zslUpdateScore(zskiplist *zsl, double curscore, sds ele, double newscore) { zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x; int i; /* We need to seek to element to update to start: this is useful anyway, * we'll have to update or remove it. */ x = zsl->header; for (i = zsl->level-1; i >= 0; i--) { while (x->level[i].forward && (x->level[i].forward->score < curscore || (x->level[i].forward->score == curscore && sdscmp(x->level[i].forward->ele,ele) < 0))) { x = x->level[i].forward; } update[i] = x; } /* Jump to our element: note that this function assumes that the * element with the matching score exists. */ x = x->level[0].forward; serverAssert(x && curscore == x->score && sdscmp(x->ele,ele) == 0); /* If the node, after the score update, would be still exactly * at the same position, we can just update the score without * actually removing and re-inserting the element in the skiplist. */ if ((x->backward == NULL || x->backward->score < newscore) && (x->level[0].forward == NULL || x->level[0].forward->score > newscore)) { x->score = newscore; return x; } /* No way to reuse the old node: we need to remove and insert a new * one at a different place. */ zslDeleteNode(zsl, x, update); zskiplistNode *newnode = zslInsert(zsl,newscore,x->ele); /* We reused the old node x->ele SDS string, free the node now * since zslInsert created a new one. */ x->ele = NULL; zslFreeNode(x); return newnode; } int zslValueGteMin(double value, zrangespec *spec) { return spec->minex ? (value > spec->min) : (value >= spec->min); } int zslValueLteMax(double value, zrangespec *spec) { return spec->maxex ? (value < spec->max) : (value <= spec->max); } /* Returns if there is a part of the zset is in range. */ int zslIsInRange(zskiplist *zsl, zrangespec *range) { zskiplistNode *x; /* Test for ranges that will always be empty. */ if (range->min > range->max || (range->min == range->max && (range->minex || range->maxex))) return 0; x = zsl->tail; if (x == NULL || !zslValueGteMin(x->score,range)) return 0; x = zsl->header->level[0].forward; if (x == NULL || !zslValueLteMax(x->score,range)) return 0; return 1; } /* Find the Nth node that is contained in the specified range. N should be 0-based. * Negative N works for reversed order (-1 represents the last element). Returns * NULL when no element is contained in the range. */ zskiplistNode *zslNthInRange(zskiplist *zsl, zrangespec *range, long n) { zskiplistNode *x; int i; long edge_rank = 0; long last_highest_level_rank = 0; zskiplistNode *last_highest_level_node = NULL; unsigned long rank_diff; /* If everything is out of range, return early. */ if (!zslIsInRange(zsl,range)) return NULL; /* Go forward while *OUT* of range at level of zsl->level-1. */ x = zsl->header; i = zsl->level - 1; while (x->level[i].forward && !zslValueGteMin(x->level[i].forward->score, range)) { edge_rank += x->level[i].span; x = x->level[i].forward; } /* Remember the last node which has zsl->level-1 levels and its rank. */ last_highest_level_node = x; last_highest_level_rank = edge_rank; if (n >= 0) { for (i = zsl->level - 2; i >= 0; i--) { /* Go forward while *OUT* of range. */ while (x->level[i].forward && !zslValueGteMin(x->level[i].forward->score, range)) { /* Count the rank of the last element smaller than the range. */ edge_rank += x->level[i].span; x = x->level[i].forward; } } /* Check if zsl is long enough. */ if ((unsigned long)(edge_rank + n) >= zsl->length) return NULL; if (n < ZSKIPLIST_MAX_SEARCH) { /* If offset is small, we can just jump node by node */ /* rank+1 is the first element in range, so we need n+1 steps to reach target. */ for (i = 0; i < n + 1; i++) { x = x->level[0].forward; } } else { /* If offset is big, we can jump from the last zsl->level-1 node. */ rank_diff = edge_rank + 1 + n - last_highest_level_rank; x = zslGetElementByRankFromNode(last_highest_level_node, zsl->level - 1, rank_diff); } /* Check if score <= max. */ if (x && !zslValueLteMax(x->score,range)) return NULL; } else { for (i = zsl->level - 1; i >= 0; i--) { /* Go forward while *IN* range. */ while (x->level[i].forward && zslValueLteMax(x->level[i].forward->score, range)) { /* Count the rank of the last element in range. */ edge_rank += x->level[i].span; x = x->level[i].forward; } } /* Check if the range is big enough. */ if (edge_rank < -n) return NULL; if (n + 1 > -ZSKIPLIST_MAX_SEARCH) { /* If offset is small, we can just jump node by node */ /* rank is the -1th element in range, so we need -n-1 steps to reach target. */ for (i = 0; i < -n - 1; i++) { x = x->backward; } } else { /* If offset is big, we can jump from the last zsl->level-1 node. */ /* rank is the last element in range, n is -1-based, so we need n+1 to count backwards. */ rank_diff = edge_rank + 1 + n - last_highest_level_rank; x = zslGetElementByRankFromNode(last_highest_level_node, zsl->level - 1, rank_diff); } /* Check if score >= min. */ if (x && !zslValueGteMin(x->score, range)) return NULL; } return x; } /* Delete all the elements with score between min and max from the skiplist. * Both min and max can be inclusive or exclusive (see range->minex and * range->maxex). When inclusive a score >= min && score <= max is deleted. * Note that this function takes the reference to the hash table view of the * sorted set, in order to remove the elements from the hash table too. */ unsigned long zslDeleteRangeByScore(zskiplist *zsl, zrangespec *range, dict *dict) { zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x; unsigned long removed = 0; int i; x = zsl->header; for (i = zsl->level-1; i >= 0; i--) { while (x->level[i].forward && !zslValueGteMin(x->level[i].forward->score, range)) x = x->level[i].forward; update[i] = x; } /* Current node is the last with score < or <= min. */ x = x->level[0].forward; /* Delete nodes while in range. */ while (x && zslValueLteMax(x->score, range)) { zskiplistNode *next = x->level[0].forward; zslDeleteNode(zsl,x,update); dictDelete(dict,x->ele); zslFreeNode(x); /* Here is where x->ele is actually released. */ removed++; x = next; } return removed; } unsigned long zslDeleteRangeByLex(zskiplist *zsl, zlexrangespec *range, dict *dict) { zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x; unsigned long removed = 0; int i; x = zsl->header; for (i = zsl->level-1; i >= 0; i--) { while (x->level[i].forward && !zslLexValueGteMin(x->level[i].forward->ele,range)) x = x->level[i].forward; update[i] = x; } /* Current node is the last with score < or <= min. */ x = x->level[0].forward; /* Delete nodes while in range. */ while (x && zslLexValueLteMax(x->ele,range)) { zskiplistNode *next = x->level[0].forward; zslDeleteNode(zsl,x,update); dictDelete(dict,x->ele); zslFreeNode(x); /* Here is where x->ele is actually released. */ removed++; x = next; } return removed; } /* Delete all the elements with rank between start and end from the skiplist. * Start and end are inclusive. Note that start and end need to be 1-based */ unsigned long zslDeleteRangeByRank(zskiplist *zsl, unsigned int start, unsigned int end, dict *dict) { zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x; unsigned long traversed = 0, removed = 0; int i; x = zsl->header; for (i = zsl->level-1; i >= 0; i--) { while (x->level[i].forward && (traversed + x->level[i].span) < start) { traversed += x->level[i].span; x = x->level[i].forward; } update[i] = x; } traversed++; x = x->level[0].forward; while (x && traversed <= end) { zskiplistNode *next = x->level[0].forward; zslDeleteNode(zsl,x,update); dictDelete(dict,x->ele); zslFreeNode(x); removed++; traversed++; x = next; } return removed; } /* Find the rank for an element by both score and key. * Returns 0 when the element cannot be found, rank otherwise. * Note that the rank is 1-based due to the span of zsl->header to the * first element. */ unsigned long zslGetRank(zskiplist *zsl, double score, sds ele) { zskiplistNode *x; unsigned long rank = 0; int i; x = zsl->header; for (i = zsl->level-1; i >= 0; i--) { while (x->level[i].forward && (x->level[i].forward->score < score || (x->level[i].forward->score == score && sdscmp(x->level[i].forward->ele,ele) <= 0))) { rank += x->level[i].span; x = x->level[i].forward; } /* x might be equal to zsl->header, so test if obj is non-NULL */ if (x->ele && x->score == score && sdscmp(x->ele,ele) == 0) { return rank; } } return 0; } /* Finds an element by its rank from start node. The rank argument needs to be 1-based. */ zskiplistNode *zslGetElementByRankFromNode(zskiplistNode *start_node, int start_level, unsigned long rank) { zskiplistNode *x; unsigned long traversed = 0; int i; x = start_node; for (i = start_level; i >= 0; i--) { while (x->level[i].forward && (traversed + x->level[i].span) <= rank) { traversed += x->level[i].span; x = x->level[i].forward; } if (traversed == rank) { return x; } } return NULL; } /* Finds an element by its rank. The rank argument needs to be 1-based. */ zskiplistNode *zslGetElementByRank(zskiplist *zsl, unsigned long rank) { return zslGetElementByRankFromNode(zsl->header, zsl->level - 1, rank); } /* Populate the rangespec according to the objects min and max. */ static int zslParseRange(robj *min, robj *max, zrangespec *spec) { char *eptr; spec->minex = spec->maxex = 0; /* Parse the min-max interval. If one of the values is prefixed * by the "(" character, it's considered "open". For instance * ZRANGEBYSCORE zset (1.5 (2.5 will match min < x < max * ZRANGEBYSCORE zset 1.5 2.5 will instead match min <= x <= max */ if (min->encoding == OBJ_ENCODING_INT) { spec->min = (long)min->ptr; } else { if (((char*)min->ptr)[0] == '(') { spec->min = strtod((char*)min->ptr+1,&eptr); if (eptr[0] != '\0' || isnan(spec->min)) return C_ERR; spec->minex = 1; } else { spec->min = strtod((char*)min->ptr,&eptr); if (eptr[0] != '\0' || isnan(spec->min)) return C_ERR; } } if (max->encoding == OBJ_ENCODING_INT) { spec->max = (long)max->ptr; } else { if (((char*)max->ptr)[0] == '(') { spec->max = strtod((char*)max->ptr+1,&eptr); if (eptr[0] != '\0' || isnan(spec->max)) return C_ERR; spec->maxex = 1; } else { spec->max = strtod((char*)max->ptr,&eptr); if (eptr[0] != '\0' || isnan(spec->max)) return C_ERR; } } return C_OK; } /* ------------------------ Lexicographic ranges ---------------------------- */ /* Parse max or min argument of ZRANGEBYLEX. * (foo means foo (open interval) * [foo means foo (closed interval) * - means the min string possible * + means the max string possible * * If the string is valid the *dest pointer is set to the redis object * that will be used for the comparison, and ex will be set to 0 or 1 * respectively if the item is exclusive or inclusive. C_OK will be * returned. * * If the string is not a valid range C_ERR is returned, and the value * of *dest and *ex is undefined. */ int zslParseLexRangeItem(robj *item, sds *dest, int *ex) { char *c = item->ptr; switch(c[0]) { case '+': if (c[1] != '\0') return C_ERR; *ex = 1; *dest = shared.maxstring; return C_OK; case '-': if (c[1] != '\0') return C_ERR; *ex = 1; *dest = shared.minstring; return C_OK; case '(': *ex = 1; *dest = sdsnewlen(c+1,sdslen(c)-1); return C_OK; case '[': *ex = 0; *dest = sdsnewlen(c+1,sdslen(c)-1); return C_OK; default: return C_ERR; } } /* Free a lex range structure, must be called only after zslParseLexRange() * populated the structure with success (C_OK returned). */ void zslFreeLexRange(zlexrangespec *spec) { if (spec->min != shared.minstring && spec->min != shared.maxstring) sdsfree(spec->min); if (spec->max != shared.minstring && spec->max != shared.maxstring) sdsfree(spec->max); } /* Populate the lex rangespec according to the objects min and max. * * Return C_OK on success. On error C_ERR is returned. * When OK is returned the structure must be freed with zslFreeLexRange(), * otherwise no release is needed. */ int zslParseLexRange(robj *min, robj *max, zlexrangespec *spec) { /* The range can't be valid if objects are integer encoded. * Every item must start with ( or [. */ if (min->encoding == OBJ_ENCODING_INT || max->encoding == OBJ_ENCODING_INT) return C_ERR; spec->min = spec->max = NULL; if (zslParseLexRangeItem(min, &spec->min, &spec->minex) == C_ERR || zslParseLexRangeItem(max, &spec->max, &spec->maxex) == C_ERR) { zslFreeLexRange(spec); return C_ERR; } else { return C_OK; } } /* This is just a wrapper to sdscmp() that is able to * handle shared.minstring and shared.maxstring as the equivalent of * -inf and +inf for strings */ int sdscmplex(sds a, sds b) { if (a == b) return 0; if (a == shared.minstring || b == shared.maxstring) return -1; if (a == shared.maxstring || b == shared.minstring) return 1; return sdscmp(a,b); } int zslLexValueGteMin(sds value, zlexrangespec *spec) { return spec->minex ? (sdscmplex(value,spec->min) > 0) : (sdscmplex(value,spec->min) >= 0); } int zslLexValueLteMax(sds value, zlexrangespec *spec) { return spec->maxex ? (sdscmplex(value,spec->max) < 0) : (sdscmplex(value,spec->max) <= 0); } /* Returns if there is a part of the zset is in the lex range. */ int zslIsInLexRange(zskiplist *zsl, zlexrangespec *range) { zskiplistNode *x; /* Test for ranges that will always be empty. */ int cmp = sdscmplex(range->min,range->max); if (cmp > 0 || (cmp == 0 && (range->minex || range->maxex))) return 0; x = zsl->tail; if (x == NULL || !zslLexValueGteMin(x->ele,range)) return 0; x = zsl->header->level[0].forward; if (x == NULL || !zslLexValueLteMax(x->ele,range)) return 0; return 1; } /* Find the Nth node that is contained in the specified range. N should be 0-based. * Negative N works for reversed order (-1 represents the last element). Returns * NULL when no element is contained in the range. */ zskiplistNode *zslNthInLexRange(zskiplist *zsl, zlexrangespec *range, long n) { zskiplistNode *x; int i; long edge_rank = 0; long last_highest_level_rank = 0; zskiplistNode *last_highest_level_node = NULL; unsigned long rank_diff; /* If everything is out of range, return early. */ if (!zslIsInLexRange(zsl,range)) return NULL; /* Go forward while *OUT* of range at level of zsl->level-1. */ x = zsl->header; i = zsl->level - 1; while (x->level[i].forward && !zslLexValueGteMin(x->level[i].forward->ele, range)) { edge_rank += x->level[i].span; x = x->level[i].forward; } /* Remember the last node which has zsl->level-1 levels and its rank. */ last_highest_level_node = x; last_highest_level_rank = edge_rank; if (n >= 0) { for (i = zsl->level - 2; i >= 0; i--) { /* Go forward while *OUT* of range. */ while (x->level[i].forward && !zslLexValueGteMin(x->level[i].forward->ele, range)) { /* Count the rank of the last element smaller than the range. */ edge_rank += x->level[i].span; x = x->level[i].forward; } } /* Check if zsl is long enough. */ if ((unsigned long)(edge_rank + n) >= zsl->length) return NULL; if (n < ZSKIPLIST_MAX_SEARCH) { /* If offset is small, we can just jump node by node */ /* rank+1 is the first element in range, so we need n+1 steps to reach target. */ for (i = 0; i < n + 1; i++) { x = x->level[0].forward; } } else { /* If offset is big, we caasn jump from the last zsl->level-1 node. */ rank_diff = edge_rank + 1 + n - last_highest_level_rank; x = zslGetElementByRankFromNode(last_highest_level_node, zsl->level - 1, rank_diff); } /* Check if score <= max. */ if (x && !zslLexValueLteMax(x->ele,range)) return NULL; } else { for (i = zsl->level - 1; i >= 0; i--) { /* Go forward while *IN* range. */ while (x->level[i].forward && zslLexValueLteMax(x->level[i].forward->ele, range)) { /* Count the rank of the last element in range. */ edge_rank += x->level[i].span; x = x->level[i].forward; } } /* Check if the range is big enough. */ if (edge_rank < -n) return NULL; if (n + 1 > -ZSKIPLIST_MAX_SEARCH) { /* If offset is small, we can just jump node by node */ for (i = 0; i < -n - 1; i++) { x = x->backward; } } else { /* If offset is big, we can jump from the last zsl->level-1 node. */ /* rank is the last element in range, n is -1-based, so we need n+1 to count backwards. */ rank_diff = edge_rank + 1 + n - last_highest_level_rank; x = zslGetElementByRankFromNode(last_highest_level_node, zsl->level - 1, rank_diff); } /* Check if score >= min. */ if (x && !zslLexValueGteMin(x->ele, range)) return NULL; } return x; } /*----------------------------------------------------------------------------- * Listpack-backed sorted set API *----------------------------------------------------------------------------*/ double zzlStrtod(unsigned char *vstr, unsigned int vlen) { char buf[128]; if (vlen > sizeof(buf) - 1) vlen = sizeof(buf) - 1; memcpy(buf,vstr,vlen); buf[vlen] = '\0'; return strtod(buf,NULL); } double zzlGetScore(unsigned char *sptr) { unsigned char *vstr; unsigned int vlen; long long vlong; double score; serverAssert(sptr != NULL); vstr = lpGetValue(sptr,&vlen,&vlong); if (vstr) { score = zzlStrtod(vstr,vlen); } else { score = vlong; } return score; } /* Return a listpack element as an SDS string. */ sds lpGetObject(unsigned char *sptr) { unsigned char *vstr; unsigned int vlen; long long vlong; serverAssert(sptr != NULL); vstr = lpGetValue(sptr,&vlen,&vlong); if (vstr) { return sdsnewlen((char*)vstr,vlen); } else { return sdsfromlonglong(vlong); } } /* Compare element in sorted set with given element. */ int zzlCompareElements(unsigned char *eptr, unsigned char *cstr, unsigned int clen) { unsigned char *vstr; unsigned int vlen; long long vlong; unsigned char vbuf[32]; int minlen, cmp; vstr = lpGetValue(eptr,&vlen,&vlong); if (vstr == NULL) { /* Store string representation of long long in buf. */ vlen = ll2string((char*)vbuf,sizeof(vbuf),vlong); vstr = vbuf; } minlen = (vlen < clen) ? vlen : clen; cmp = memcmp(vstr,cstr,minlen); if (cmp == 0) return vlen-clen; return cmp; } unsigned int zzlLength(unsigned char *zl) { return lpLength(zl)/2; } /* Move to next entry based on the values in eptr and sptr. Both are set to * NULL when there is no next entry. */ void zzlNext(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) { unsigned char *_eptr, *_sptr; serverAssert(*eptr != NULL && *sptr != NULL); _eptr = lpNext(zl,*sptr); if (_eptr != NULL) { _sptr = lpNext(zl,_eptr); serverAssert(_sptr != NULL); } else { /* No next entry. */ _sptr = NULL; } *eptr = _eptr; *sptr = _sptr; } /* Move to the previous entry based on the values in eptr and sptr. Both are * set to NULL when there is no prev entry. */ void zzlPrev(unsigned char *zl, unsigned char **eptr, unsigned char **sptr) { unsigned char *_eptr, *_sptr; serverAssert(*eptr != NULL && *sptr != NULL); _sptr = lpPrev(zl,*eptr); if (_sptr != NULL) { _eptr = lpPrev(zl,_sptr); serverAssert(_eptr != NULL); } else { /* No previous entry. */ _eptr = NULL; } *eptr = _eptr; *sptr = _sptr; } /* Returns if there is a part of the zset is in range. Should only be used * internally by zzlFirstInRange and zzlLastInRange. */ int zzlIsInRange(unsigned char *zl, zrangespec *range) { unsigned char *p; double score; /* Test for ranges that will always be empty. */ if (range->min > range->max || (range->min == range->max && (range->minex || range->maxex))) return 0; p = lpSeek(zl,-1); /* Last score. */ if (p == NULL) return 0; /* Empty sorted set */ score = zzlGetScore(p); if (!zslValueGteMin(score,range)) return 0; p = lpSeek(zl,1); /* First score. */ serverAssert(p != NULL); score = zzlGetScore(p); if (!zslValueLteMax(score,range)) return 0; return 1; } /* Find pointer to the first element contained in the specified range. * Returns NULL when no element is contained in the range. */ unsigned char *zzlFirstInRange(unsigned char *zl, zrangespec *range) { unsigned char *eptr = lpSeek(zl,0), *sptr; double score; /* If everything is out of range, return early. */ if (!zzlIsInRange(zl,range)) return NULL; while (eptr != NULL) { sptr = lpNext(zl,eptr); serverAssert(sptr != NULL); score = zzlGetScore(sptr); if (zslValueGteMin(score,range)) { /* Check if score <= max. */ if (zslValueLteMax(score,range)) return eptr; return NULL; } /* Move to next element. */ eptr = lpNext(zl,sptr); } return NULL; } /* Find pointer to the last element contained in the specified range. * Returns NULL when no element is contained in the range. */ unsigned char *zzlLastInRange(unsigned char *zl, zrangespec *range) { unsigned char *eptr = lpSeek(zl,-2), *sptr; double score; /* If everything is out of range, return early. */ if (!zzlIsInRange(zl,range)) return NULL; while (eptr != NULL) { sptr = lpNext(zl,eptr); serverAssert(sptr != NULL); score = zzlGetScore(sptr); if (zslValueLteMax(score,range)) { /* Check if score >= min. */ if (zslValueGteMin(score,range)) return eptr; return NULL; } /* Move to previous element by moving to the score of previous element. * When this returns NULL, we know there also is no element. */ sptr = lpPrev(zl,eptr); if (sptr != NULL) serverAssert((eptr = lpPrev(zl,sptr)) != NULL); else eptr = NULL; } return NULL; } int zzlLexValueGteMin(unsigned char *p, zlexrangespec *spec) { sds value = lpGetObject(p); int res = zslLexValueGteMin(value,spec); sdsfree(value); return res; } int zzlLexValueLteMax(unsigned char *p, zlexrangespec *spec) { sds value = lpGetObject(p); int res = zslLexValueLteMax(value,spec); sdsfree(value); return res; } /* Returns if there is a part of the zset is in range. Should only be used * internally by zzlFirstInLexRange and zzlLastInLexRange. */ int zzlIsInLexRange(unsigned char *zl, zlexrangespec *range) { unsigned char *p; /* Test for ranges that will always be empty. */ int cmp = sdscmplex(range->min,range->max); if (cmp > 0 || (cmp == 0 && (range->minex || range->maxex))) return 0; p = lpSeek(zl,-2); /* Last element. */ if (p == NULL) return 0; if (!zzlLexValueGteMin(p,range)) return 0; p = lpSeek(zl,0); /* First element. */ serverAssert(p != NULL); if (!zzlLexValueLteMax(p,range)) return 0; return 1; } /* Find pointer to the first element contained in the specified lex range. * Returns NULL when no element is contained in the range. */ unsigned char *zzlFirstInLexRange(unsigned char *zl, zlexrangespec *range) { unsigned char *eptr = lpSeek(zl,0), *sptr; /* If everything is out of range, return early. */ if (!zzlIsInLexRange(zl,range)) return NULL; while (eptr != NULL) { if (zzlLexValueGteMin(eptr,range)) { /* Check if score <= max. */ if (zzlLexValueLteMax(eptr,range)) return eptr; return NULL; } /* Move to next element. */ sptr = lpNext(zl,eptr); /* This element score. Skip it. */ serverAssert(sptr != NULL); eptr = lpNext(zl,sptr); /* Next element. */ } return NULL; } /* Find pointer to the last element contained in the specified lex range. * Returns NULL when no element is contained in the range. */ unsigned char *zzlLastInLexRange(unsigned char *zl, zlexrangespec *range) { unsigned char *eptr = lpSeek(zl,-2), *sptr; /* If everything is out of range, return early. */ if (!zzlIsInLexRange(zl,range)) return NULL; while (eptr != NULL) { if (zzlLexValueLteMax(eptr,range)) { /* Check if score >= min. */ if (zzlLexValueGteMin(eptr,range)) return eptr; return NULL; } /* Move to previous element by moving to the score of previous element. * When this returns NULL, we know there also is no element. */ sptr = lpPrev(zl,eptr); if (sptr != NULL) serverAssert((eptr = lpPrev(zl,sptr)) != NULL); else eptr = NULL; } return NULL; } unsigned char *zzlFind(unsigned char *lp, sds ele, double *score) { unsigned char *eptr, *sptr; if ((eptr = lpFirst(lp)) == NULL) return NULL; eptr = lpFind(lp, eptr, (unsigned char*)ele, sdslen(ele), 1); if (eptr) { sptr = lpNext(lp,eptr); serverAssert(sptr != NULL); /* Matching element, pull out score. */ if (score != NULL) *score = zzlGetScore(sptr); return eptr; } return NULL; } /* Delete (element,score) pair from listpack. Use local copy of eptr because we * don't want to modify the one given as argument. */ unsigned char *zzlDelete(unsigned char *zl, unsigned char *eptr) { return lpDeleteRangeWithEntry(zl,&eptr,2); } unsigned char *zzlInsertAt(unsigned char *zl, unsigned char *eptr, sds ele, double score) { unsigned char *sptr; char scorebuf[MAX_D2STRING_CHARS]; int scorelen = 0; long long lscore; int score_is_long = double2ll(score, &lscore); if (!score_is_long) scorelen = d2string(scorebuf,sizeof(scorebuf),score); if (eptr == NULL) { zl = lpAppend(zl,(unsigned char*)ele,sdslen(ele)); if (score_is_long) zl = lpAppendInteger(zl,lscore); else zl = lpAppend(zl,(unsigned char*)scorebuf,scorelen); } else { /* Insert member before the element 'eptr'. */ zl = lpInsertString(zl,(unsigned char*)ele,sdslen(ele),eptr,LP_BEFORE,&sptr); /* Insert score after the member. */ if (score_is_long) zl = lpInsertInteger(zl,lscore,sptr,LP_AFTER,NULL); else zl = lpInsertString(zl,(unsigned char*)scorebuf,scorelen,sptr,LP_AFTER,NULL); } return zl; } /* Insert (element,score) pair in listpack. This function assumes the element is * not yet present in the list. */ unsigned char *zzlInsert(unsigned char *zl, sds ele, double score) { unsigned char *eptr = lpSeek(zl,0), *sptr; double s; while (eptr != NULL) { sptr = lpNext(zl,eptr); serverAssert(sptr != NULL); s = zzlGetScore(sptr); if (s > score) { /* First element with score larger than score for element to be * inserted. This means we should take its spot in the list to * maintain ordering. */ zl = zzlInsertAt(zl,eptr,ele,score); break; } else if (s == score) { /* Ensure lexicographical ordering for elements. */ if (zzlCompareElements(eptr,(unsigned char*)ele,sdslen(ele)) > 0) { zl = zzlInsertAt(zl,eptr,ele,score); break; } } /* Move to next element. */ eptr = lpNext(zl,sptr); } /* Push on tail of list when it was not yet inserted. */ if (eptr == NULL) zl = zzlInsertAt(zl,NULL,ele,score); return zl; } unsigned char *zzlDeleteRangeByScore(unsigned char *zl, zrangespec *range, unsigned long *deleted) { unsigned char *eptr, *sptr; double score; unsigned long num = 0; if (deleted != NULL) *deleted = 0; eptr = zzlFirstInRange(zl,range); if (eptr == NULL) return zl; /* When the tail of the listpack is deleted, eptr will be NULL. */ while (eptr && (sptr = lpNext(zl,eptr)) != NULL) { score = zzlGetScore(sptr); if (zslValueLteMax(score,range)) { /* Delete both the element and the score. */ zl = lpDeleteRangeWithEntry(zl,&eptr,2); num++; } else { /* No longer in range. */ break; } } if (deleted != NULL) *deleted = num; return zl; } unsigned char *zzlDeleteRangeByLex(unsigned char *zl, zlexrangespec *range, unsigned long *deleted) { unsigned char *eptr, *sptr; unsigned long num = 0; if (deleted != NULL) *deleted = 0; eptr = zzlFirstInLexRange(zl,range); if (eptr == NULL) return zl; /* When the tail of the listpack is deleted, eptr will be NULL. */ while (eptr && (sptr = lpNext(zl,eptr)) != NULL) { if (zzlLexValueLteMax(eptr,range)) { /* Delete both the element and the score. */ zl = lpDeleteRangeWithEntry(zl,&eptr,2); num++; } else { /* No longer in range. */ break; } } if (deleted != NULL) *deleted = num; return zl; } /* Delete all the elements with rank between start and end from the skiplist. * Start and end are inclusive. Note that start and end need to be 1-based */ unsigned char *zzlDeleteRangeByRank(unsigned char *zl, unsigned int start, unsigned int end, unsigned long *deleted) { unsigned int num = (end-start)+1; if (deleted) *deleted = num; zl = lpDeleteRange(zl,2*(start-1),2*num); return zl; } /*----------------------------------------------------------------------------- * Common sorted set API *----------------------------------------------------------------------------*/ unsigned long zsetLength(const robj *zobj) { unsigned long length = 0; if (zobj->encoding == OBJ_ENCODING_LISTPACK) { length = zzlLength(zobj->ptr); } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { length = ((const zset*)zobj->ptr)->zsl->length; } else { serverPanic("Unknown sorted set encoding"); } return length; } /* Factory method to return a zset. * * The size hint indicates approximately how many items will be added, * and the value len hint indicates the approximate individual size of the added elements, * they are used to determine the initial representation. * * If the hints are not known, and underestimation or 0 is suitable. * We should never pass a negative value because it will convert to a very large unsigned number. */ robj *zsetTypeCreate(size_t size_hint, size_t val_len_hint) { if (size_hint <= server.zset_max_listpack_entries && val_len_hint <= server.zset_max_listpack_value) { return createZsetListpackObject(); } robj *zobj = createZsetObject(); zset *zs = zobj->ptr; dictExpand(zs->dict, size_hint); return zobj; } /* Check if the existing zset should be converted to another encoding based off the * the size hint. */ void zsetTypeMaybeConvert(robj *zobj, size_t size_hint) { if (zobj->encoding == OBJ_ENCODING_LISTPACK && size_hint > server.zset_max_listpack_entries) { zsetConvertAndExpand(zobj, OBJ_ENCODING_SKIPLIST, size_hint); } } /* Convert the zset to specified encoding. The zset dict (when converting * to a skiplist) is presized to hold the number of elements in the original * zset. */ void zsetConvert(robj *zobj, int encoding) { zsetConvertAndExpand(zobj, encoding, zsetLength(zobj)); } /* Converts a zset to the specified encoding, pre-sizing it for 'cap' elements. */ void zsetConvertAndExpand(robj *zobj, int encoding, unsigned long cap) { zset *zs; zskiplistNode *node, *next; sds ele; double score; if (zobj->encoding == encoding) return; if (zobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *zl = zobj->ptr; unsigned char *eptr, *sptr; unsigned char *vstr; unsigned int vlen; long long vlong; if (encoding != OBJ_ENCODING_SKIPLIST) serverPanic("Unknown target encoding"); zs = zmalloc(sizeof(*zs)); zs->dict = dictCreate(&zsetDictType); zs->zsl = zslCreate(); /* Presize the dict to avoid rehashing */ dictExpand(zs->dict, cap); eptr = lpSeek(zl,0); if (eptr != NULL) { sptr = lpNext(zl,eptr); serverAssertWithInfo(NULL,zobj,sptr != NULL); } while (eptr != NULL) { score = zzlGetScore(sptr); vstr = lpGetValue(eptr,&vlen,&vlong); if (vstr == NULL) ele = sdsfromlonglong(vlong); else ele = sdsnewlen((char*)vstr,vlen); node = zslInsert(zs->zsl,score,ele); serverAssert(dictAdd(zs->dict,ele,&node->score) == DICT_OK); zzlNext(zl,&eptr,&sptr); } zfree(zobj->ptr); zobj->ptr = zs; zobj->encoding = OBJ_ENCODING_SKIPLIST; } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { unsigned char *zl = lpNew(0); if (encoding != OBJ_ENCODING_LISTPACK) serverPanic("Unknown target encoding"); /* Approach similar to zslFree(), since we want to free the skiplist at * the same time as creating the listpack. */ zs = zobj->ptr; dictRelease(zs->dict); node = zs->zsl->header->level[0].forward; zfree(zs->zsl->header); zfree(zs->zsl); while (node) { zl = zzlInsertAt(zl,NULL,node->ele,node->score); next = node->level[0].forward; zslFreeNode(node); node = next; } zfree(zs); zobj->ptr = zl; zobj->encoding = OBJ_ENCODING_LISTPACK; } else { serverPanic("Unknown sorted set encoding"); } } /* Convert the sorted set object into a listpack if it is not already a listpack * and if the number of elements and the maximum element size and total elements size * are within the expected ranges. */ void zsetConvertToListpackIfNeeded(robj *zobj, size_t maxelelen, size_t totelelen) { if (zobj->encoding == OBJ_ENCODING_LISTPACK) return; zset *zset = zobj->ptr; if (zset->zsl->length <= server.zset_max_listpack_entries && maxelelen <= server.zset_max_listpack_value && lpSafeToAdd(NULL, totelelen)) { zsetConvert(zobj,OBJ_ENCODING_LISTPACK); } } /* Return (by reference) the score of the specified member of the sorted set * storing it into *score. If the element does not exist C_ERR is returned * otherwise C_OK is returned and *score is correctly populated. * If 'zobj' or 'member' is NULL, C_ERR is returned. */ int zsetScore(robj *zobj, sds member, double *score) { if (!zobj || !member) return C_ERR; if (zobj->encoding == OBJ_ENCODING_LISTPACK) { if (zzlFind(zobj->ptr, member, score) == NULL) return C_ERR; } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; dictEntry *de = dictFind(zs->dict, member); if (de == NULL) return C_ERR; *score = *(double*)dictGetVal(de); } else { serverPanic("Unknown sorted set encoding"); } return C_OK; } /* Add a new element or update the score of an existing element in a sorted * set, regardless of its encoding. * * The set of flags change the command behavior. * * The input flags are the following: * * ZADD_INCR: Increment the current element score by 'score' instead of updating * the current element score. If the element does not exist, we * assume 0 as previous score. * ZADD_NX: Perform the operation only if the element does not exist. * ZADD_XX: Perform the operation only if the element already exist. * ZADD_GT: Perform the operation on existing elements only if the new score is * greater than the current score. * ZADD_LT: Perform the operation on existing elements only if the new score is * less than the current score. * * When ZADD_INCR is used, the new score of the element is stored in * '*newscore' if 'newscore' is not NULL. * * The returned flags are the following: * * ZADD_NAN: The resulting score is not a number. * ZADD_ADDED: The element was added (not present before the call). * ZADD_UPDATED: The element score was updated. * ZADD_NOP: No operation was performed because of NX or XX. * * Return value: * * The function returns 1 on success, and sets the appropriate flags * ADDED or UPDATED to signal what happened during the operation (note that * none could be set if we re-added an element using the same score it used * to have, or in the case a zero increment is used). * * The function returns 0 on error, currently only when the increment * produces a NAN condition, or when the 'score' value is NAN since the * start. * * The command as a side effect of adding a new element may convert the sorted * set internal encoding from listpack to hashtable+skiplist. * * Memory management of 'ele': * * The function does not take ownership of the 'ele' SDS string, but copies * it if needed. */ int zsetAdd(robj *zobj, double score, sds ele, int in_flags, int *out_flags, double *newscore) { /* Turn options into simple to check vars. */ int incr = (in_flags & ZADD_IN_INCR) != 0; int nx = (in_flags & ZADD_IN_NX) != 0; int xx = (in_flags & ZADD_IN_XX) != 0; int gt = (in_flags & ZADD_IN_GT) != 0; int lt = (in_flags & ZADD_IN_LT) != 0; *out_flags = 0; /* We'll return our response flags. */ double curscore; /* NaN as input is an error regardless of all the other parameters. */ if (isnan(score)) { *out_flags = ZADD_OUT_NAN; return 0; } /* Update the sorted set according to its encoding. */ if (zobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *eptr; if ((eptr = zzlFind(zobj->ptr,ele,&curscore)) != NULL) { /* NX? Return, same element already exists. */ if (nx) { *out_flags |= ZADD_OUT_NOP; return 1; } /* Prepare the score for the increment if needed. */ if (incr) { score += curscore; if (isnan(score)) { *out_flags |= ZADD_OUT_NAN; return 0; } } /* GT/LT? Only update if score is greater/less than current. */ if ((lt && score >= curscore) || (gt && score <= curscore)) { *out_flags |= ZADD_OUT_NOP; return 1; } if (newscore) *newscore = score; /* Remove and re-insert when score changed. */ if (score != curscore) { zobj->ptr = zzlDelete(zobj->ptr,eptr); zobj->ptr = zzlInsert(zobj->ptr,ele,score); *out_flags |= ZADD_OUT_UPDATED; } return 1; } else if (!xx) { /* check if the element is too large or the list * becomes too long *before* executing zzlInsert. */ if (zzlLength(zobj->ptr)+1 > server.zset_max_listpack_entries || sdslen(ele) > server.zset_max_listpack_value || !lpSafeToAdd(zobj->ptr, sdslen(ele))) { zsetConvertAndExpand(zobj, OBJ_ENCODING_SKIPLIST, zsetLength(zobj) + 1); } else { zobj->ptr = zzlInsert(zobj->ptr,ele,score); if (newscore) *newscore = score; *out_flags |= ZADD_OUT_ADDED; return 1; } } else { *out_flags |= ZADD_OUT_NOP; return 1; } } /* Note that the above block handling listpack would have either returned or * converted the key to skiplist. */ if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; zskiplistNode *znode; dictEntry *de; de = dictFind(zs->dict,ele); if (de != NULL) { /* NX? Return, same element already exists. */ if (nx) { *out_flags |= ZADD_OUT_NOP; return 1; } curscore = *(double*)dictGetVal(de); /* Prepare the score for the increment if needed. */ if (incr) { score += curscore; if (isnan(score)) { *out_flags |= ZADD_OUT_NAN; return 0; } } /* GT/LT? Only update if score is greater/less than current. */ if ((lt && score >= curscore) || (gt && score <= curscore)) { *out_flags |= ZADD_OUT_NOP; return 1; } if (newscore) *newscore = score; /* Remove and re-insert when score changes. */ if (score != curscore) { znode = zslUpdateScore(zs->zsl,curscore,ele,score); /* Note that we did not removed the original element from * the hash table representing the sorted set, so we just * update the score. */ dictSetVal(zs->dict, de, &znode->score); /* Update score ptr. */ *out_flags |= ZADD_OUT_UPDATED; } return 1; } else if (!xx) { ele = sdsdup(ele); znode = zslInsert(zs->zsl,score,ele); serverAssert(dictAdd(zs->dict,ele,&znode->score) == DICT_OK); *out_flags |= ZADD_OUT_ADDED; if (newscore) *newscore = score; return 1; } else { *out_flags |= ZADD_OUT_NOP; return 1; } } else { serverPanic("Unknown sorted set encoding"); } return 0; /* Never reached. */ } /* Deletes the element 'ele' from the sorted set encoded as a skiplist+dict, * returning 1 if the element existed and was deleted, 0 otherwise (the * element was not there). It does not resize the dict after deleting the * element. */ static int zsetRemoveFromSkiplist(zset *zs, sds ele) { dictEntry *de; double score; de = dictUnlink(zs->dict,ele); if (de != NULL) { /* Get the score in order to delete from the skiplist later. */ score = *(double*)dictGetVal(de); /* Delete from the hash table and later from the skiplist. * Note that the order is important: deleting from the skiplist * actually releases the SDS string representing the element, * which is shared between the skiplist and the hash table, so * we need to delete from the skiplist as the final step. */ dictFreeUnlinkedEntry(zs->dict,de); /* Delete from skiplist. */ int retval = zslDelete(zs->zsl,score,ele,NULL); serverAssert(retval); return 1; } return 0; } /* Delete the element 'ele' from the sorted set, returning 1 if the element * existed and was deleted, 0 otherwise (the element was not there). */ int zsetDel(robj *zobj, sds ele) { if (zobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *eptr; if ((eptr = zzlFind(zobj->ptr,ele,NULL)) != NULL) { zobj->ptr = zzlDelete(zobj->ptr,eptr); return 1; } } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; if (zsetRemoveFromSkiplist(zs, ele)) { return 1; } } else { serverPanic("Unknown sorted set encoding"); } return 0; /* No such element found. */ } /* Given a sorted set object returns the 0-based rank of the object or * -1 if the object does not exist. * * For rank we mean the position of the element in the sorted collection * of elements. So the first element has rank 0, the second rank 1, and so * forth up to length-1 elements. * * If 'reverse' is false, the rank is returned considering as first element * the one with the lowest score. Otherwise if 'reverse' is non-zero * the rank is computed considering as element with rank 0 the one with * the highest score. */ long zsetRank(robj *zobj, sds ele, int reverse, double *output_score) { unsigned long llen; unsigned long rank; llen = zsetLength(zobj); if (zobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *zl = zobj->ptr; unsigned char *eptr, *sptr; eptr = lpSeek(zl,0); serverAssert(eptr != NULL); sptr = lpNext(zl,eptr); serverAssert(sptr != NULL); rank = 1; while(eptr != NULL) { if (lpCompare(eptr,(unsigned char*)ele,sdslen(ele))) break; rank++; zzlNext(zl,&eptr,&sptr); } if (eptr != NULL) { if (output_score) *output_score = zzlGetScore(sptr); if (reverse) return llen-rank; else return rank-1; } else { return -1; } } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; zskiplist *zsl = zs->zsl; dictEntry *de; double score; de = dictFind(zs->dict,ele); if (de != NULL) { score = *(double*)dictGetVal(de); rank = zslGetRank(zsl,score,ele); /* Existing elements always have a rank. */ serverAssert(rank != 0); if (output_score) *output_score = score; if (reverse) return llen-rank; else return rank-1; } else { return -1; } } else { serverPanic("Unknown sorted set encoding"); } } /* This is a helper function for the COPY command. * Duplicate a sorted set object, with the guarantee that the returned object * has the same encoding as the original one. * * The resulting object always has refcount set to 1 */ robj *zsetDup(robj *o) { robj *zobj; zset *zs; zset *new_zs; serverAssert(o->type == OBJ_ZSET); /* Create a new sorted set object that have the same encoding as the original object's encoding */ if (o->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *zl = o->ptr; size_t sz = lpBytes(zl); unsigned char *new_zl = zmalloc(sz); memcpy(new_zl, zl, sz); zobj = createObject(OBJ_ZSET, new_zl); zobj->encoding = OBJ_ENCODING_LISTPACK; } else if (o->encoding == OBJ_ENCODING_SKIPLIST) { zobj = createZsetObject(); zs = o->ptr; new_zs = zobj->ptr; dictExpand(new_zs->dict,dictSize(zs->dict)); zskiplist *zsl = zs->zsl; zskiplistNode *ln; sds ele; long llen = zsetLength(o); /* We copy the skiplist elements from the greatest to the * smallest (that's trivial since the elements are already ordered in * the skiplist): this improves the load process, since the next loaded * element will always be the smaller, so adding to the skiplist * will always immediately stop at the head, making the insertion * O(1) instead of O(log(N)). */ ln = zsl->tail; while (llen--) { ele = ln->ele; sds new_ele = sdsdup(ele); zskiplistNode *znode = zslInsert(new_zs->zsl,ln->score,new_ele); dictAdd(new_zs->dict,new_ele,&znode->score); ln = ln->backward; } } else { serverPanic("Unknown sorted set encoding"); } return zobj; } /* Create a new sds string from the listpack entry. */ sds zsetSdsFromListpackEntry(listpackEntry *e) { return e->sval ? sdsnewlen(e->sval, e->slen) : sdsfromlonglong(e->lval); } /* Reply with bulk string from the listpack entry. */ void zsetReplyFromListpackEntry(client *c, listpackEntry *e) { if (e->sval) addReplyBulkCBuffer(c, e->sval, e->slen); else addReplyBulkLongLong(c, e->lval); } /* Return random element from a non empty zset. * 'key' and 'val' will be set to hold the element. * The memory in `key` is not to be freed or modified by the caller. * 'score' can be NULL in which case it's not extracted. */ void zsetTypeRandomElement(robj *zsetobj, unsigned long zsetsize, listpackEntry *key, double *score) { if (zsetobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zsetobj->ptr; dictEntry *de = dictGetFairRandomKey(zs->dict); sds s = dictGetKey(de); key->sval = (unsigned char*)s; key->slen = sdslen(s); if (score) *score = *(double*)dictGetVal(de); } else if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) { listpackEntry val; lpRandomPair(zsetobj->ptr, zsetsize, key, &val); if (score) { if (val.sval) { *score = zzlStrtod(val.sval,val.slen); } else { *score = (double)val.lval; } } } else { serverPanic("Unknown zset encoding"); } } /*----------------------------------------------------------------------------- * Sorted set commands *----------------------------------------------------------------------------*/ /* This generic command implements both ZADD and ZINCRBY. */ void zaddGenericCommand(client *c, int flags) { static char *nanerr = "resulting score is not a number (NaN)"; robj *key = c->argv[1]; robj *zobj; sds ele; double score = 0, *scores = NULL; int j, elements, ch = 0; int scoreidx = 0; /* The following vars are used in order to track what the command actually * did during the execution, to reply to the client and to trigger the * notification of keyspace change. */ int added = 0; /* Number of new elements added. */ int updated = 0; /* Number of elements with updated score. */ int processed = 0; /* Number of elements processed, may remain zero with options like XX. */ /* Parse options. At the end 'scoreidx' is set to the argument position * of the score of the first score-element pair. */ scoreidx = 2; while(scoreidx < c->argc) { char *opt = c->argv[scoreidx]->ptr; if (!strcasecmp(opt,"nx")) flags |= ZADD_IN_NX; else if (!strcasecmp(opt,"xx")) flags |= ZADD_IN_XX; else if (!strcasecmp(opt,"ch")) ch = 1; /* Return num of elements added or updated. */ else if (!strcasecmp(opt,"incr")) flags |= ZADD_IN_INCR; else if (!strcasecmp(opt,"gt")) flags |= ZADD_IN_GT; else if (!strcasecmp(opt,"lt")) flags |= ZADD_IN_LT; else break; scoreidx++; } /* Turn options into simple to check vars. */ int incr = (flags & ZADD_IN_INCR) != 0; int nx = (flags & ZADD_IN_NX) != 0; int xx = (flags & ZADD_IN_XX) != 0; int gt = (flags & ZADD_IN_GT) != 0; int lt = (flags & ZADD_IN_LT) != 0; /* After the options, we expect to have an even number of args, since * we expect any number of score-element pairs. */ elements = c->argc-scoreidx; if (elements % 2 || !elements) { addReplyErrorObject(c,shared.syntaxerr); return; } elements /= 2; /* Now this holds the number of score-element pairs. */ /* Check for incompatible options. */ if (nx && xx) { addReplyError(c, "XX and NX options at the same time are not compatible"); return; } if ((gt && nx) || (lt && nx) || (gt && lt)) { addReplyError(c, "GT, LT, and/or NX options at the same time are not compatible"); return; } /* Note that XX is compatible with either GT or LT */ if (incr && elements > 1) { addReplyError(c, "INCR option supports a single increment-element pair"); return; } /* Start parsing all the scores, we need to emit any syntax error * before executing additions to the sorted set, as the command should * either execute fully or nothing at all. */ scores = zmalloc(sizeof(double)*elements); for (j = 0; j < elements; j++) { if (getDoubleFromObjectOrReply(c,c->argv[scoreidx+j*2],&scores[j],NULL) != C_OK) goto cleanup; } /* Lookup the key and create the sorted set if does not exist. */ zobj = lookupKeyWrite(c->db,key); if (checkType(c,zobj,OBJ_ZSET)) goto cleanup; if (zobj == NULL) { if (xx) goto reply_to_client; /* No key + XX option: nothing to do. */ zobj = zsetTypeCreate(elements, sdslen(c->argv[scoreidx+1]->ptr)); dbAdd(c->db,key,zobj); } else { zsetTypeMaybeConvert(zobj, elements); } for (j = 0; j < elements; j++) { double newscore; score = scores[j]; int retflags = 0; ele = c->argv[scoreidx+1+j*2]->ptr; int retval = zsetAdd(zobj, score, ele, flags, &retflags, &newscore); if (retval == 0) { addReplyError(c,nanerr); goto cleanup; } if (retflags & ZADD_OUT_ADDED) added++; if (retflags & ZADD_OUT_UPDATED) updated++; if (!(retflags & ZADD_OUT_NOP)) processed++; score = newscore; } server.dirty += (added+updated); reply_to_client: if (incr) { /* ZINCRBY or INCR option. */ if (processed) addReplyDouble(c,score); else addReplyNull(c); } else { /* ZADD. */ addReplyLongLong(c,ch ? added+updated : added); } cleanup: zfree(scores); if (added || updated) { signalModifiedKey(c,c->db,key); notifyKeyspaceEvent(NOTIFY_ZSET, incr ? "zincr" : "zadd", key, c->db->id); } } void zaddCommand(client *c) { zaddGenericCommand(c,ZADD_IN_NONE); } void zincrbyCommand(client *c) { zaddGenericCommand(c,ZADD_IN_INCR); } void zremCommand(client *c) { robj *key = c->argv[1]; robj *zobj; int deleted = 0, keyremoved = 0, j; if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL || checkType(c,zobj,OBJ_ZSET)) return; for (j = 2; j < c->argc; j++) { if (zsetDel(zobj,c->argv[j]->ptr)) deleted++; if (zsetLength(zobj) == 0) { dbDelete(c->db,key); keyremoved = 1; break; } } if (deleted) { notifyKeyspaceEvent(NOTIFY_ZSET,"zrem",key,c->db->id); if (keyremoved) notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id); signalModifiedKey(c,c->db,key); server.dirty += deleted; } addReplyLongLong(c,deleted); } typedef enum { ZRANGE_AUTO = 0, ZRANGE_RANK, ZRANGE_SCORE, ZRANGE_LEX, } zrange_type; /* Implements ZREMRANGEBYRANK, ZREMRANGEBYSCORE, ZREMRANGEBYLEX commands. */ void zremrangeGenericCommand(client *c, zrange_type rangetype) { robj *key = c->argv[1]; robj *zobj; int keyremoved = 0; unsigned long deleted = 0; zrangespec range; zlexrangespec lexrange; long start, end, llen; char *notify_type = NULL; /* Step 1: Parse the range. */ if (rangetype == ZRANGE_RANK) { notify_type = "zremrangebyrank"; if ((getLongFromObjectOrReply(c,c->argv[2],&start,NULL) != C_OK) || (getLongFromObjectOrReply(c,c->argv[3],&end,NULL) != C_OK)) return; } else if (rangetype == ZRANGE_SCORE) { notify_type = "zremrangebyscore"; if (zslParseRange(c->argv[2],c->argv[3],&range) != C_OK) { addReplyError(c,"min or max is not a float"); return; } } else if (rangetype == ZRANGE_LEX) { notify_type = "zremrangebylex"; if (zslParseLexRange(c->argv[2],c->argv[3],&lexrange) != C_OK) { addReplyError(c,"min or max not valid string range item"); return; } } else { serverPanic("unknown rangetype %d", (int)rangetype); } /* Step 2: Lookup & range sanity checks if needed. */ if ((zobj = lookupKeyWriteOrReply(c,key,shared.czero)) == NULL || checkType(c,zobj,OBJ_ZSET)) goto cleanup; if (rangetype == ZRANGE_RANK) { /* Sanitize indexes. */ llen = zsetLength(zobj); if (start < 0) start = llen+start; if (end < 0) end = llen+end; if (start < 0) start = 0; /* Invariant: start >= 0, so this test will be true when end < 0. * The range is empty when start > end or start >= length. */ if (start > end || start >= llen) { addReply(c,shared.czero); goto cleanup; } if (end >= llen) end = llen-1; } /* Step 3: Perform the range deletion operation. */ if (zobj->encoding == OBJ_ENCODING_LISTPACK) { switch(rangetype) { case ZRANGE_AUTO: case ZRANGE_RANK: zobj->ptr = zzlDeleteRangeByRank(zobj->ptr,start+1,end+1,&deleted); break; case ZRANGE_SCORE: zobj->ptr = zzlDeleteRangeByScore(zobj->ptr,&range,&deleted); break; case ZRANGE_LEX: zobj->ptr = zzlDeleteRangeByLex(zobj->ptr,&lexrange,&deleted); break; } if (zzlLength(zobj->ptr) == 0) { dbDelete(c->db,key); keyremoved = 1; } } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; dictPauseAutoResize(zs->dict); switch(rangetype) { case ZRANGE_AUTO: case ZRANGE_RANK: deleted = zslDeleteRangeByRank(zs->zsl,start+1,end+1,zs->dict); break; case ZRANGE_SCORE: deleted = zslDeleteRangeByScore(zs->zsl,&range,zs->dict); break; case ZRANGE_LEX: deleted = zslDeleteRangeByLex(zs->zsl,&lexrange,zs->dict); break; } dictResumeAutoResize(zs->dict); if (dictSize(zs->dict) == 0) { dbDelete(c->db,key); keyremoved = 1; } else { dictShrinkIfNeeded(zs->dict); } } else { serverPanic("Unknown sorted set encoding"); } /* Step 4: Notifications and reply. */ if (deleted) { signalModifiedKey(c,c->db,key); notifyKeyspaceEvent(NOTIFY_ZSET,notify_type,key,c->db->id); if (keyremoved) notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id); } server.dirty += deleted; addReplyLongLong(c,deleted); cleanup: if (rangetype == ZRANGE_LEX) zslFreeLexRange(&lexrange); } void zremrangebyrankCommand(client *c) { zremrangeGenericCommand(c,ZRANGE_RANK); } void zremrangebyscoreCommand(client *c) { zremrangeGenericCommand(c,ZRANGE_SCORE); } void zremrangebylexCommand(client *c) { zremrangeGenericCommand(c,ZRANGE_LEX); } typedef struct { robj *subject; int type; /* Set, sorted set */ int encoding; double weight; union { /* Set iterators. */ union _iterset { struct { intset *is; int ii; } is; struct { dict *dict; dictIterator *di; dictEntry *de; } ht; struct { unsigned char *lp; unsigned char *p; } lp; } set; /* Sorted set iterators. */ union _iterzset { struct { unsigned char *zl; unsigned char *eptr, *sptr; } zl; struct { zset *zs; zskiplistNode *node; } sl; } zset; } iter; } zsetopsrc; /* Use dirty flags for pointers that need to be cleaned up in the next * iteration over the zsetopval. The dirty flag for the long long value is * special, since long long values don't need cleanup. Instead, it means that * we already checked that "ell" holds a long long, or tried to convert another * representation into a long long value. When this was successful, * OPVAL_VALID_LL is set as well. */ #define OPVAL_DIRTY_SDS 1 #define OPVAL_DIRTY_LL 2 #define OPVAL_VALID_LL 4 /* Store value retrieved from the iterator. */ typedef struct { int flags; unsigned char _buf[32]; /* Private buffer. */ sds ele; unsigned char *estr; unsigned int elen; long long ell; double score; } zsetopval; typedef union _iterset iterset; typedef union _iterzset iterzset; void zuiInitIterator(zsetopsrc *op) { if (op->subject == NULL) return; if (op->type == OBJ_SET) { iterset *it = &op->iter.set; if (op->encoding == OBJ_ENCODING_INTSET) { it->is.is = op->subject->ptr; it->is.ii = 0; } else if (op->encoding == OBJ_ENCODING_HT) { it->ht.dict = op->subject->ptr; it->ht.di = dictGetIterator(op->subject->ptr); it->ht.de = dictNext(it->ht.di); } else if (op->encoding == OBJ_ENCODING_LISTPACK) { it->lp.lp = op->subject->ptr; it->lp.p = lpFirst(it->lp.lp); } else { serverPanic("Unknown set encoding"); } } else if (op->type == OBJ_ZSET) { /* Sorted sets are traversed in reverse order to optimize for * the insertion of the elements in a new list as in * ZDIFF/ZINTER/ZUNION */ iterzset *it = &op->iter.zset; if (op->encoding == OBJ_ENCODING_LISTPACK) { it->zl.zl = op->subject->ptr; it->zl.eptr = lpSeek(it->zl.zl,-2); if (it->zl.eptr != NULL) { it->zl.sptr = lpNext(it->zl.zl,it->zl.eptr); serverAssert(it->zl.sptr != NULL); } } else if (op->encoding == OBJ_ENCODING_SKIPLIST) { it->sl.zs = op->subject->ptr; it->sl.node = it->sl.zs->zsl->tail; } else { serverPanic("Unknown sorted set encoding"); } } else { serverPanic("Unsupported type"); } } void zuiClearIterator(zsetopsrc *op) { if (op->subject == NULL) return; if (op->type == OBJ_SET) { iterset *it = &op->iter.set; if (op->encoding == OBJ_ENCODING_INTSET) { UNUSED(it); /* skip */ } else if (op->encoding == OBJ_ENCODING_HT) { dictReleaseIterator(it->ht.di); } else if (op->encoding == OBJ_ENCODING_LISTPACK) { UNUSED(it); } else { serverPanic("Unknown set encoding"); } } else if (op->type == OBJ_ZSET) { iterzset *it = &op->iter.zset; if (op->encoding == OBJ_ENCODING_LISTPACK) { UNUSED(it); /* skip */ } else if (op->encoding == OBJ_ENCODING_SKIPLIST) { UNUSED(it); /* skip */ } else { serverPanic("Unknown sorted set encoding"); } } else { serverPanic("Unsupported type"); } } void zuiDiscardDirtyValue(zsetopval *val) { if (val->flags & OPVAL_DIRTY_SDS) { sdsfree(val->ele); val->ele = NULL; val->flags &= ~OPVAL_DIRTY_SDS; } } unsigned long zuiLength(zsetopsrc *op) { if (op->subject == NULL) return 0; if (op->type == OBJ_SET) { return setTypeSize(op->subject); } else if (op->type == OBJ_ZSET) { if (op->encoding == OBJ_ENCODING_LISTPACK) { return zzlLength(op->subject->ptr); } else if (op->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = op->subject->ptr; return zs->zsl->length; } else { serverPanic("Unknown sorted set encoding"); } } else { serverPanic("Unsupported type"); } } /* Check if the current value is valid. If so, store it in the passed structure * and move to the next element. If not valid, this means we have reached the * end of the structure and can abort. */ int zuiNext(zsetopsrc *op, zsetopval *val) { if (op->subject == NULL) return 0; zuiDiscardDirtyValue(val); memset(val,0,sizeof(zsetopval)); if (op->type == OBJ_SET) { iterset *it = &op->iter.set; if (op->encoding == OBJ_ENCODING_INTSET) { int64_t ell; if (!intsetGet(it->is.is,it->is.ii,&ell)) return 0; val->ell = ell; val->score = 1.0; /* Move to next element. */ it->is.ii++; } else if (op->encoding == OBJ_ENCODING_HT) { if (it->ht.de == NULL) return 0; val->ele = dictGetKey(it->ht.de); val->score = 1.0; /* Move to next element. */ it->ht.de = dictNext(it->ht.di); } else if (op->encoding == OBJ_ENCODING_LISTPACK) { if (it->lp.p == NULL) return 0; val->estr = lpGetValue(it->lp.p, &val->elen, &val->ell); val->score = 1.0; /* Move to next element. */ it->lp.p = lpNext(it->lp.lp, it->lp.p); } else { serverPanic("Unknown set encoding"); } } else if (op->type == OBJ_ZSET) { iterzset *it = &op->iter.zset; if (op->encoding == OBJ_ENCODING_LISTPACK) { /* No need to check both, but better be explicit. */ if (it->zl.eptr == NULL || it->zl.sptr == NULL) return 0; val->estr = lpGetValue(it->zl.eptr,&val->elen,&val->ell); val->score = zzlGetScore(it->zl.sptr); /* Move to next element (going backwards, see zuiInitIterator). */ zzlPrev(it->zl.zl,&it->zl.eptr,&it->zl.sptr); } else if (op->encoding == OBJ_ENCODING_SKIPLIST) { if (it->sl.node == NULL) return 0; val->ele = it->sl.node->ele; val->score = it->sl.node->score; /* Move to next element. (going backwards, see zuiInitIterator) */ it->sl.node = it->sl.node->backward; } else { serverPanic("Unknown sorted set encoding"); } } else { serverPanic("Unsupported type"); } return 1; } int zuiLongLongFromValue(zsetopval *val) { if (!(val->flags & OPVAL_DIRTY_LL)) { val->flags |= OPVAL_DIRTY_LL; if (val->ele != NULL) { if (string2ll(val->ele,sdslen(val->ele),&val->ell)) val->flags |= OPVAL_VALID_LL; } else if (val->estr != NULL) { if (string2ll((char*)val->estr,val->elen,&val->ell)) val->flags |= OPVAL_VALID_LL; } else { /* The long long was already set, flag as valid. */ val->flags |= OPVAL_VALID_LL; } } return val->flags & OPVAL_VALID_LL; } sds zuiSdsFromValue(zsetopval *val) { if (val->ele == NULL) { if (val->estr != NULL) { val->ele = sdsnewlen((char*)val->estr,val->elen); } else { val->ele = sdsfromlonglong(val->ell); } val->flags |= OPVAL_DIRTY_SDS; } return val->ele; } /* This is different from zuiSdsFromValue since returns a new SDS string * which is up to the caller to free. */ sds zuiNewSdsFromValue(zsetopval *val) { if (val->flags & OPVAL_DIRTY_SDS) { /* We have already one to return! */ sds ele = val->ele; val->flags &= ~OPVAL_DIRTY_SDS; val->ele = NULL; return ele; } else if (val->ele) { return sdsdup(val->ele); } else if (val->estr) { return sdsnewlen((char*)val->estr,val->elen); } else { return sdsfromlonglong(val->ell); } } int zuiBufferFromValue(zsetopval *val) { if (val->estr == NULL) { if (val->ele != NULL) { val->elen = sdslen(val->ele); val->estr = (unsigned char*)val->ele; } else { val->elen = ll2string((char*)val->_buf,sizeof(val->_buf),val->ell); val->estr = val->_buf; } } return 1; } /* Find value pointed to by val in the source pointer to by op. When found, * return 1 and store its score in target. Return 0 otherwise. */ int zuiFind(zsetopsrc *op, zsetopval *val, double *score) { if (op->subject == NULL) return 0; if (op->type == OBJ_SET) { char *str = val->ele ? val->ele : (char *)val->estr; size_t len = val->ele ? sdslen(val->ele) : val->elen; if (setTypeIsMemberAux(op->subject, str, len, val->ell, val->ele != NULL)) { *score = 1.0; return 1; } else { return 0; } } else if (op->type == OBJ_ZSET) { zuiSdsFromValue(val); if (op->encoding == OBJ_ENCODING_LISTPACK) { if (zzlFind(op->subject->ptr,val->ele,score) != NULL) { /* Score is already set by zzlFind. */ return 1; } else { return 0; } } else if (op->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = op->subject->ptr; dictEntry *de; if ((de = dictFind(zs->dict,val->ele)) != NULL) { *score = *(double*)dictGetVal(de); return 1; } else { return 0; } } else { serverPanic("Unknown sorted set encoding"); } } else { serverPanic("Unsupported type"); } } int zuiCompareByCardinality(const void *s1, const void *s2) { unsigned long first = zuiLength((zsetopsrc*)s1); unsigned long second = zuiLength((zsetopsrc*)s2); if (first > second) return 1; if (first < second) return -1; return 0; } static int zuiCompareByRevCardinality(const void *s1, const void *s2) { return zuiCompareByCardinality(s1, s2) * -1; } #define REDIS_AGGR_SUM 1 #define REDIS_AGGR_MIN 2 #define REDIS_AGGR_MAX 3 #define zunionInterDictValue(_e) (dictGetVal(_e) == NULL ? 1.0 : *(double*)dictGetVal(_e)) inline static void zunionInterAggregate(double *target, double val, int aggregate) { if (aggregate == REDIS_AGGR_SUM) { *target = *target + val; /* The result of adding two doubles is NaN when one variable * is +inf and the other is -inf. When these numbers are added, * we maintain the convention of the result being 0.0. */ if (isnan(*target)) *target = 0.0; } else if (aggregate == REDIS_AGGR_MIN) { *target = val < *target ? val : *target; } else if (aggregate == REDIS_AGGR_MAX) { *target = val > *target ? val : *target; } else { /* safety net */ serverPanic("Unknown ZUNION/INTER aggregate type"); } } static size_t zsetDictGetMaxElementLength(dict *d, size_t *totallen) { dictIterator *di; dictEntry *de; size_t maxelelen = 0; di = dictGetIterator(d); while((de = dictNext(di)) != NULL) { sds ele = dictGetKey(de); if (sdslen(ele) > maxelelen) maxelelen = sdslen(ele); if (totallen) (*totallen) += sdslen(ele); } dictReleaseIterator(di); return maxelelen; } static void zdiffAlgorithm1(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) { /* DIFF Algorithm 1: * * We perform the diff by iterating all the elements of the first set, * and only adding it to the target set if the element does not exist * into all the other sets. * * This way we perform at max N*M operations, where N is the size of * the first set, and M the number of sets. * * There is also a O(K*log(K)) cost for adding the resulting elements * to the target set, where K is the final size of the target set. * * The final complexity of this algorithm is O(N*M + K*log(K)). */ int j; zsetopval zval; zskiplistNode *znode; sds tmp; /* With algorithm 1 it is better to order the sets to subtract * by decreasing size, so that we are more likely to find * duplicated elements ASAP. */ qsort(src+1,setnum-1,sizeof(zsetopsrc),zuiCompareByRevCardinality); memset(&zval, 0, sizeof(zval)); zuiInitIterator(&src[0]); while (zuiNext(&src[0],&zval)) { double value; int exists = 0; for (j = 1; j < setnum; j++) { /* It is not safe to access the zset we are * iterating, so explicitly check for equal object. * This check isn't really needed anymore since we already * check for a duplicate set in the zsetChooseDiffAlgorithm * function, but we're leaving it for future-proofing. */ if (src[j].subject == src[0].subject || zuiFind(&src[j],&zval,&value)) { exists = 1; break; } } if (!exists) { tmp = zuiNewSdsFromValue(&zval); znode = zslInsert(dstzset->zsl,zval.score,tmp); dictAdd(dstzset->dict,tmp,&znode->score); if (sdslen(tmp) > *maxelelen) *maxelelen = sdslen(tmp); (*totelelen) += sdslen(tmp); } } zuiClearIterator(&src[0]); } static void zdiffAlgorithm2(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) { /* DIFF Algorithm 2: * * Add all the elements of the first set to the auxiliary set. * Then remove all the elements of all the next sets from it. * * This is O(L + (N-K)log(N)) where L is the sum of all the elements in every * set, N is the size of the first set, and K is the size of the result set. * * Note that from the (L-N) dict searches, (N-K) got to the zsetRemoveFromSkiplist * which costs log(N) * * There is also a O(K) cost at the end for finding the largest element * size, but this doesn't change the algorithm complexity since K < L, and * O(2L) is the same as O(L). */ int j; int cardinality = 0; zsetopval zval; zskiplistNode *znode; sds tmp; for (j = 0; j < setnum; j++) { if (zuiLength(&src[j]) == 0) continue; memset(&zval, 0, sizeof(zval)); zuiInitIterator(&src[j]); while (zuiNext(&src[j],&zval)) { if (j == 0) { tmp = zuiNewSdsFromValue(&zval); znode = zslInsert(dstzset->zsl,zval.score,tmp); dictAdd(dstzset->dict,tmp,&znode->score); cardinality++; } else { dictPauseAutoResize(dstzset->dict); tmp = zuiSdsFromValue(&zval); if (zsetRemoveFromSkiplist(dstzset, tmp)) { cardinality--; } dictResumeAutoResize(dstzset->dict); } /* Exit if result set is empty as any additional removal * of elements will have no effect. */ if (cardinality == 0) break; } zuiClearIterator(&src[j]); if (cardinality == 0) break; } /* Resize dict if needed after removing multiple elements */ dictShrinkIfNeeded(dstzset->dict); /* Using this algorithm, we can't calculate the max element as we go, * we have to iterate through all elements to find the max one after. */ *maxelelen = zsetDictGetMaxElementLength(dstzset->dict, totelelen); } static int zsetChooseDiffAlgorithm(zsetopsrc *src, long setnum) { int j; /* Select what DIFF algorithm to use. * * Algorithm 1 is O(N*M + K*log(K)) where N is the size of the * first set, M the total number of sets, and K is the size of the * result set. * * Algorithm 2 is O(L + (N-K)log(N)) where L is the total number of elements * in all the sets, N is the size of the first set, and K is the size of the * result set. * * We compute what is the best bet with the current input here. */ long long algo_one_work = 0; long long algo_two_work = 0; for (j = 0; j < setnum; j++) { /* If any other set is equal to the first set, there is nothing to be * done, since we would remove all elements anyway. */ if (j > 0 && src[0].subject == src[j].subject) { return 0; } algo_one_work += zuiLength(&src[0]); algo_two_work += zuiLength(&src[j]); } /* Algorithm 1 has better constant times and performs less operations * if there are elements in common. Give it some advantage. */ algo_one_work /= 2; return (algo_one_work <= algo_two_work) ? 1 : 2; } static void zdiff(zsetopsrc *src, long setnum, zset *dstzset, size_t *maxelelen, size_t *totelelen) { /* Skip everything if the smallest input is empty. */ if (zuiLength(&src[0]) > 0) { int diff_algo = zsetChooseDiffAlgorithm(src, setnum); if (diff_algo == 1) { zdiffAlgorithm1(src, setnum, dstzset, maxelelen, totelelen); } else if (diff_algo == 2) { zdiffAlgorithm2(src, setnum, dstzset, maxelelen, totelelen); } else if (diff_algo != 0) { serverPanic("Unknown algorithm"); } } } dictType setAccumulatorDictType = { dictSdsHash, /* hash function */ NULL, /* key dup */ NULL, /* val dup */ dictSdsKeyCompare, /* key compare */ NULL, /* key destructor */ NULL, /* val destructor */ NULL /* allow to expand */ }; /* The zunionInterDiffGenericCommand() function is called in order to implement the * following commands: ZUNION, ZINTER, ZDIFF, ZUNIONSTORE, ZINTERSTORE, ZDIFFSTORE, * ZINTERCARD. * * 'numkeysIndex' parameter position of key number. for ZUNION/ZINTER/ZDIFF command, * this value is 1, for ZUNIONSTORE/ZINTERSTORE/ZDIFFSTORE command, this value is 2. * * 'op' SET_OP_INTER, SET_OP_UNION or SET_OP_DIFF. * * 'cardinality_only' is currently only applicable when 'op' is SET_OP_INTER. * Work for SINTERCARD, only return the cardinality with minimum processing and memory overheads. */ void zunionInterDiffGenericCommand(client *c, robj *dstkey, int numkeysIndex, int op, int cardinality_only) { int i, j; long setnum; int aggregate = REDIS_AGGR_SUM; zsetopsrc *src; zsetopval zval; sds tmp; size_t maxelelen = 0, totelelen = 0; robj *dstobj = NULL; zset *dstzset = NULL; zskiplistNode *znode; int withscores = 0; unsigned long cardinality = 0; long limit = 0; /* Stop searching after reaching the limit. 0 means unlimited. */ /* expect setnum input keys to be given */ if ((getLongFromObjectOrReply(c, c->argv[numkeysIndex], &setnum, NULL) != C_OK)) return; if (setnum < 1) { addReplyErrorFormat(c, "at least 1 input key is needed for '%s' command", c->cmd->fullname); return; } /* test if the expected number of keys would overflow */ if (setnum > (c->argc-(numkeysIndex+1))) { addReplyErrorObject(c,shared.syntaxerr); return; } /* Try to allocate the src table, and abort on insufficient memory. */ src = ztrycalloc(sizeof(zsetopsrc) * setnum); if (src == NULL) { addReplyError(c, "Insufficient memory, failed allocating transient memory, too many args."); return; } /* read keys to be used for input */ for (i = 0, j = numkeysIndex+1; i < setnum; i++, j++) { robj *obj = lookupKeyRead(c->db, c->argv[j]); if (obj != NULL) { if (obj->type != OBJ_ZSET && obj->type != OBJ_SET) { zfree(src); addReplyErrorObject(c,shared.wrongtypeerr); return; } src[i].subject = obj; src[i].type = obj->type; src[i].encoding = obj->encoding; } else { src[i].subject = NULL; } /* Default all weights to 1. */ src[i].weight = 1.0; } /* parse optional extra arguments */ if (j < c->argc) { int remaining = c->argc - j; while (remaining) { if (op != SET_OP_DIFF && !cardinality_only && remaining >= (setnum + 1) && !strcasecmp(c->argv[j]->ptr,"weights")) { j++; remaining--; for (i = 0; i < setnum; i++, j++, remaining--) { if (getDoubleFromObjectOrReply(c,c->argv[j],&src[i].weight, "weight value is not a float") != C_OK) { zfree(src); return; } } } else if (op != SET_OP_DIFF && !cardinality_only && remaining >= 2 && !strcasecmp(c->argv[j]->ptr,"aggregate")) { j++; remaining--; if (!strcasecmp(c->argv[j]->ptr,"sum")) { aggregate = REDIS_AGGR_SUM; } else if (!strcasecmp(c->argv[j]->ptr,"min")) { aggregate = REDIS_AGGR_MIN; } else if (!strcasecmp(c->argv[j]->ptr,"max")) { aggregate = REDIS_AGGR_MAX; } else { zfree(src); addReplyErrorObject(c,shared.syntaxerr); return; } j++; remaining--; } else if (remaining >= 1 && !dstkey && !cardinality_only && !strcasecmp(c->argv[j]->ptr,"withscores")) { j++; remaining--; withscores = 1; } else if (cardinality_only && remaining >= 2 && !strcasecmp(c->argv[j]->ptr, "limit")) { j++; remaining--; if (getPositiveLongFromObjectOrReply(c, c->argv[j], &limit, "LIMIT can't be negative") != C_OK) { zfree(src); return; } j++; remaining--; } else { zfree(src); addReplyErrorObject(c,shared.syntaxerr); return; } } } if (op != SET_OP_DIFF) { /* sort sets from the smallest to largest, this will improve our * algorithm's performance */ qsort(src,setnum,sizeof(zsetopsrc),zuiCompareByCardinality); } /* We need a temp zset object to store our union/inter/diff. If the dstkey * is not NULL (that is, we are inside an ZUNIONSTORE/ZINTERSTORE/ZDIFFSTORE operation) then * this zset object will be the resulting object to zset into the target key. * In SINTERCARD case, we don't need the temp obj, so we can avoid creating it. */ if (!cardinality_only) { dstobj = createZsetObject(); dstzset = dstobj->ptr; } memset(&zval, 0, sizeof(zval)); if (op == SET_OP_INTER) { /* Skip everything if the smallest input is empty. */ if (zuiLength(&src[0]) > 0) { /* Precondition: as src[0] is non-empty and the inputs are ordered * by size, all src[i > 0] are non-empty too. */ zuiInitIterator(&src[0]); while (zuiNext(&src[0],&zval)) { double score, value; score = src[0].weight * zval.score; if (isnan(score)) score = 0; for (j = 1; j < setnum; j++) { /* It is not safe to access the zset we are * iterating, so explicitly check for equal object. */ if (src[j].subject == src[0].subject) { value = zval.score*src[j].weight; zunionInterAggregate(&score,value,aggregate); } else if (zuiFind(&src[j],&zval,&value)) { value *= src[j].weight; zunionInterAggregate(&score,value,aggregate); } else { break; } } /* Only continue when present in every input. */ if (j == setnum && cardinality_only) { cardinality++; /* We stop the searching after reaching the limit. */ if (limit && cardinality >= (unsigned long)limit) { /* Cleanup before we break the zuiNext loop. */ zuiDiscardDirtyValue(&zval); break; } } else if (j == setnum) { tmp = zuiNewSdsFromValue(&zval); znode = zslInsert(dstzset->zsl,score,tmp); dictAdd(dstzset->dict,tmp,&znode->score); totelelen += sdslen(tmp); if (sdslen(tmp) > maxelelen) maxelelen = sdslen(tmp); } } zuiClearIterator(&src[0]); } } else if (op == SET_OP_UNION) { dict *accumulator = dictCreate(&setAccumulatorDictType); dictIterator *di; dictEntry *de, *existing; double score; if (setnum) { /* Our union is at least as large as the largest set. * Resize the dictionary ASAP to avoid useless rehashing. */ dictExpand(accumulator,zuiLength(&src[setnum-1])); } /* Step 1: Create a dictionary of elements -> aggregated-scores * by iterating one sorted set after the other. */ for (i = 0; i < setnum; i++) { if (zuiLength(&src[i]) == 0) continue; zuiInitIterator(&src[i]); while (zuiNext(&src[i],&zval)) { /* Initialize value */ score = src[i].weight * zval.score; if (isnan(score)) score = 0; /* Search for this element in the accumulating dictionary. */ de = dictAddRaw(accumulator,zuiSdsFromValue(&zval),&existing); /* If we don't have it, we need to create a new entry. */ if (!existing) { tmp = zuiNewSdsFromValue(&zval); /* Remember the longest single element encountered, * to understand if it's possible to convert to listpack * at the end. */ totelelen += sdslen(tmp); if (sdslen(tmp) > maxelelen) maxelelen = sdslen(tmp); /* Update the element with its initial score. */ dictSetKey(accumulator, de, tmp); dictSetDoubleVal(de,score); } else { /* Update the score with the score of the new instance * of the element found in the current sorted set. * * Here we access directly the dictEntry double * value inside the union as it is a big speedup * compared to using the getDouble/setDouble API. */ double *existing_score_ptr = dictGetDoubleValPtr(existing); zunionInterAggregate(existing_score_ptr, score, aggregate); } } zuiClearIterator(&src[i]); } /* Step 2: convert the dictionary into the final sorted set. */ di = dictGetIterator(accumulator); /* We now are aware of the final size of the resulting sorted set, * let's resize the dictionary embedded inside the sorted set to the * right size, in order to save rehashing time. */ dictExpand(dstzset->dict,dictSize(accumulator)); while((de = dictNext(di)) != NULL) { sds ele = dictGetKey(de); score = dictGetDoubleVal(de); znode = zslInsert(dstzset->zsl,score,ele); dictAdd(dstzset->dict,ele,&znode->score); } dictReleaseIterator(di); dictRelease(accumulator); } else if (op == SET_OP_DIFF) { zdiff(src, setnum, dstzset, &maxelelen, &totelelen); } else { serverPanic("Unknown operator"); } if (dstkey) { if (dstzset->zsl->length) { zsetConvertToListpackIfNeeded(dstobj, maxelelen, totelelen); setKey(c, c->db, dstkey, dstobj, 0); addReplyLongLong(c, zsetLength(dstobj)); notifyKeyspaceEvent(NOTIFY_ZSET, (op == SET_OP_UNION) ? "zunionstore" : (op == SET_OP_INTER ? "zinterstore" : "zdiffstore"), dstkey, c->db->id); server.dirty++; } else { addReply(c, shared.czero); if (dbDelete(c->db, dstkey)) { signalModifiedKey(c, c->db, dstkey); notifyKeyspaceEvent(NOTIFY_GENERIC, "del", dstkey, c->db->id); server.dirty++; } } decrRefCount(dstobj); } else if (cardinality_only) { addReplyLongLong(c, cardinality); } else { unsigned long length = dstzset->zsl->length; zskiplist *zsl = dstzset->zsl; zskiplistNode *zn = zsl->header->level[0].forward; /* In case of WITHSCORES, respond with a single array in RESP2, and * nested arrays in RESP3. We can't use a map response type since the * client library needs to know to respect the order. */ if (withscores && c->resp == 2) addReplyArrayLen(c, length*2); else addReplyArrayLen(c, length); while (zn != NULL) { if (withscores && c->resp > 2) addReplyArrayLen(c,2); addReplyBulkCBuffer(c,zn->ele,sdslen(zn->ele)); if (withscores) addReplyDouble(c,zn->score); zn = zn->level[0].forward; } server.lazyfree_lazy_server_del ? freeObjAsync(NULL, dstobj, -1) : decrRefCount(dstobj); } zfree(src); } /* ZUNIONSTORE destination numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] */ void zunionstoreCommand(client *c) { zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_UNION, 0); } /* ZINTERSTORE destination numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] */ void zinterstoreCommand(client *c) { zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_INTER, 0); } /* ZDIFFSTORE destination numkeys key [key ...] */ void zdiffstoreCommand(client *c) { zunionInterDiffGenericCommand(c, c->argv[1], 2, SET_OP_DIFF, 0); } /* ZUNION numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] [WITHSCORES] */ void zunionCommand(client *c) { zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_UNION, 0); } /* ZINTER numkeys key [key ...] [WEIGHTS weight] [AGGREGATE SUM|MIN|MAX] [WITHSCORES] */ void zinterCommand(client *c) { zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_INTER, 0); } /* ZINTERCARD numkeys key [key ...] [LIMIT limit] */ void zinterCardCommand(client *c) { zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_INTER, 1); } /* ZDIFF numkeys key [key ...] [WITHSCORES] */ void zdiffCommand(client *c) { zunionInterDiffGenericCommand(c, NULL, 1, SET_OP_DIFF, 0); } typedef enum { ZRANGE_DIRECTION_AUTO = 0, ZRANGE_DIRECTION_FORWARD, ZRANGE_DIRECTION_REVERSE } zrange_direction; typedef enum { ZRANGE_CONSUMER_TYPE_CLIENT = 0, ZRANGE_CONSUMER_TYPE_INTERNAL } zrange_consumer_type; typedef struct zrange_result_handler zrange_result_handler; typedef void (*zrangeResultBeginFunction)(zrange_result_handler *c, long length); typedef void (*zrangeResultFinalizeFunction)( zrange_result_handler *c, size_t result_count); typedef void (*zrangeResultEmitCBufferFunction)( zrange_result_handler *c, const void *p, size_t len, double score); typedef void (*zrangeResultEmitLongLongFunction)( zrange_result_handler *c, long long ll, double score); void zrangeGenericCommand (zrange_result_handler *handler, int argc_start, int store, zrange_type rangetype, zrange_direction direction); /* Interface struct for ZRANGE/ZRANGESTORE generic implementation. * There is one implementation of this interface that sends a RESP reply to clients. * and one implementation that stores the range result into a zset object. */ struct zrange_result_handler { zrange_consumer_type type; client *client; robj *dstkey; robj *dstobj; void *userdata; int withscores; int should_emit_array_length; zrangeResultBeginFunction beginResultEmission; zrangeResultFinalizeFunction finalizeResultEmission; zrangeResultEmitCBufferFunction emitResultFromCBuffer; zrangeResultEmitLongLongFunction emitResultFromLongLong; }; /* Result handler methods for responding the ZRANGE to clients. * length can be used to provide the result length in advance (avoids deferred reply overhead). * length can be set to -1 if the result length is not know in advance. */ static void zrangeResultBeginClient(zrange_result_handler *handler, long length) { if (length > 0) { /* In case of WITHSCORES, respond with a single array in RESP2, and * nested arrays in RESP3. We can't use a map response type since the * client library needs to know to respect the order. */ if (handler->withscores && (handler->client->resp == 2)) { length *= 2; } addReplyArrayLen(handler->client, length); handler->userdata = NULL; return; } handler->userdata = addReplyDeferredLen(handler->client); } static void zrangeResultEmitCBufferToClient(zrange_result_handler *handler, const void *value, size_t value_length_in_bytes, double score) { if (handler->should_emit_array_length) { addReplyArrayLen(handler->client, 2); } addReplyBulkCBuffer(handler->client, value, value_length_in_bytes); if (handler->withscores) { addReplyDouble(handler->client, score); } } static void zrangeResultEmitLongLongToClient(zrange_result_handler *handler, long long value, double score) { if (handler->should_emit_array_length) { addReplyArrayLen(handler->client, 2); } addReplyBulkLongLong(handler->client, value); if (handler->withscores) { addReplyDouble(handler->client, score); } } static void zrangeResultFinalizeClient(zrange_result_handler *handler, size_t result_count) { /* If the reply size was know at start there's nothing left to do */ if (!handler->userdata) return; /* In case of WITHSCORES, respond with a single array in RESP2, and * nested arrays in RESP3. We can't use a map response type since the * client library needs to know to respect the order. */ if (handler->withscores && (handler->client->resp == 2)) { result_count *= 2; } setDeferredArrayLen(handler->client, handler->userdata, result_count); } /* Result handler methods for storing the ZRANGESTORE to a zset. */ static void zrangeResultBeginStore(zrange_result_handler *handler, long length) { handler->dstobj = zsetTypeCreate(length >= 0 ? length : 0, 0); } static void zrangeResultEmitCBufferForStore(zrange_result_handler *handler, const void *value, size_t value_length_in_bytes, double score) { double newscore; int retflags = 0; sds ele = sdsnewlen(value, value_length_in_bytes); int retval = zsetAdd(handler->dstobj, score, ele, ZADD_IN_NONE, &retflags, &newscore); sdsfree(ele); serverAssert(retval); } static void zrangeResultEmitLongLongForStore(zrange_result_handler *handler, long long value, double score) { double newscore; int retflags = 0; sds ele = sdsfromlonglong(value); int retval = zsetAdd(handler->dstobj, score, ele, ZADD_IN_NONE, &retflags, &newscore); sdsfree(ele); serverAssert(retval); } static void zrangeResultFinalizeStore(zrange_result_handler *handler, size_t result_count) { if (result_count) { setKey(handler->client, handler->client->db, handler->dstkey, handler->dstobj, 0); addReplyLongLong(handler->client, result_count); notifyKeyspaceEvent(NOTIFY_ZSET, "zrangestore", handler->dstkey, handler->client->db->id); server.dirty++; } else { addReply(handler->client, shared.czero); if (dbDelete(handler->client->db, handler->dstkey)) { signalModifiedKey(handler->client, handler->client->db, handler->dstkey); notifyKeyspaceEvent(NOTIFY_GENERIC, "del", handler->dstkey, handler->client->db->id); server.dirty++; } } decrRefCount(handler->dstobj); } /* Initialize the consumer interface type with the requested type. */ static void zrangeResultHandlerInit(zrange_result_handler *handler, client *client, zrange_consumer_type type) { memset(handler, 0, sizeof(*handler)); handler->client = client; switch (type) { case ZRANGE_CONSUMER_TYPE_CLIENT: handler->beginResultEmission = zrangeResultBeginClient; handler->finalizeResultEmission = zrangeResultFinalizeClient; handler->emitResultFromCBuffer = zrangeResultEmitCBufferToClient; handler->emitResultFromLongLong = zrangeResultEmitLongLongToClient; break; case ZRANGE_CONSUMER_TYPE_INTERNAL: handler->beginResultEmission = zrangeResultBeginStore; handler->finalizeResultEmission = zrangeResultFinalizeStore; handler->emitResultFromCBuffer = zrangeResultEmitCBufferForStore; handler->emitResultFromLongLong = zrangeResultEmitLongLongForStore; break; } } static void zrangeResultHandlerScoreEmissionEnable(zrange_result_handler *handler) { handler->withscores = 1; handler->should_emit_array_length = (handler->client->resp > 2); } static void zrangeResultHandlerDestinationKeySet (zrange_result_handler *handler, robj *dstkey) { handler->dstkey = dstkey; } /* This command implements ZRANGE, ZREVRANGE. */ void genericZrangebyrankCommand(zrange_result_handler *handler, robj *zobj, long start, long end, int withscores, int reverse) { client *c = handler->client; long llen; long rangelen; size_t result_cardinality; /* Sanitize indexes. */ llen = zsetLength(zobj); if (start < 0) start = llen+start; if (end < 0) end = llen+end; if (start < 0) start = 0; /* Invariant: start >= 0, so this test will be true when end < 0. * The range is empty when start > end or start >= length. */ if (start > end || start >= llen) { handler->beginResultEmission(handler, 0); handler->finalizeResultEmission(handler, 0); return; } if (end >= llen) end = llen-1; rangelen = (end-start)+1; result_cardinality = rangelen; handler->beginResultEmission(handler, rangelen); if (zobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *zl = zobj->ptr; unsigned char *eptr, *sptr; unsigned char *vstr; unsigned int vlen; long long vlong; double score = 0.0; if (reverse) eptr = lpSeek(zl,-2-(2*start)); else eptr = lpSeek(zl,2*start); serverAssertWithInfo(c,zobj,eptr != NULL); sptr = lpNext(zl,eptr); while (rangelen--) { serverAssertWithInfo(c,zobj,eptr != NULL && sptr != NULL); vstr = lpGetValue(eptr,&vlen,&vlong); if (withscores) /* don't bother to extract the score if it's gonna be ignored. */ score = zzlGetScore(sptr); if (vstr == NULL) { handler->emitResultFromLongLong(handler, vlong, score); } else { handler->emitResultFromCBuffer(handler, vstr, vlen, score); } if (reverse) zzlPrev(zl,&eptr,&sptr); else zzlNext(zl,&eptr,&sptr); } } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; zskiplist *zsl = zs->zsl; zskiplistNode *ln; /* Check if starting point is trivial, before doing log(N) lookup. */ if (reverse) { ln = zsl->tail; if (start > 0) ln = zslGetElementByRank(zsl,llen-start); } else { ln = zsl->header->level[0].forward; if (start > 0) ln = zslGetElementByRank(zsl,start+1); } while(rangelen--) { serverAssertWithInfo(c,zobj,ln != NULL); sds ele = ln->ele; handler->emitResultFromCBuffer(handler, ele, sdslen(ele), ln->score); ln = reverse ? ln->backward : ln->level[0].forward; } } else { serverPanic("Unknown sorted set encoding"); } handler->finalizeResultEmission(handler, result_cardinality); } /* ZRANGESTORE [BYSCORE | BYLEX] [REV] [LIMIT offset count] */ void zrangestoreCommand (client *c) { robj *dstkey = c->argv[1]; zrange_result_handler handler; zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_INTERNAL); zrangeResultHandlerDestinationKeySet(&handler, dstkey); zrangeGenericCommand(&handler, 2, 1, ZRANGE_AUTO, ZRANGE_DIRECTION_AUTO); } /* ZRANGE [BYSCORE | BYLEX] [REV] [WITHSCORES] [LIMIT offset count] */ void zrangeCommand(client *c) { zrange_result_handler handler; zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT); zrangeGenericCommand(&handler, 1, 0, ZRANGE_AUTO, ZRANGE_DIRECTION_AUTO); } /* ZREVRANGE [WITHSCORES] */ void zrevrangeCommand(client *c) { zrange_result_handler handler; zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT); zrangeGenericCommand(&handler, 1, 0, ZRANGE_RANK, ZRANGE_DIRECTION_REVERSE); } /* This command implements ZRANGEBYSCORE, ZREVRANGEBYSCORE. */ void genericZrangebyscoreCommand(zrange_result_handler *handler, zrangespec *range, robj *zobj, long offset, long limit, int reverse) { unsigned long rangelen = 0; handler->beginResultEmission(handler, -1); /* For invalid offset, return directly. */ if (offset > 0 && offset >= (long)zsetLength(zobj)) { handler->finalizeResultEmission(handler, 0); return; } if (zobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *zl = zobj->ptr; unsigned char *eptr, *sptr; unsigned char *vstr; unsigned int vlen; long long vlong; /* If reversed, get the last node in range as starting point. */ if (reverse) { eptr = zzlLastInRange(zl,range); } else { eptr = zzlFirstInRange(zl,range); } /* Get score pointer for the first element. */ if (eptr) sptr = lpNext(zl,eptr); /* If there is an offset, just traverse the number of elements without * checking the score because that is done in the next loop. */ while (eptr && offset--) { if (reverse) { zzlPrev(zl,&eptr,&sptr); } else { zzlNext(zl,&eptr,&sptr); } } while (eptr && limit--) { double score = zzlGetScore(sptr); /* Abort when the node is no longer in range. */ if (reverse) { if (!zslValueGteMin(score,range)) break; } else { if (!zslValueLteMax(score,range)) break; } vstr = lpGetValue(eptr,&vlen,&vlong); rangelen++; if (vstr == NULL) { handler->emitResultFromLongLong(handler, vlong, score); } else { handler->emitResultFromCBuffer(handler, vstr, vlen, score); } /* Move to next node */ if (reverse) { zzlPrev(zl,&eptr,&sptr); } else { zzlNext(zl,&eptr,&sptr); } } } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; zskiplist *zsl = zs->zsl; zskiplistNode *ln; /* If reversed, get the last node in range as starting point. */ if (reverse) { ln = zslNthInRange(zsl,range,-offset-1); } else { ln = zslNthInRange(zsl,range,offset); } while (ln && limit--) { /* Abort when the node is no longer in range. */ if (reverse) { if (!zslValueGteMin(ln->score,range)) break; } else { if (!zslValueLteMax(ln->score,range)) break; } rangelen++; handler->emitResultFromCBuffer(handler, ln->ele, sdslen(ln->ele), ln->score); /* Move to next node */ if (reverse) { ln = ln->backward; } else { ln = ln->level[0].forward; } } } else { serverPanic("Unknown sorted set encoding"); } handler->finalizeResultEmission(handler, rangelen); } /* ZRANGEBYSCORE [WITHSCORES] [LIMIT offset count] */ void zrangebyscoreCommand(client *c) { zrange_result_handler handler; zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT); zrangeGenericCommand(&handler, 1, 0, ZRANGE_SCORE, ZRANGE_DIRECTION_FORWARD); } /* ZREVRANGEBYSCORE [WITHSCORES] [LIMIT offset count] */ void zrevrangebyscoreCommand(client *c) { zrange_result_handler handler; zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT); zrangeGenericCommand(&handler, 1, 0, ZRANGE_SCORE, ZRANGE_DIRECTION_REVERSE); } void zcountCommand(client *c) { robj *key = c->argv[1]; robj *zobj; zrangespec range; unsigned long count = 0; /* Parse the range arguments */ if (zslParseRange(c->argv[2],c->argv[3],&range) != C_OK) { addReplyError(c,"min or max is not a float"); return; } /* Lookup the sorted set */ if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL || checkType(c, zobj, OBJ_ZSET)) return; if (zobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *zl = zobj->ptr; unsigned char *eptr, *sptr; double score; /* Use the first element in range as the starting point */ eptr = zzlFirstInRange(zl,&range); /* No "first" element */ if (eptr == NULL) { addReply(c, shared.czero); return; } /* First element is in range */ sptr = lpNext(zl,eptr); score = zzlGetScore(sptr); serverAssertWithInfo(c,zobj,zslValueLteMax(score,&range)); /* Iterate over elements in range */ while (eptr) { score = zzlGetScore(sptr); /* Abort when the node is no longer in range. */ if (!zslValueLteMax(score,&range)) { break; } else { count++; zzlNext(zl,&eptr,&sptr); } } } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; zskiplist *zsl = zs->zsl; zskiplistNode *zn; unsigned long rank; /* Find first element in range */ zn = zslNthInRange(zsl, &range, 0); /* Use rank of first element, if any, to determine preliminary count */ if (zn != NULL) { rank = zslGetRank(zsl, zn->score, zn->ele); count = (zsl->length - (rank - 1)); /* Find last element in range */ zn = zslNthInRange(zsl, &range, -1); /* Use rank of last element, if any, to determine the actual count */ if (zn != NULL) { rank = zslGetRank(zsl, zn->score, zn->ele); count -= (zsl->length - rank); } } } else { serverPanic("Unknown sorted set encoding"); } addReplyLongLong(c, count); } void zlexcountCommand(client *c) { robj *key = c->argv[1]; robj *zobj; zlexrangespec range; unsigned long count = 0; /* Parse the range arguments */ if (zslParseLexRange(c->argv[2],c->argv[3],&range) != C_OK) { addReplyError(c,"min or max not valid string range item"); return; } /* Lookup the sorted set */ if ((zobj = lookupKeyReadOrReply(c, key, shared.czero)) == NULL || checkType(c, zobj, OBJ_ZSET)) { zslFreeLexRange(&range); return; } if (zobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *zl = zobj->ptr; unsigned char *eptr, *sptr; /* Use the first element in range as the starting point */ eptr = zzlFirstInLexRange(zl,&range); /* No "first" element */ if (eptr == NULL) { zslFreeLexRange(&range); addReply(c, shared.czero); return; } /* First element is in range */ sptr = lpNext(zl,eptr); serverAssertWithInfo(c,zobj,zzlLexValueLteMax(eptr,&range)); /* Iterate over elements in range */ while (eptr) { /* Abort when the node is no longer in range. */ if (!zzlLexValueLteMax(eptr,&range)) { break; } else { count++; zzlNext(zl,&eptr,&sptr); } } } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; zskiplist *zsl = zs->zsl; zskiplistNode *zn; unsigned long rank; /* Find first element in range */ zn = zslNthInLexRange(zsl, &range, 0); /* Use rank of first element, if any, to determine preliminary count */ if (zn != NULL) { rank = zslGetRank(zsl, zn->score, zn->ele); count = (zsl->length - (rank - 1)); /* Find last element in range */ zn = zslNthInLexRange(zsl, &range, -1); /* Use rank of last element, if any, to determine the actual count */ if (zn != NULL) { rank = zslGetRank(zsl, zn->score, zn->ele); count -= (zsl->length - rank); } } } else { serverPanic("Unknown sorted set encoding"); } zslFreeLexRange(&range); addReplyLongLong(c, count); } /* This command implements ZRANGEBYLEX, ZREVRANGEBYLEX. */ void genericZrangebylexCommand(zrange_result_handler *handler, zlexrangespec *range, robj *zobj, int withscores, long offset, long limit, int reverse) { unsigned long rangelen = 0; handler->beginResultEmission(handler, -1); if (zobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *zl = zobj->ptr; unsigned char *eptr, *sptr; unsigned char *vstr; unsigned int vlen; long long vlong; /* If reversed, get the last node in range as starting point. */ if (reverse) { eptr = zzlLastInLexRange(zl,range); } else { eptr = zzlFirstInLexRange(zl,range); } /* Get score pointer for the first element. */ if (eptr) sptr = lpNext(zl,eptr); /* If there is an offset, just traverse the number of elements without * checking the score because that is done in the next loop. */ while (eptr && offset--) { if (reverse) { zzlPrev(zl,&eptr,&sptr); } else { zzlNext(zl,&eptr,&sptr); } } while (eptr && limit--) { double score = 0; if (withscores) /* don't bother to extract the score if it's gonna be ignored. */ score = zzlGetScore(sptr); /* Abort when the node is no longer in range. */ if (reverse) { if (!zzlLexValueGteMin(eptr,range)) break; } else { if (!zzlLexValueLteMax(eptr,range)) break; } vstr = lpGetValue(eptr,&vlen,&vlong); rangelen++; if (vstr == NULL) { handler->emitResultFromLongLong(handler, vlong, score); } else { handler->emitResultFromCBuffer(handler, vstr, vlen, score); } /* Move to next node */ if (reverse) { zzlPrev(zl,&eptr,&sptr); } else { zzlNext(zl,&eptr,&sptr); } } } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; zskiplist *zsl = zs->zsl; zskiplistNode *ln; /* If reversed, get the last node in range as starting point. */ if (reverse) { ln = zslNthInLexRange(zsl,range,-offset-1); } else { ln = zslNthInLexRange(zsl,range,offset); } while (ln && limit--) { /* Abort when the node is no longer in range. */ if (reverse) { if (!zslLexValueGteMin(ln->ele,range)) break; } else { if (!zslLexValueLteMax(ln->ele,range)) break; } rangelen++; handler->emitResultFromCBuffer(handler, ln->ele, sdslen(ln->ele), ln->score); /* Move to next node */ if (reverse) { ln = ln->backward; } else { ln = ln->level[0].forward; } } } else { serverPanic("Unknown sorted set encoding"); } handler->finalizeResultEmission(handler, rangelen); } /* ZRANGEBYLEX [LIMIT offset count] */ void zrangebylexCommand(client *c) { zrange_result_handler handler; zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT); zrangeGenericCommand(&handler, 1, 0, ZRANGE_LEX, ZRANGE_DIRECTION_FORWARD); } /* ZREVRANGEBYLEX [LIMIT offset count] */ void zrevrangebylexCommand(client *c) { zrange_result_handler handler; zrangeResultHandlerInit(&handler, c, ZRANGE_CONSUMER_TYPE_CLIENT); zrangeGenericCommand(&handler, 1, 0, ZRANGE_LEX, ZRANGE_DIRECTION_REVERSE); } /** * This function handles ZRANGE and ZRANGESTORE, and also the deprecated * Z[REV]RANGE[BYSCORE|BYLEX] commands. * * The simple ZRANGE and ZRANGESTORE can take _AUTO in rangetype and direction, * other command pass explicit value. * * The argc_start points to the src key argument, so following syntax is like: * [BYSCORE | BYLEX] [REV] [WITHSCORES] [LIMIT offset count] */ void zrangeGenericCommand(zrange_result_handler *handler, int argc_start, int store, zrange_type rangetype, zrange_direction direction) { client *c = handler->client; robj *key = c->argv[argc_start]; robj *zobj; zrangespec range; zlexrangespec lexrange; int minidx = argc_start + 1; int maxidx = argc_start + 2; /* Options common to all */ long opt_start = 0; long opt_end = 0; int opt_withscores = 0; long opt_offset = 0; long opt_limit = -1; /* Step 1: Skip the args and parse remaining optional arguments. */ for (int j=argc_start + 3; j < c->argc; j++) { int leftargs = c->argc-j-1; if (!store && !strcasecmp(c->argv[j]->ptr,"withscores")) { opt_withscores = 1; } else if (!strcasecmp(c->argv[j]->ptr,"limit") && leftargs >= 2) { if ((getLongFromObjectOrReply(c, c->argv[j+1], &opt_offset, NULL) != C_OK) || (getLongFromObjectOrReply(c, c->argv[j+2], &opt_limit, NULL) != C_OK)) { return; } j += 2; } else if (direction == ZRANGE_DIRECTION_AUTO && !strcasecmp(c->argv[j]->ptr,"rev")) { direction = ZRANGE_DIRECTION_REVERSE; } else if (rangetype == ZRANGE_AUTO && !strcasecmp(c->argv[j]->ptr,"bylex")) { rangetype = ZRANGE_LEX; } else if (rangetype == ZRANGE_AUTO && !strcasecmp(c->argv[j]->ptr,"byscore")) { rangetype = ZRANGE_SCORE; } else { addReplyErrorObject(c,shared.syntaxerr); return; } } /* Use defaults if not overridden by arguments. */ if (direction == ZRANGE_DIRECTION_AUTO) direction = ZRANGE_DIRECTION_FORWARD; if (rangetype == ZRANGE_AUTO) rangetype = ZRANGE_RANK; /* Check for conflicting arguments. */ if (opt_limit != -1 && rangetype == ZRANGE_RANK) { addReplyError(c,"syntax error, LIMIT is only supported in combination with either BYSCORE or BYLEX"); return; } if (opt_withscores && rangetype == ZRANGE_LEX) { addReplyError(c,"syntax error, WITHSCORES not supported in combination with BYLEX"); return; } if (direction == ZRANGE_DIRECTION_REVERSE && ((ZRANGE_SCORE == rangetype) || (ZRANGE_LEX == rangetype))) { /* Range is given as [max,min] */ int tmp = maxidx; maxidx = minidx; minidx = tmp; } /* Step 2: Parse the range. */ switch (rangetype) { case ZRANGE_AUTO: case ZRANGE_RANK: /* Z[REV]RANGE, ZRANGESTORE [REV]RANGE */ if ((getLongFromObjectOrReply(c, c->argv[minidx], &opt_start,NULL) != C_OK) || (getLongFromObjectOrReply(c, c->argv[maxidx], &opt_end,NULL) != C_OK)) { return; } break; case ZRANGE_SCORE: /* Z[REV]RANGEBYSCORE, ZRANGESTORE [REV]RANGEBYSCORE */ if (zslParseRange(c->argv[minidx], c->argv[maxidx], &range) != C_OK) { addReplyError(c, "min or max is not a float"); return; } break; case ZRANGE_LEX: /* Z[REV]RANGEBYLEX, ZRANGESTORE [REV]RANGEBYLEX */ if (zslParseLexRange(c->argv[minidx], c->argv[maxidx], &lexrange) != C_OK) { addReplyError(c, "min or max not valid string range item"); return; } break; } if (opt_withscores || store) { zrangeResultHandlerScoreEmissionEnable(handler); } /* Step 3: Lookup the key and get the range. */ zobj = lookupKeyRead(c->db, key); if (zobj == NULL) { if (store) { handler->beginResultEmission(handler, -1); handler->finalizeResultEmission(handler, 0); } else { addReply(c, shared.emptyarray); } goto cleanup; } if (checkType(c,zobj,OBJ_ZSET)) goto cleanup; /* Step 4: Pass this to the command-specific handler. */ switch (rangetype) { case ZRANGE_AUTO: case ZRANGE_RANK: genericZrangebyrankCommand(handler, zobj, opt_start, opt_end, opt_withscores || store, direction == ZRANGE_DIRECTION_REVERSE); break; case ZRANGE_SCORE: genericZrangebyscoreCommand(handler, &range, zobj, opt_offset, opt_limit, direction == ZRANGE_DIRECTION_REVERSE); break; case ZRANGE_LEX: genericZrangebylexCommand(handler, &lexrange, zobj, opt_withscores || store, opt_offset, opt_limit, direction == ZRANGE_DIRECTION_REVERSE); break; } /* Instead of returning here, we'll just fall-through the clean-up. */ cleanup: if (rangetype == ZRANGE_LEX) { zslFreeLexRange(&lexrange); } } void zcardCommand(client *c) { robj *key = c->argv[1]; robj *zobj; if ((zobj = lookupKeyReadOrReply(c,key,shared.czero)) == NULL || checkType(c,zobj,OBJ_ZSET)) return; addReplyLongLong(c,zsetLength(zobj)); } void zscoreCommand(client *c) { robj *key = c->argv[1]; robj *zobj; double score; if ((zobj = lookupKeyReadOrReply(c,key,shared.null[c->resp])) == NULL || checkType(c,zobj,OBJ_ZSET)) return; if (zsetScore(zobj,c->argv[2]->ptr,&score) == C_ERR) { addReplyNull(c); } else { addReplyDouble(c,score); } } void zmscoreCommand(client *c) { robj *key = c->argv[1]; robj *zobj; double score; zobj = lookupKeyRead(c->db,key); if (checkType(c,zobj,OBJ_ZSET)) return; addReplyArrayLen(c,c->argc - 2); for (int j = 2; j < c->argc; j++) { /* Treat a missing set the same way as an empty set */ if (zobj == NULL || zsetScore(zobj,c->argv[j]->ptr,&score) == C_ERR) { addReplyNull(c); } else { addReplyDouble(c,score); } } } void zrankGenericCommand(client *c, int reverse) { robj *key = c->argv[1]; robj *ele = c->argv[2]; robj *zobj; robj* reply; long rank; int opt_withscore = 0; double score; if (c->argc > 4) { addReplyErrorArity(c); return; } if (c->argc > 3) { if (!strcasecmp(c->argv[3]->ptr, "withscore")) { opt_withscore = 1; } else { addReplyErrorObject(c, shared.syntaxerr); return; } } reply = opt_withscore ? shared.nullarray[c->resp] : shared.null[c->resp]; if ((zobj = lookupKeyReadOrReply(c, key, reply)) == NULL || checkType(c, zobj, OBJ_ZSET)) { return; } serverAssertWithInfo(c, ele, sdsEncodedObject(ele)); rank = zsetRank(zobj, ele->ptr, reverse, opt_withscore ? &score : NULL); if (rank >= 0) { if (opt_withscore) { addReplyArrayLen(c, 2); } addReplyLongLong(c, rank); if (opt_withscore) { addReplyDouble(c, score); } } else { if (opt_withscore) { addReplyNullArray(c); } else { addReplyNull(c); } } } void zrankCommand(client *c) { zrankGenericCommand(c, 0); } void zrevrankCommand(client *c) { zrankGenericCommand(c, 1); } void zscanCommand(client *c) { robj *o; unsigned long long cursor; if (parseScanCursorOrReply(c,c->argv[2],&cursor) == C_ERR) return; if ((o = lookupKeyReadOrReply(c,c->argv[1],shared.emptyscan)) == NULL || checkType(c,o,OBJ_ZSET)) return; scanGenericCommand(c,o,cursor); } /* This command implements the generic zpop operation, used by: * ZPOPMIN, ZPOPMAX, BZPOPMIN, BZPOPMAX and ZMPOP. This function is also used * inside blocked.c in the unblocking stage of BZPOPMIN, BZPOPMAX and BZMPOP. * * If 'emitkey' is true also the key name is emitted, useful for the blocking * behavior of BZPOP[MIN|MAX], since we can block into multiple keys. * Or in ZMPOP/BZMPOP, because we also can take multiple keys. * * 'count' is the number of elements requested to pop, or -1 for plain single pop. * * 'use_nested_array' when false it generates a flat array (with or without key name). * When true, it generates a nested 2 level array of field + score pairs, or 3 level when emitkey is set. * * 'reply_nil_when_empty' when true we reply a NIL if we are not able to pop up any elements. * Like in ZMPOP/BZMPOP we reply with a structured nested array containing key name * and member + score pairs. In these commands, we reply with null when we have no result. * Otherwise in ZPOPMIN/ZPOPMAX we reply an empty array by default. * * 'deleted' is an optional output argument to get an indication * if the key got deleted by this function. * */ void genericZpopCommand(client *c, robj **keyv, int keyc, int where, int emitkey, long count, int use_nested_array, int reply_nil_when_empty, int *deleted) { int idx; robj *key = NULL; robj *zobj = NULL; sds ele; double score; if (deleted) *deleted = 0; /* Check type and break on the first error, otherwise identify candidate. */ idx = 0; while (idx < keyc) { key = keyv[idx++]; zobj = lookupKeyWrite(c->db,key); if (!zobj) continue; if (checkType(c,zobj,OBJ_ZSET)) return; break; } /* No candidate for zpopping, return empty. */ if (!zobj) { if (reply_nil_when_empty) { addReplyNullArray(c); } else { addReply(c,shared.emptyarray); } return; } if (count == 0) { /* ZPOPMIN/ZPOPMAX with count 0. */ addReply(c, shared.emptyarray); return; } long result_count = 0; /* When count is -1, we need to correct it to 1 for plain single pop. */ if (count == -1) count = 1; long llen = zsetLength(zobj); long rangelen = (count > llen) ? llen : count; if (!use_nested_array && !emitkey) { /* ZPOPMIN/ZPOPMAX with or without COUNT option in RESP2. */ addReplyArrayLen(c, rangelen * 2); } else if (use_nested_array && !emitkey) { /* ZPOPMIN/ZPOPMAX with COUNT option in RESP3. */ addReplyArrayLen(c, rangelen); } else if (!use_nested_array && emitkey) { /* BZPOPMIN/BZPOPMAX in RESP2 and RESP3. */ addReplyArrayLen(c, rangelen * 2 + 1); addReplyBulk(c, key); } else if (use_nested_array && emitkey) { /* ZMPOP/BZMPOP in RESP2 and RESP3. */ addReplyArrayLen(c, 2); addReplyBulk(c, key); addReplyArrayLen(c, rangelen); } /* Remove the element. */ do { if (zobj->encoding == OBJ_ENCODING_LISTPACK) { unsigned char *zl = zobj->ptr; unsigned char *eptr, *sptr; unsigned char *vstr; unsigned int vlen; long long vlong; /* Get the first or last element in the sorted set. */ eptr = lpSeek(zl,where == ZSET_MAX ? -2 : 0); serverAssertWithInfo(c,zobj,eptr != NULL); vstr = lpGetValue(eptr,&vlen,&vlong); if (vstr == NULL) ele = sdsfromlonglong(vlong); else ele = sdsnewlen(vstr,vlen); /* Get the score. */ sptr = lpNext(zl,eptr); serverAssertWithInfo(c,zobj,sptr != NULL); score = zzlGetScore(sptr); } else if (zobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zobj->ptr; zskiplist *zsl = zs->zsl; zskiplistNode *zln; /* Get the first or last element in the sorted set. */ zln = (where == ZSET_MAX ? zsl->tail : zsl->header->level[0].forward); /* There must be an element in the sorted set. */ serverAssertWithInfo(c,zobj,zln != NULL); ele = sdsdup(zln->ele); score = zln->score; } else { serverPanic("Unknown sorted set encoding"); } serverAssertWithInfo(c,zobj,zsetDel(zobj,ele)); server.dirty++; if (result_count == 0) { /* Do this only for the first iteration. */ char *events[2] = {"zpopmin","zpopmax"}; notifyKeyspaceEvent(NOTIFY_ZSET,events[where],key,c->db->id); } if (use_nested_array) { addReplyArrayLen(c,2); } addReplyBulkCBuffer(c,ele,sdslen(ele)); addReplyDouble(c,score); sdsfree(ele); ++result_count; } while(--rangelen); /* Remove the key, if indeed needed. */ if (zsetLength(zobj) == 0) { if (deleted) *deleted = 1; dbDelete(c->db,key); notifyKeyspaceEvent(NOTIFY_GENERIC,"del",key,c->db->id); } signalModifiedKey(c,c->db,key); if (c->cmd->proc == zmpopCommand) { /* Always replicate it as ZPOP[MIN|MAX] with COUNT option instead of ZMPOP. */ robj *count_obj = createStringObjectFromLongLong((count > llen) ? llen : count); rewriteClientCommandVector(c, 3, (where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin, key, count_obj); decrRefCount(count_obj); } } /* ZPOPMIN/ZPOPMAX key [] */ void zpopMinMaxCommand(client *c, int where) { if (c->argc > 3) { addReplyErrorObject(c,shared.syntaxerr); return; } long count = -1; /* -1 for plain single pop. */ if (c->argc == 3 && getPositiveLongFromObjectOrReply(c, c->argv[2], &count, NULL) != C_OK) return; /* Respond with a single (flat) array in RESP2 or if count is -1 * (returning a single element). In RESP3, when count > 0 use nested array. */ int use_nested_array = (c->resp > 2 && count != -1); genericZpopCommand(c, &c->argv[1], 1, where, 0, count, use_nested_array, 0, NULL); } /* ZPOPMIN key [] */ void zpopminCommand(client *c) { zpopMinMaxCommand(c, ZSET_MIN); } /* ZPOPMAX key [] */ void zpopmaxCommand(client *c) { zpopMinMaxCommand(c, ZSET_MAX); } /* BZPOPMIN, BZPOPMAX, BZMPOP actual implementation. * * 'numkeys' is the number of keys. * * 'timeout_idx' parameter position of block timeout. * * 'where' ZSET_MIN or ZSET_MAX. * * 'count' is the number of elements requested to pop, or -1 for plain single pop. * * 'use_nested_array' when false it generates a flat array (with or without key name). * When true, it generates a nested 3 level array of keyname, field + score pairs. * */ void blockingGenericZpopCommand(client *c, robj **keys, int numkeys, int where, int timeout_idx, long count, int use_nested_array, int reply_nil_when_empty) { robj *o; robj *key; mstime_t timeout; int j; if (getTimeoutFromObjectOrReply(c,c->argv[timeout_idx],&timeout,UNIT_SECONDS) != C_OK) return; for (j = 0; j < numkeys; j++) { key = keys[j]; o = lookupKeyWrite(c->db,key); /* Non-existing key, move to next key. */ if (o == NULL) continue; if (checkType(c,o,OBJ_ZSET)) return; long llen = zsetLength(o); /* Empty zset, move to next key. */ if (llen == 0) continue; /* Non empty zset, this is like a normal ZPOP[MIN|MAX]. */ genericZpopCommand(c, &key, 1, where, 1, count, use_nested_array, reply_nil_when_empty, NULL); if (count == -1) { /* Replicate it as ZPOP[MIN|MAX] instead of BZPOP[MIN|MAX]. */ rewriteClientCommandVector(c,2, (where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin, key); } else { /* Replicate it as ZPOP[MIN|MAX] with COUNT option. */ robj *count_obj = createStringObjectFromLongLong((count > llen) ? llen : count); rewriteClientCommandVector(c, 3, (where == ZSET_MAX) ? shared.zpopmax : shared.zpopmin, key, count_obj); decrRefCount(count_obj); } return; } /* If we are not allowed to block the client and the zset is empty the only thing * we can do is treating it as a timeout (even with timeout 0). */ if (c->flags & CLIENT_DENY_BLOCKING) { addReplyNullArray(c); return; } /* If the keys do not exist we must block */ blockForKeys(c,BLOCKED_ZSET,keys,numkeys,timeout,0); } // BZPOPMIN key [key ...] timeout void bzpopminCommand(client *c) { blockingGenericZpopCommand(c, c->argv+1, c->argc-2, ZSET_MIN, c->argc-1, -1, 0, 0); } // BZPOPMAX key [key ...] timeout void bzpopmaxCommand(client *c) { blockingGenericZpopCommand(c, c->argv+1, c->argc-2, ZSET_MAX, c->argc-1, -1, 0, 0); } static void zrandmemberReplyWithListpack(client *c, unsigned int count, listpackEntry *keys, listpackEntry *vals) { for (unsigned long i = 0; i < count; i++) { if (vals && c->resp > 2) addReplyArrayLen(c,2); if (keys[i].sval) addReplyBulkCBuffer(c, keys[i].sval, keys[i].slen); else addReplyBulkLongLong(c, keys[i].lval); if (vals) { if (vals[i].sval) { addReplyDouble(c, zzlStrtod(vals[i].sval,vals[i].slen)); } else addReplyDouble(c, vals[i].lval); } } } /* How many times bigger should be the zset compared to the requested size * for us to not use the "remove elements" strategy? Read later in the * implementation for more info. */ #define ZRANDMEMBER_SUB_STRATEGY_MUL 3 /* If client is trying to ask for a very large number of random elements, * queuing may consume an unlimited amount of memory, so we want to limit * the number of randoms per time. */ #define ZRANDMEMBER_RANDOM_SAMPLE_LIMIT 1000 void zrandmemberWithCountCommand(client *c, long l, int withscores) { unsigned long count, size; int uniq = 1; robj *zsetobj; if ((zsetobj = lookupKeyReadOrReply(c, c->argv[1], shared.emptyarray)) == NULL || checkType(c, zsetobj, OBJ_ZSET)) return; size = zsetLength(zsetobj); if(l >= 0) { count = (unsigned long) l; } else { count = -l; uniq = 0; } /* If count is zero, serve it ASAP to avoid special cases later. */ if (count == 0) { addReply(c,shared.emptyarray); return; } /* CASE 1: The count was negative, so the extraction method is just: * "return N random elements" sampling the whole set every time. * This case is trivial and can be served without auxiliary data * structures. This case is the only one that also needs to return the * elements in random order. */ if (!uniq || count == 1) { if (withscores && c->resp == 2) addReplyArrayLen(c, count*2); else addReplyArrayLen(c, count); if (zsetobj->encoding == OBJ_ENCODING_SKIPLIST) { zset *zs = zsetobj->ptr; while (count--) { dictEntry *de = dictGetFairRandomKey(zs->dict); sds key = dictGetKey(de); if (withscores && c->resp > 2) addReplyArrayLen(c,2); addReplyBulkCBuffer(c, key, sdslen(key)); if (withscores) addReplyDouble(c, *(double*)dictGetVal(de)); if (c->flags & CLIENT_CLOSE_ASAP) break; } } else if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) { listpackEntry *keys, *vals = NULL; unsigned long limit, sample_count; limit = count > ZRANDMEMBER_RANDOM_SAMPLE_LIMIT ? ZRANDMEMBER_RANDOM_SAMPLE_LIMIT : count; keys = zmalloc(sizeof(listpackEntry)*limit); if (withscores) vals = zmalloc(sizeof(listpackEntry)*limit); while (count) { sample_count = count > limit ? limit : count; count -= sample_count; lpRandomPairs(zsetobj->ptr, sample_count, keys, vals); zrandmemberReplyWithListpack(c, sample_count, keys, vals); if (c->flags & CLIENT_CLOSE_ASAP) break; } zfree(keys); zfree(vals); } return; } zsetopsrc src; zsetopval zval; src.subject = zsetobj; src.type = zsetobj->type; src.encoding = zsetobj->encoding; zuiInitIterator(&src); memset(&zval, 0, sizeof(zval)); /* Initiate reply count, RESP3 responds with nested array, RESP2 with flat one. */ long reply_size = count < size ? count : size; if (withscores && c->resp == 2) addReplyArrayLen(c, reply_size*2); else addReplyArrayLen(c, reply_size); /* CASE 2: * The number of requested elements is greater than the number of * elements inside the zset: simply return the whole zset. */ if (count >= size) { while (zuiNext(&src, &zval)) { if (withscores && c->resp > 2) addReplyArrayLen(c,2); addReplyBulkSds(c, zuiNewSdsFromValue(&zval)); if (withscores) addReplyDouble(c, zval.score); } zuiClearIterator(&src); return; } /* CASE 2.5 listpack only. Sampling unique elements, in non-random order. * Listpack encoded zsets are meant to be relatively small, so * ZRANDMEMBER_SUB_STRATEGY_MUL isn't necessary and we rather not make * copies of the entries. Instead, we emit them directly to the output * buffer. * * And it is inefficient to repeatedly pick one random element from a * listpack in CASE 4. So we use this instead. */ if (zsetobj->encoding == OBJ_ENCODING_LISTPACK) { listpackEntry *keys, *vals = NULL; keys = zmalloc(sizeof(listpackEntry)*count); if (withscores) vals = zmalloc(sizeof(listpackEntry)*count); serverAssert(lpRandomPairsUnique(zsetobj->ptr, count, keys, vals) == count); zrandmemberReplyWithListpack(c, count, keys, vals); zfree(keys); zfree(vals); zuiClearIterator(&src); return; } /* CASE 3: * The number of elements inside the zset is not greater than * ZRANDMEMBER_SUB_STRATEGY_MUL times the number of requested elements. * In this case we create a dict from scratch with all the elements, and * subtract random elements to reach the requested number of elements. * * This is done because if the number of requested elements is just * a bit less than the number of elements in the set, the natural approach * used into CASE 4 is highly inefficient. */ if (count*ZRANDMEMBER_SUB_STRATEGY_MUL > size) { /* Hashtable encoding (generic implementation) */ dict *d = dictCreate(&sdsReplyDictType); dictExpand(d, size); /* Add all the elements into the temporary dictionary. */ while (zuiNext(&src, &zval)) { sds key = zuiNewSdsFromValue(&zval); dictEntry *de = dictAddRaw(d, key, NULL); serverAssert(de); if (withscores) dictSetDoubleVal(de, zval.score); } serverAssert(dictSize(d) == size); /* Remove random elements to reach the right count. */ while (size > count) { dictEntry *de; de = dictGetFairRandomKey(d); dictUnlink(d,dictGetKey(de)); sdsfree(dictGetKey(de)); dictFreeUnlinkedEntry(d,de); size--; } /* Reply with what's in the dict and release memory */ dictIterator *di; dictEntry *de; di = dictGetIterator(d); while ((de = dictNext(di)) != NULL) { if (withscores && c->resp > 2) addReplyArrayLen(c,2); addReplyBulkSds(c, dictGetKey(de)); if (withscores) addReplyDouble(c, dictGetDoubleVal(de)); } dictReleaseIterator(di); dictRelease(d); } /* CASE 4: We have a big zset compared to the requested number of elements. * In this case we can simply get random elements from the zset and add * to the temporary set, trying to eventually get enough unique elements * to reach the specified count. */ else { /* Hashtable encoding (generic implementation) */ unsigned long added = 0; dict *d = dictCreate(&hashDictType); dictExpand(d, count); while (added < count) { listpackEntry key; double score; zsetTypeRandomElement(zsetobj, size, &key, withscores ? &score: NULL); /* Try to add the object to the dictionary. If it already exists * free it, otherwise increment the number of objects we have * in the result dictionary. */ sds skey = zsetSdsFromListpackEntry(&key); if (dictAdd(d,skey,NULL) != DICT_OK) { sdsfree(skey); continue; } added++; if (withscores && c->resp > 2) addReplyArrayLen(c,2); zsetReplyFromListpackEntry(c, &key); if (withscores) addReplyDouble(c, score); } /* Release memory */ dictRelease(d); } zuiClearIterator(&src); } /* ZRANDMEMBER key [ [WITHSCORES]] */ void zrandmemberCommand(client *c) { long l; int withscores = 0; robj *zset; listpackEntry ele; if (c->argc >= 3) { if (getRangeLongFromObjectOrReply(c,c->argv[2],-LONG_MAX,LONG_MAX,&l,NULL) != C_OK) return; if (c->argc > 4 || (c->argc == 4 && strcasecmp(c->argv[3]->ptr,"withscores"))) { addReplyErrorObject(c,shared.syntaxerr); return; } else if (c->argc == 4) { withscores = 1; if (l < -LONG_MAX/2 || l > LONG_MAX/2) { addReplyError(c,"value is out of range"); return; } } zrandmemberWithCountCommand(c, l, withscores); return; } /* Handle variant without argument. Reply with simple bulk string */ if ((zset = lookupKeyReadOrReply(c,c->argv[1],shared.null[c->resp]))== NULL || checkType(c,zset,OBJ_ZSET)) { return; } zsetTypeRandomElement(zset, zsetLength(zset), &ele,NULL); zsetReplyFromListpackEntry(c,&ele); } /* ZMPOP/BZMPOP * * 'numkeys_idx' parameter position of key number. * 'is_block' this indicates whether it is a blocking variant. */ void zmpopGenericCommand(client *c, int numkeys_idx, int is_block) { long j; long numkeys = 0; /* Number of keys. */ int where = 0; /* ZSET_MIN or ZSET_MAX. */ long count = -1; /* Reply will consist of up to count elements, depending on the zset's length. */ /* Parse the numkeys. */ if (getRangeLongFromObjectOrReply(c, c->argv[numkeys_idx], 1, LONG_MAX, &numkeys, "numkeys should be greater than 0") != C_OK) return; /* Parse the where. where_idx: the index of where in the c->argv. */ long where_idx = numkeys_idx + numkeys + 1; if (where_idx >= c->argc) { addReplyErrorObject(c, shared.syntaxerr); return; } if (!strcasecmp(c->argv[where_idx]->ptr, "MIN")) { where = ZSET_MIN; } else if (!strcasecmp(c->argv[where_idx]->ptr, "MAX")) { where = ZSET_MAX; } else { addReplyErrorObject(c, shared.syntaxerr); return; } /* Parse the optional arguments. */ for (j = where_idx + 1; j < c->argc; j++) { char *opt = c->argv[j]->ptr; int moreargs = (c->argc - 1) - j; if (count == -1 && !strcasecmp(opt, "COUNT") && moreargs) { j++; if (getRangeLongFromObjectOrReply(c, c->argv[j], 1, LONG_MAX, &count,"count should be greater than 0") != C_OK) return; } else { addReplyErrorObject(c, shared.syntaxerr); return; } } if (count == -1) count = 1; if (is_block) { /* BLOCK. We will handle CLIENT_DENY_BLOCKING flag in blockingGenericZpopCommand. */ blockingGenericZpopCommand(c, c->argv+numkeys_idx+1, numkeys, where, 1, count, 1, 1); } else { /* NON-BLOCK */ genericZpopCommand(c, c->argv+numkeys_idx+1, numkeys, where, 1, count, 1, 1, NULL); } } /* ZMPOP numkeys key [ ...] MIN|MAX [COUNT count] */ void zmpopCommand(client *c) { zmpopGenericCommand(c, 1, 0); } /* BZMPOP timeout numkeys key [ ...] MIN|MAX [COUNT count] */ void bzmpopCommand(client *c) { zmpopGenericCommand(c, 2, 1); }