Sanitize dump payload: fail RESTORE if memory allocation fails

When RDB input attempts to make a huge memory allocation that fails,
RESTORE should fail gracefully rather than die with panic
This commit is contained in:
Oran Agra 2020-11-22 21:22:49 +02:00
parent 3716950cfc
commit 7ca00d694d
9 changed files with 202 additions and 86 deletions

View File

@ -143,9 +143,13 @@ int dictResize(dict *d)
return dictExpand(d, minimal);
}
/* Expand or create the hash table */
int dictExpand(dict *d, unsigned long size)
/* Expand or create the hash table,
* when malloc_failed is non-NULL, it'll avoid panic if malloc fails (in which case it'll be set to 1).
* Returns DICT_OK if expand was performed, and DICT_ERR if skipped. */
int _dictExpand(dict *d, unsigned long size, int* malloc_failed)
{
if (malloc_failed) *malloc_failed = 0;
/* the size is invalid if it is smaller than the number of
* elements already inside the hash table */
if (dictIsRehashing(d) || d->ht[0].used > size)
@ -160,7 +164,14 @@ int dictExpand(dict *d, unsigned long size)
/* Allocate the new hash table and initialize all pointers to NULL */
n.size = realsize;
n.sizemask = realsize-1;
n.table = zcalloc(realsize*sizeof(dictEntry*));
if (malloc_failed) {
n.table = ztrycalloc(realsize*sizeof(dictEntry*));
*malloc_failed = n.table == NULL;
if (*malloc_failed)
return DICT_ERR;
} else
n.table = zcalloc(realsize*sizeof(dictEntry*));
n.used = 0;
/* Is this the first initialization? If so it's not really a rehashing
@ -176,6 +187,18 @@ int dictExpand(dict *d, unsigned long size)
return DICT_OK;
}
/* return DICT_ERR if expand was not performed */
int dictExpand(dict *d, unsigned long size) {
return _dictExpand(d, size, NULL);
}
/* return DICT_ERR if expand failed due to memory allocation failure */
int dictTryExpand(dict *d, unsigned long size) {
int malloc_failed;
_dictExpand(d, size, &malloc_failed);
return malloc_failed? DICT_ERR : DICT_OK;
}
/* Performs N steps of incremental rehashing. Returns 1 if there are still
* keys to move from the old to the new hash table, otherwise 0 is returned.
*

View File

@ -151,6 +151,7 @@ typedef void (dictScanBucketFunction)(void *privdata, dictEntry **bucketref);
/* API */
dict *dictCreate(dictType *type, void *privDataPtr);
int dictExpand(dict *d, unsigned long size);
int dictTryExpand(dict *d, unsigned long size);
int dictAdd(dict *d, void *key, void *val);
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing);
dictEntry *dictAddOrFind(dict *d, void *key);

View File

@ -387,14 +387,22 @@ void *rdbLoadLzfStringObject(rio *rdb, int flags, size_t *lenptr) {
if ((clen = rdbLoadLen(rdb,NULL)) == RDB_LENERR) return NULL;
if ((len = rdbLoadLen(rdb,NULL)) == RDB_LENERR) return NULL;
if ((c = zmalloc(clen)) == NULL) goto err;
if ((c = ztrymalloc(clen)) == NULL) {
serverLog(server.loading? LL_WARNING: LL_VERBOSE, "rdbLoadLzfStringObject failed allocating %llu bytes", (unsigned long long)clen);
goto err;
}
/* Allocate our target according to the uncompressed size. */
if (plain) {
val = zmalloc(len);
val = ztrymalloc(len);
} else {
val = sdsnewlen(SDS_NOINIT,len);
val = sdstrynewlen(SDS_NOINIT,len);
}
if (!val) {
serverLog(server.loading? LL_WARNING: LL_VERBOSE, "rdbLoadLzfStringObject failed allocating %llu bytes", (unsigned long long)len);
goto err;
}
if (lenptr) *lenptr = len;
/* Load the compressed representation and uncompress it to target. */
@ -522,7 +530,11 @@ void *rdbGenericLoadStringObject(rio *rdb, int flags, size_t *lenptr) {
}
if (plain || sds) {
void *buf = plain ? zmalloc(len) : sdsnewlen(SDS_NOINIT,len);
void *buf = plain ? ztrymalloc(len) : sdstrynewlen(SDS_NOINIT,len);
if (!buf) {
serverLog(server.loading? LL_WARNING: LL_VERBOSE, "rdbGenericLoadStringObject failed allocating %llu bytes", len);
return NULL;
}
if (lenptr) *lenptr = len;
if (len && rioRead(rdb,buf,len) == 0) {
if (plain)
@ -1545,8 +1557,11 @@ robj *rdbLoadObject(int rdbtype, rio *rdb, sds key) {
o = createSetObject();
/* It's faster to expand the dict to the right size asap in order
* to avoid rehashing */
if (len > DICT_HT_INITIAL_SIZE)
dictExpand(o->ptr,len);
if (len > DICT_HT_INITIAL_SIZE && dictTryExpand(o->ptr,len) != DICT_OK) {
rdbReportCorruptRDB("OOM in dictTryExpand %llu", (unsigned long long)len);
decrRefCount(o);
return NULL;
}
} else {
o = createIntsetObject();
}
@ -1574,7 +1589,12 @@ robj *rdbLoadObject(int rdbtype, rio *rdb, sds key) {
}
} else {
setTypeConvert(o,OBJ_ENCODING_HT);
dictExpand(o->ptr,len);
if (dictTryExpand(o->ptr,len) != DICT_OK) {
rdbReportCorruptRDB("OOM in dictTryExpand %llu", (unsigned long long)len);
sdsfree(sdsele);
decrRefCount(o);
return NULL;
}
}
}
@ -1601,8 +1621,11 @@ robj *rdbLoadObject(int rdbtype, rio *rdb, sds key) {
o = createZsetObject();
zs = o->ptr;
if (zsetlen > DICT_HT_INITIAL_SIZE)
dictExpand(zs->dict,zsetlen);
if (zsetlen > DICT_HT_INITIAL_SIZE && dictTryExpand(zs->dict,zsetlen) != DICT_OK) {
rdbReportCorruptRDB("OOM in dictTryExpand %llu", (unsigned long long)zsetlen);
decrRefCount(o);
return NULL;
}
/* Load every single element of the sorted set. */
while(zsetlen--) {
@ -1723,8 +1746,13 @@ robj *rdbLoadObject(int rdbtype, rio *rdb, sds key) {
dupSearchDict = NULL;
}
if (o->encoding == OBJ_ENCODING_HT && len > DICT_HT_INITIAL_SIZE)
dictExpand(o->ptr,len);
if (o->encoding == OBJ_ENCODING_HT && len > DICT_HT_INITIAL_SIZE) {
if (dictTryExpand(o->ptr,len) != DICT_OK) {
rdbReportCorruptRDB("OOM in dictTryExpand %llu", (unsigned long long)len);
decrRefCount(o);
return NULL;
}
}
/* Load remaining fields and values into the hash table */
while (o->encoding == OBJ_ENCODING_HT && len > 0) {
@ -1823,9 +1851,9 @@ robj *rdbLoadObject(int rdbtype, rio *rdb, sds key) {
zl = ziplistPush(zl, vstr, vlen, ZIPLIST_TAIL);
/* search for duplicate records */
sds field = sdsnewlen(fstr, flen);
if (dictAdd(dupSearchDict, field, NULL) != DICT_OK) {
rdbReportCorruptRDB("Hash zipmap with dup elements");
sds field = sdstrynewlen(fstr, flen);
if (!field || dictAdd(dupSearchDict, field, NULL) != DICT_OK) {
rdbReportCorruptRDB("Hash zipmap with dup elements, or big length (%u)", flen);
dictRelease(dupSearchDict);
sdsfree(field);
zfree(encoded);

View File

@ -100,7 +100,7 @@ static inline size_t sdsTypeMaxSize(char type) {
* You can print the string with printf() as there is an implicit \0 at the
* end of the string. However the string is binary safe and can contain
* \0 characters in the middle, as the length is stored in the sds header. */
sds sdsnewlen(const void *init, size_t initlen) {
sds _sdsnewlen(const void *init, size_t initlen, int trymalloc) {
void *sh;
sds s;
char type = sdsReqType(initlen);
@ -111,7 +111,9 @@ sds sdsnewlen(const void *init, size_t initlen) {
unsigned char *fp; /* flags pointer. */
size_t usable;
sh = s_malloc_usable(hdrlen+initlen+1, &usable);
sh = trymalloc?
s_trymalloc_usable(hdrlen+initlen+1, &usable) :
s_malloc_usable(hdrlen+initlen+1, &usable);
if (sh == NULL) return NULL;
if (init==SDS_NOINIT)
init = NULL;
@ -162,6 +164,14 @@ sds sdsnewlen(const void *init, size_t initlen) {
return s;
}
sds sdsnewlen(const void *init, size_t initlen) {
return _sdsnewlen(init, initlen, 0);
}
sds sdstrynewlen(const void *init, size_t initlen) {
return _sdsnewlen(init, initlen, 1);
}
/* Create an empty (zero length) sds string. Even in this case the string
* always has an implicit null term. */
sds sdsempty(void) {

View File

@ -216,6 +216,7 @@ static inline void sdssetalloc(sds s, size_t newlen) {
}
sds sdsnewlen(const void *init, size_t initlen);
sds sdstrynewlen(const void *init, size_t initlen);
sds sdsnew(const char *init);
sds sdsempty(void);
sds sdsdup(const sds s);

View File

@ -42,9 +42,13 @@
#include "zmalloc.h"
#define s_malloc zmalloc
#define s_realloc zrealloc
#define s_trymalloc ztrymalloc
#define s_tryrealloc ztryrealloc
#define s_free zfree
#define s_malloc_usable zmalloc_usable
#define s_realloc_usable zrealloc_usable
#define s_trymalloc_usable ztrymalloc_usable
#define s_tryrealloc_usable ztryrealloc_usable
#define s_free_usable zfree_usable
#endif

View File

@ -85,33 +85,44 @@ static void zmalloc_default_oom(size_t size) {
static void (*zmalloc_oom_handler)(size_t) = zmalloc_default_oom;
void *zmalloc(size_t size) {
/* Try allocating memory, and return NULL if failed.
* '*usable' is set to the usable size if non NULL. */
void *ztrymalloc_usable(size_t size, size_t *usable) {
void *ptr = malloc(size+PREFIX_SIZE);
if (!ptr) zmalloc_oom_handler(size);
if (!ptr) return NULL;
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_alloc(zmalloc_size(ptr));
size = zmalloc_size(ptr);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return ptr;
#else
*((size_t*)ptr) = size;
update_zmalloc_stat_alloc(size+PREFIX_SIZE);
if (usable) *usable = size;
return (char*)ptr+PREFIX_SIZE;
#endif
}
/* Similar to zmalloc, '*usable' is set to the usable size. */
void *zmalloc_usable(size_t size, size_t *usable) {
void *ptr = malloc(size+PREFIX_SIZE);
/* Allocate memory or panic */
void *zmalloc(size_t size) {
void *ptr = ztrymalloc_usable(size, NULL);
if (!ptr) zmalloc_oom_handler(size);
return ptr;
}
/* Try allocating memory, and return NULL if failed. */
void *ztrymalloc(size_t size) {
void *ptr = ztrymalloc_usable(size, NULL);
return ptr;
}
/* Allocate memory or panic.
* '*usable' is set to the usable size if non NULL. */
void *zmalloc_usable(size_t size, size_t *usable) {
void *ptr = ztrymalloc_usable(size, usable);
if (!ptr) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_alloc(*usable = zmalloc_size(ptr));
return ptr;
#else
*((size_t*)ptr) = *usable = size;
update_zmalloc_stat_alloc(size+PREFIX_SIZE);
return (char*)ptr+PREFIX_SIZE;
#endif
}
/* Allocation and free functions that bypass the thread cache
@ -132,101 +143,114 @@ void zfree_no_tcache(void *ptr) {
}
#endif
void *zcalloc(size_t size) {
/* Try allocating memory and zero it, and return NULL if failed.
* '*usable' is set to the usable size if non NULL. */
void *ztrycalloc_usable(size_t size, size_t *usable) {
void *ptr = calloc(1, size+PREFIX_SIZE);
if (ptr == NULL) return NULL;
if (!ptr) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_alloc(zmalloc_size(ptr));
size = zmalloc_size(ptr);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return ptr;
#else
*((size_t*)ptr) = size;
update_zmalloc_stat_alloc(size+PREFIX_SIZE);
if (usable) *usable = size;
return (char*)ptr+PREFIX_SIZE;
#endif
}
/* Similar to zcalloc, '*usable' is set to the usable size. */
void *zcalloc_usable(size_t size, size_t *usable) {
void *ptr = calloc(1, size+PREFIX_SIZE);
/* Allocate memory and zero it or panic */
void *zcalloc(size_t size) {
void *ptr = ztrycalloc_usable(size, NULL);
if (!ptr) zmalloc_oom_handler(size);
#ifdef HAVE_MALLOC_SIZE
update_zmalloc_stat_alloc(*usable = zmalloc_size(ptr));
return ptr;
#else
*((size_t*)ptr) = *usable = size;
update_zmalloc_stat_alloc(size+PREFIX_SIZE);
return (char*)ptr+PREFIX_SIZE;
#endif
}
void *zrealloc(void *ptr, size_t size) {
/* Try allocating memory, and return NULL if failed. */
void *ztrycalloc(size_t size) {
void *ptr = ztrycalloc_usable(size, NULL);
return ptr;
}
/* Allocate memory or panic.
* '*usable' is set to the usable size if non NULL. */
void *zcalloc_usable(size_t size, size_t *usable) {
void *ptr = ztrycalloc_usable(size, usable);
if (!ptr) zmalloc_oom_handler(size);
return ptr;
}
/* Try reallocating memory, and return NULL if failed.
* '*usable' is set to the usable size if non NULL. */
void *ztryrealloc_usable(void *ptr, size_t size, size_t *usable) {
#ifndef HAVE_MALLOC_SIZE
void *realptr;
#endif
size_t oldsize;
void *newptr;
/* not allocating anything, just redirect to free. */
if (size == 0 && ptr != NULL) {
zfree(ptr);
if (usable) *usable = 0;
return NULL;
}
if (ptr == NULL) return zmalloc(size);
/* Not freeing anything, just redirect to malloc. */
if (ptr == NULL)
return ztrymalloc_usable(size, usable);
#ifdef HAVE_MALLOC_SIZE
oldsize = zmalloc_size(ptr);
newptr = realloc(ptr,size);
if (!newptr) zmalloc_oom_handler(size);
if (newptr == NULL) {
if (usable) *usable = 0;
return NULL;
}
update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(zmalloc_size(newptr));
size = zmalloc_size(newptr);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return newptr;
#else
realptr = (char*)ptr-PREFIX_SIZE;
oldsize = *((size_t*)realptr);
newptr = realloc(realptr,size+PREFIX_SIZE);
if (!newptr) zmalloc_oom_handler(size);
if (newptr == NULL) {
if (usable) *usable = 0;
return NULL;
}
*((size_t*)newptr) = size;
update_zmalloc_stat_free(oldsize+PREFIX_SIZE);
update_zmalloc_stat_alloc(size+PREFIX_SIZE);
update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(size);
if (usable) *usable = size;
return (char*)newptr+PREFIX_SIZE;
#endif
}
/* Similar to zrealloc, '*usable' is set to the new usable size. */
/* Reallocate memory and zero it or panic */
void *zrealloc(void *ptr, size_t size) {
ptr = ztryrealloc_usable(ptr, size, NULL);
if (!ptr && size != 0) zmalloc_oom_handler(size);
return ptr;
}
/* Try Reallocating memory, and return NULL if failed. */
void *ztryrealloc(void *ptr, size_t size) {
ptr = ztryrealloc_usable(ptr, size, NULL);
return ptr;
}
/* Reallocate memory or panic.
* '*usable' is set to the usable size if non NULL. */
void *zrealloc_usable(void *ptr, size_t size, size_t *usable) {
#ifndef HAVE_MALLOC_SIZE
void *realptr;
#endif
size_t oldsize;
void *newptr;
if (size == 0 && ptr != NULL) {
zfree(ptr);
*usable = 0;
return NULL;
}
if (ptr == NULL) return zmalloc_usable(size, usable);
#ifdef HAVE_MALLOC_SIZE
oldsize = zmalloc_size(ptr);
newptr = realloc(ptr,size);
if (!newptr) zmalloc_oom_handler(size);
update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(*usable = zmalloc_size(newptr));
return newptr;
#else
realptr = (char*)ptr-PREFIX_SIZE;
oldsize = *((size_t*)realptr);
newptr = realloc(realptr,size+PREFIX_SIZE);
if (!newptr) zmalloc_oom_handler(size);
*((size_t*)newptr) = *usable = size;
update_zmalloc_stat_free(oldsize);
update_zmalloc_stat_alloc(size);
return (char*)newptr+PREFIX_SIZE;
#endif
ptr = ztryrealloc_usable(ptr, size, usable);
if (!ptr && size != 0) zmalloc_oom_handler(size);
return ptr;
}
/* Provide zmalloc_size() for systems where this function is not provided by

View File

@ -80,10 +80,16 @@
void *zmalloc(size_t size);
void *zcalloc(size_t size);
void *zrealloc(void *ptr, size_t size);
void *ztrymalloc(size_t size);
void *ztrycalloc(size_t size);
void *ztryrealloc(void *ptr, size_t size);
void zfree(void *ptr);
void *zmalloc_usable(size_t size, size_t *usable);
void *zcalloc_usable(size_t size, size_t *usable);
void *zrealloc_usable(void *ptr, size_t size, size_t *usable);
void *ztrymalloc_usable(size_t size, size_t *usable);
void *ztrycalloc_usable(size_t size, size_t *usable);
void *ztryrealloc_usable(void *ptr, size_t size, size_t *usable);
void zfree_usable(void *ptr, size_t *usable);
char *zstrdup(const char *s);
size_t zmalloc_used_memory(void);

View File

@ -444,6 +444,25 @@ test {corrupt payload: fuzzer findings - hash convert asserts on RESTORE with sh
}
}
test {corrupt payload: OOM in rdbGenericLoadStringObject} {
start_server [list overrides [list loglevel verbose use-exit-on-panic yes crash-memcheck-enabled no] ] {
r config set sanitize-dump-payload no
catch { r RESTORE x 0 "\x0A\x81\x7F\xFF\xFF\xFF\xFF\xFF\xFF\xFF\x13\x00\x00\x00\x0E\x00\x00\x00\x02\x00\x00\x02\x61\x00\x04\x02\x62\x00\xFF\x09\x00\x57\x04\xE5\xCD\xD4\x37\x6C\x57" } err
assert_match "*Bad data format*" $err
r ping
}
}
test {corrupt payload: fuzzer findings - OOM in dictExpand} {
start_server [list overrides [list loglevel verbose use-exit-on-panic yes crash-memcheck-enabled no] ] {
r config set sanitize-dump-payload no
r debug set-skip-checksum-validation 1
catch { r RESTORE x 0 "\x02\x81\x02\x5F\x31\xC0\x00\xC0\x02\x09\x00\xCD\x84\x2C\xB7\xE8\xA4\x49\x57" } err
assert_match "*Bad data format*" $err
r ping
}
}
test {corrupt payload: fuzzer findings - invalid tail offset after removal} {
start_server [list overrides [list loglevel verbose use-exit-on-panic yes crash-memcheck-enabled no] ] {
r config set sanitize-dump-payload no