Updated README.md with some spelling corrections.

Made correction in spelling of some misspelled words.
This commit is contained in:
Mayank Jain 2018-07-31 23:01:21 +05:30 committed by GitHub
parent 2f2987ffc5
commit f89d1587d8
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 4 additions and 4 deletions

View File

@ -8,7 +8,7 @@ Redis is often referred as a *data structures* server. What this means is that R
Data structures implemented into Redis have a few special properties:
* Redis cares to store them on disk, even if they are always served and modified into the server memory. This means that Redis is fast, but that is also non-volatile.
* Implementation of data structures stress on memory efficiency, so data structures inside Redis will likely use less memory compared to the same data structure modeled using an high level programming language.
* Implementation of data structures stress on memory efficiency, so data structures inside Redis will likely use less memory compared to the same data structure modelled using an high level programming language.
* Redis offers a number of features that are natural to find in a database, like replication, tunable levels of durability, cluster, high availability.
Another good example is to think of Redis as a more complex version of memcached, where the operations are not just SETs and GETs, but operations to work with complex data types like Lists, Sets, ordered data structures, and so forth.
@ -271,7 +271,7 @@ The client structure defines a *connected client*:
* The `fd` field is the client socket file descriptor.
* `argc` and `argv` are populated with the command the client is executing, so that functions implementing a given Redis command can read the arguments.
* `querybuf` accumulates the requests from the client, which are parsed by the Redis server according to the Redis protocol and executed by calling the implementations of the commands the client is executing.
* `reply` and `buf` are dynamic and static buffers that accumulate the replies the server sends to the client. These buffers are incrementally written to the socket as soon as the file descriptor is writable.
* `reply` and `buf` are dynamic and static buffers that accumulate the replies the server sends to the client. These buffers are incrementally written to the socket as soon as the file descriptor is writeable.
As you can see in the client structure above, arguments in a command
are described as `robj` structures. The following is the full `robj`
@ -316,7 +316,7 @@ There are two special functions called periodically by the event loop:
Inside server.c you can find code that handles other vital things of the Redis server:
* `call()` is used in order to call a given command in the context of a given client.
* `activeExpireCycle()` handles eviciton of keys with a time to live set via the `EXPIRE` command.
* `activeExpireCycle()` handles eviction of keys with a time to live set via the `EXPIRE` command.
* `freeMemoryIfNeeded()` is called when a new write command should be performed but Redis is out of memory according to the `maxmemory` directive.
* The global variable `redisCommandTable` defines all the Redis commands, specifying the name of the command, the function implementing the command, the number of arguments required, and other properties of each command.
@ -409,7 +409,7 @@ Other C files
* `sds.c` is the Redis string library, check http://github.com/antirez/sds for more information.
* `anet.c` is a library to use POSIX networking in a simpler way compared to the raw interface exposed by the kernel.
* `dict.c` is an implementation of a non-blocking hash table which rehashes incrementally.
* `scripting.c` implements Lua scripting. It is completely self contained from the rest of the Redis implementation and is simple enough to understand if you are familar with the Lua API.
* `scripting.c` implements Lua scripting. It is completely self contained from the rest of the Redis implementation and is simple enough to understand if you are familiar with the Lua API.
* `cluster.c` implements the Redis Cluster. Probably a good read only after being very familiar with the rest of the Redis code base. If you want to read `cluster.c` make sure to read the [Redis Cluster specification][3].
[3]: http://redis.io/topics/cluster-spec