postgresql/src/backend/replication/walreceiver.c

1476 lines
42 KiB
C

/*-------------------------------------------------------------------------
*
* walreceiver.c
*
* The WAL receiver process (walreceiver) is new as of Postgres 9.0. It
* is the process in the standby server that takes charge of receiving
* XLOG records from a primary server during streaming replication.
*
* When the startup process determines that it's time to start streaming,
* it instructs postmaster to start walreceiver. Walreceiver first connects
* to the primary server (it will be served by a walsender process
* in the primary server), and then keeps receiving XLOG records and
* writing them to the disk as long as the connection is alive. As XLOG
* records are received and flushed to disk, it updates the
* WalRcv->receivedUpto variable in shared memory, to inform the startup
* process of how far it can proceed with XLOG replay.
*
* If the primary server ends streaming, but doesn't disconnect, walreceiver
* goes into "waiting" mode, and waits for the startup process to give new
* instructions. The startup process will treat that the same as
* disconnection, and will rescan the archive/pg_wal directory. But when the
* startup process wants to try streaming replication again, it will just
* nudge the existing walreceiver process that's waiting, instead of launching
* a new one.
*
* Normal termination is by SIGTERM, which instructs the walreceiver to
* exit(0). Emergency termination is by SIGQUIT; like any postmaster child
* process, the walreceiver will simply abort and exit on SIGQUIT. A close
* of the connection and a FATAL error are treated not as a crash but as
* normal operation.
*
* This file contains the server-facing parts of walreceiver. The libpq-
* specific parts are in the libpqwalreceiver module. It's loaded
* dynamically to avoid linking the server with libpq.
*
* Portions Copyright (c) 2010-2020, PostgreSQL Global Development Group
*
*
* IDENTIFICATION
* src/backend/replication/walreceiver.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <unistd.h>
#include "access/htup_details.h"
#include "access/timeline.h"
#include "access/transam.h"
#include "access/xlog_internal.h"
#include "catalog/pg_authid.h"
#include "catalog/pg_type.h"
#include "common/ip.h"
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "libpq/pqsignal.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "postmaster/interrupt.h"
#include "replication/walreceiver.h"
#include "replication/walsender.h"
#include "storage/ipc.h"
#include "storage/pmsignal.h"
#include "storage/procarray.h"
#include "storage/procsignal.h"
#include "utils/builtins.h"
#include "utils/guc.h"
#include "utils/pg_lsn.h"
#include "utils/ps_status.h"
#include "utils/resowner.h"
#include "utils/timestamp.h"
/* GUC variables */
bool wal_receiver_create_temp_slot;
int wal_receiver_status_interval;
int wal_receiver_timeout;
bool hot_standby_feedback;
/* libpqwalreceiver connection */
static WalReceiverConn *wrconn = NULL;
WalReceiverFunctionsType *WalReceiverFunctions = NULL;
#define NAPTIME_PER_CYCLE 100 /* max sleep time between cycles (100ms) */
/*
* These variables are used similarly to openLogFile/SegNo/Off,
* but for walreceiver to write the XLOG. recvFileTLI is the TimeLineID
* corresponding the filename of recvFile.
*/
static int recvFile = -1;
static TimeLineID recvFileTLI = 0;
static XLogSegNo recvSegNo = 0;
static uint32 recvOff = 0;
/*
* Flags set by interrupt handlers of walreceiver for later service in the
* main loop.
*/
static volatile sig_atomic_t got_SIGHUP = false;
static volatile sig_atomic_t got_SIGTERM = false;
/*
* LogstreamResult indicates the byte positions that we have already
* written/fsynced.
*/
static struct
{
XLogRecPtr Write; /* last byte + 1 written out in the standby */
XLogRecPtr Flush; /* last byte + 1 flushed in the standby */
} LogstreamResult;
static StringInfoData reply_message;
static StringInfoData incoming_message;
/* Prototypes for private functions */
static void WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last);
static void WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI);
static void WalRcvDie(int code, Datum arg);
static void XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len);
static void XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr);
static void XLogWalRcvFlush(bool dying);
static void XLogWalRcvSendReply(bool force, bool requestReply);
static void XLogWalRcvSendHSFeedback(bool immed);
static void ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime);
/* Signal handlers */
static void WalRcvSigHupHandler(SIGNAL_ARGS);
static void WalRcvShutdownHandler(SIGNAL_ARGS);
/*
* Process any interrupts the walreceiver process may have received.
* This should be called any time the process's latch has become set.
*
* Currently, only SIGTERM is of interest. We can't just exit(1) within the
* SIGTERM signal handler, because the signal might arrive in the middle of
* some critical operation, like while we're holding a spinlock. Instead, the
* signal handler sets a flag variable as well as setting the process's latch.
* We must check the flag (by calling ProcessWalRcvInterrupts) anytime the
* latch has become set. Operations that could block for a long time, such as
* reading from a remote server, must pay attention to the latch too; see
* libpqrcv_PQgetResult for example.
*/
void
ProcessWalRcvInterrupts(void)
{
/*
* Although walreceiver interrupt handling doesn't use the same scheme as
* regular backends, call CHECK_FOR_INTERRUPTS() to make sure we receive
* any incoming signals on Win32, and also to make sure we process any
* barrier events.
*/
CHECK_FOR_INTERRUPTS();
if (got_SIGTERM)
{
ereport(FATAL,
(errcode(ERRCODE_ADMIN_SHUTDOWN),
errmsg("terminating walreceiver process due to administrator command")));
}
}
/* Main entry point for walreceiver process */
void
WalReceiverMain(void)
{
char conninfo[MAXCONNINFO];
char *tmp_conninfo;
char slotname[NAMEDATALEN];
bool is_temp_slot;
XLogRecPtr startpoint;
TimeLineID startpointTLI;
TimeLineID primaryTLI;
bool first_stream;
WalRcvData *walrcv = WalRcv;
TimestampTz last_recv_timestamp;
TimestampTz now;
bool ping_sent;
char *err;
char *sender_host = NULL;
int sender_port = 0;
/*
* WalRcv should be set up already (if we are a backend, we inherit this
* by fork() or EXEC_BACKEND mechanism from the postmaster).
*/
Assert(walrcv != NULL);
now = GetCurrentTimestamp();
/*
* Mark walreceiver as running in shared memory.
*
* Do this as early as possible, so that if we fail later on, we'll set
* state to STOPPED. If we die before this, the startup process will keep
* waiting for us to start up, until it times out.
*/
SpinLockAcquire(&walrcv->mutex);
Assert(walrcv->pid == 0);
switch (walrcv->walRcvState)
{
case WALRCV_STOPPING:
/* If we've already been requested to stop, don't start up. */
walrcv->walRcvState = WALRCV_STOPPED;
/* fall through */
case WALRCV_STOPPED:
SpinLockRelease(&walrcv->mutex);
proc_exit(1);
break;
case WALRCV_STARTING:
/* The usual case */
break;
case WALRCV_WAITING:
case WALRCV_STREAMING:
case WALRCV_RESTARTING:
default:
/* Shouldn't happen */
SpinLockRelease(&walrcv->mutex);
elog(PANIC, "walreceiver still running according to shared memory state");
}
/* Advertise our PID so that the startup process can kill us */
walrcv->pid = MyProcPid;
walrcv->walRcvState = WALRCV_STREAMING;
/* Fetch information required to start streaming */
walrcv->ready_to_display = false;
strlcpy(conninfo, (char *) walrcv->conninfo, MAXCONNINFO);
strlcpy(slotname, (char *) walrcv->slotname, NAMEDATALEN);
is_temp_slot = walrcv->is_temp_slot;
startpoint = walrcv->receiveStart;
startpointTLI = walrcv->receiveStartTLI;
/* Initialise to a sanish value */
walrcv->lastMsgSendTime =
walrcv->lastMsgReceiptTime = walrcv->latestWalEndTime = now;
/* Report the latch to use to awaken this process */
walrcv->latch = &MyProc->procLatch;
SpinLockRelease(&walrcv->mutex);
/* Arrange to clean up at walreceiver exit */
on_shmem_exit(WalRcvDie, 0);
/* Properly accept or ignore signals the postmaster might send us */
pqsignal(SIGHUP, WalRcvSigHupHandler); /* set flag to read config file */
pqsignal(SIGINT, SIG_IGN);
pqsignal(SIGTERM, WalRcvShutdownHandler); /* request shutdown */
pqsignal(SIGQUIT, SignalHandlerForCrashExit);
pqsignal(SIGALRM, SIG_IGN);
pqsignal(SIGPIPE, SIG_IGN);
pqsignal(SIGUSR1, procsignal_sigusr1_handler);
pqsignal(SIGUSR2, SIG_IGN);
/* Reset some signals that are accepted by postmaster but not here */
pqsignal(SIGCHLD, SIG_DFL);
/* We allow SIGQUIT (quickdie) at all times */
sigdelset(&BlockSig, SIGQUIT);
/* Load the libpq-specific functions */
load_file("libpqwalreceiver", false);
if (WalReceiverFunctions == NULL)
elog(ERROR, "libpqwalreceiver didn't initialize correctly");
/* Unblock signals (they were blocked when the postmaster forked us) */
PG_SETMASK(&UnBlockSig);
/* Establish the connection to the primary for XLOG streaming */
wrconn = walrcv_connect(conninfo, false, cluster_name[0] ? cluster_name : "walreceiver", &err);
if (!wrconn)
ereport(ERROR,
(errmsg("could not connect to the primary server: %s", err)));
/*
* Save user-visible connection string. This clobbers the original
* conninfo, for security. Also save host and port of the sender server
* this walreceiver is connected to.
*/
tmp_conninfo = walrcv_get_conninfo(wrconn);
walrcv_get_senderinfo(wrconn, &sender_host, &sender_port);
SpinLockAcquire(&walrcv->mutex);
memset(walrcv->conninfo, 0, MAXCONNINFO);
if (tmp_conninfo)
strlcpy((char *) walrcv->conninfo, tmp_conninfo, MAXCONNINFO);
memset(walrcv->sender_host, 0, NI_MAXHOST);
if (sender_host)
strlcpy((char *) walrcv->sender_host, sender_host, NI_MAXHOST);
walrcv->sender_port = sender_port;
walrcv->ready_to_display = true;
SpinLockRelease(&walrcv->mutex);
if (tmp_conninfo)
pfree(tmp_conninfo);
if (sender_host)
pfree(sender_host);
first_stream = true;
for (;;)
{
char *primary_sysid;
char standby_sysid[32];
WalRcvStreamOptions options;
/*
* Check that we're connected to a valid server using the
* IDENTIFY_SYSTEM replication command.
*/
primary_sysid = walrcv_identify_system(wrconn, &primaryTLI);
snprintf(standby_sysid, sizeof(standby_sysid), UINT64_FORMAT,
GetSystemIdentifier());
if (strcmp(primary_sysid, standby_sysid) != 0)
{
ereport(ERROR,
(errmsg("database system identifier differs between the primary and standby"),
errdetail("The primary's identifier is %s, the standby's identifier is %s.",
primary_sysid, standby_sysid)));
}
/*
* Confirm that the current timeline of the primary is the same or
* ahead of ours.
*/
if (primaryTLI < startpointTLI)
ereport(ERROR,
(errmsg("highest timeline %u of the primary is behind recovery timeline %u",
primaryTLI, startpointTLI)));
/*
* Get any missing history files. We do this always, even when we're
* not interested in that timeline, so that if we're promoted to
* become the master later on, we don't select the same timeline that
* was already used in the current master. This isn't bullet-proof -
* you'll need some external software to manage your cluster if you
* need to ensure that a unique timeline id is chosen in every case,
* but let's avoid the confusion of timeline id collisions where we
* can.
*/
WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
/*
* Create temporary replication slot if no slot name is configured or
* the slot from the previous run was temporary, unless
* wal_receiver_create_temp_slot is disabled. We also need to handle
* the case where the previous run used a temporary slot but
* wal_receiver_create_temp_slot was changed in the meantime. In that
* case, we delete the old slot name in shared memory. (This would
* all be a bit easier if we just didn't copy the slot name into
* shared memory, since we won't need it again later, but then we
* can't see the slot name in the stats views.)
*/
if (slotname[0] == '\0' || is_temp_slot)
{
bool changed = false;
if (wal_receiver_create_temp_slot)
{
snprintf(slotname, sizeof(slotname),
"pg_walreceiver_%lld",
(long long int) walrcv_get_backend_pid(wrconn));
walrcv_create_slot(wrconn, slotname, true, 0, NULL);
changed = true;
}
else if (slotname[0] != '\0')
{
slotname[0] = '\0';
changed = true;
}
if (changed)
{
SpinLockAcquire(&walrcv->mutex);
strlcpy(walrcv->slotname, slotname, NAMEDATALEN);
walrcv->is_temp_slot = wal_receiver_create_temp_slot;
SpinLockRelease(&walrcv->mutex);
}
}
/*
* Start streaming.
*
* We'll try to start at the requested starting point and timeline,
* even if it's different from the server's latest timeline. In case
* we've already reached the end of the old timeline, the server will
* finish the streaming immediately, and we will go back to await
* orders from the startup process. If recovery_target_timeline is
* 'latest', the startup process will scan pg_wal and find the new
* history file, bump recovery target timeline, and ask us to restart
* on the new timeline.
*/
options.logical = false;
options.startpoint = startpoint;
options.slotname = slotname[0] != '\0' ? slotname : NULL;
options.proto.physical.startpointTLI = startpointTLI;
ThisTimeLineID = startpointTLI;
if (walrcv_startstreaming(wrconn, &options))
{
if (first_stream)
ereport(LOG,
(errmsg("started streaming WAL from primary at %X/%X on timeline %u",
(uint32) (startpoint >> 32), (uint32) startpoint,
startpointTLI)));
else
ereport(LOG,
(errmsg("restarted WAL streaming at %X/%X on timeline %u",
(uint32) (startpoint >> 32), (uint32) startpoint,
startpointTLI)));
first_stream = false;
/* Initialize LogstreamResult and buffers for processing messages */
LogstreamResult.Write = LogstreamResult.Flush = GetXLogReplayRecPtr(NULL);
initStringInfo(&reply_message);
initStringInfo(&incoming_message);
/* Initialize the last recv timestamp */
last_recv_timestamp = GetCurrentTimestamp();
ping_sent = false;
/* Loop until end-of-streaming or error */
for (;;)
{
char *buf;
int len;
bool endofwal = false;
pgsocket wait_fd = PGINVALID_SOCKET;
int rc;
/*
* Exit walreceiver if we're not in recovery. This should not
* happen, but cross-check the status here.
*/
if (!RecoveryInProgress())
ereport(FATAL,
(errmsg("cannot continue WAL streaming, recovery has already ended")));
/* Process any requests or signals received recently */
ProcessWalRcvInterrupts();
if (got_SIGHUP)
{
got_SIGHUP = false;
ProcessConfigFile(PGC_SIGHUP);
XLogWalRcvSendHSFeedback(true);
}
/* See if we can read data immediately */
len = walrcv_receive(wrconn, &buf, &wait_fd);
if (len != 0)
{
/*
* Process the received data, and any subsequent data we
* can read without blocking.
*/
for (;;)
{
if (len > 0)
{
/*
* Something was received from master, so reset
* timeout
*/
last_recv_timestamp = GetCurrentTimestamp();
ping_sent = false;
XLogWalRcvProcessMsg(buf[0], &buf[1], len - 1);
}
else if (len == 0)
break;
else if (len < 0)
{
ereport(LOG,
(errmsg("replication terminated by primary server"),
errdetail("End of WAL reached on timeline %u at %X/%X.",
startpointTLI,
(uint32) (LogstreamResult.Write >> 32), (uint32) LogstreamResult.Write)));
endofwal = true;
break;
}
len = walrcv_receive(wrconn, &buf, &wait_fd);
}
/* Let the master know that we received some data. */
XLogWalRcvSendReply(false, false);
/*
* If we've written some records, flush them to disk and
* let the startup process and primary server know about
* them.
*/
XLogWalRcvFlush(false);
}
/* Check if we need to exit the streaming loop. */
if (endofwal)
break;
/*
* Ideally we would reuse a WaitEventSet object repeatedly
* here to avoid the overheads of WaitLatchOrSocket on epoll
* systems, but we can't be sure that libpq (or any other
* walreceiver implementation) has the same socket (even if
* the fd is the same number, it may have been closed and
* reopened since the last time). In future, if there is a
* function for removing sockets from WaitEventSet, then we
* could add and remove just the socket each time, potentially
* avoiding some system calls.
*/
Assert(wait_fd != PGINVALID_SOCKET);
rc = WaitLatchOrSocket(walrcv->latch,
WL_EXIT_ON_PM_DEATH | WL_SOCKET_READABLE |
WL_TIMEOUT | WL_LATCH_SET,
wait_fd,
NAPTIME_PER_CYCLE,
WAIT_EVENT_WAL_RECEIVER_MAIN);
if (rc & WL_LATCH_SET)
{
ResetLatch(walrcv->latch);
ProcessWalRcvInterrupts();
if (walrcv->force_reply)
{
/*
* The recovery process has asked us to send apply
* feedback now. Make sure the flag is really set to
* false in shared memory before sending the reply, so
* we don't miss a new request for a reply.
*/
walrcv->force_reply = false;
pg_memory_barrier();
XLogWalRcvSendReply(true, false);
}
}
if (rc & WL_TIMEOUT)
{
/*
* We didn't receive anything new. If we haven't heard
* anything from the server for more than
* wal_receiver_timeout / 2, ping the server. Also, if
* it's been longer than wal_receiver_status_interval
* since the last update we sent, send a status update to
* the master anyway, to report any progress in applying
* WAL.
*/
bool requestReply = false;
/*
* Check if time since last receive from standby has
* reached the configured limit.
*/
if (wal_receiver_timeout > 0)
{
TimestampTz now = GetCurrentTimestamp();
TimestampTz timeout;
timeout =
TimestampTzPlusMilliseconds(last_recv_timestamp,
wal_receiver_timeout);
if (now >= timeout)
ereport(ERROR,
(errmsg("terminating walreceiver due to timeout")));
/*
* We didn't receive anything new, for half of
* receiver replication timeout. Ping the server.
*/
if (!ping_sent)
{
timeout = TimestampTzPlusMilliseconds(last_recv_timestamp,
(wal_receiver_timeout / 2));
if (now >= timeout)
{
requestReply = true;
ping_sent = true;
}
}
}
XLogWalRcvSendReply(requestReply, requestReply);
XLogWalRcvSendHSFeedback(false);
}
}
/*
* The backend finished streaming. Exit streaming COPY-mode from
* our side, too.
*/
walrcv_endstreaming(wrconn, &primaryTLI);
/*
* If the server had switched to a new timeline that we didn't
* know about when we began streaming, fetch its timeline history
* file now.
*/
WalRcvFetchTimeLineHistoryFiles(startpointTLI, primaryTLI);
}
else
ereport(LOG,
(errmsg("primary server contains no more WAL on requested timeline %u",
startpointTLI)));
/*
* End of WAL reached on the requested timeline. Close the last
* segment, and await for new orders from the startup process.
*/
if (recvFile >= 0)
{
char xlogfname[MAXFNAMELEN];
XLogWalRcvFlush(false);
XLogFileName(xlogfname, recvFileTLI, recvSegNo, wal_segment_size);
if (close(recvFile) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close log segment %s: %m",
xlogfname)));
/*
* Create .done file forcibly to prevent the streamed segment from
* being archived later.
*/
if (XLogArchiveMode != ARCHIVE_MODE_ALWAYS)
XLogArchiveForceDone(xlogfname);
else
XLogArchiveNotify(xlogfname);
}
recvFile = -1;
elog(DEBUG1, "walreceiver ended streaming and awaits new instructions");
WalRcvWaitForStartPosition(&startpoint, &startpointTLI);
}
/* not reached */
}
/*
* Wait for startup process to set receiveStart and receiveStartTLI.
*/
static void
WalRcvWaitForStartPosition(XLogRecPtr *startpoint, TimeLineID *startpointTLI)
{
WalRcvData *walrcv = WalRcv;
int state;
SpinLockAcquire(&walrcv->mutex);
state = walrcv->walRcvState;
if (state != WALRCV_STREAMING)
{
SpinLockRelease(&walrcv->mutex);
if (state == WALRCV_STOPPING)
proc_exit(0);
else
elog(FATAL, "unexpected walreceiver state");
}
walrcv->walRcvState = WALRCV_WAITING;
walrcv->receiveStart = InvalidXLogRecPtr;
walrcv->receiveStartTLI = 0;
SpinLockRelease(&walrcv->mutex);
if (update_process_title)
set_ps_display("idle", false);
/*
* nudge startup process to notice that we've stopped streaming and are
* now waiting for instructions.
*/
WakeupRecovery();
for (;;)
{
ResetLatch(walrcv->latch);
ProcessWalRcvInterrupts();
SpinLockAcquire(&walrcv->mutex);
Assert(walrcv->walRcvState == WALRCV_RESTARTING ||
walrcv->walRcvState == WALRCV_WAITING ||
walrcv->walRcvState == WALRCV_STOPPING);
if (walrcv->walRcvState == WALRCV_RESTARTING)
{
/* we don't expect primary_conninfo to change */
*startpoint = walrcv->receiveStart;
*startpointTLI = walrcv->receiveStartTLI;
walrcv->walRcvState = WALRCV_STREAMING;
SpinLockRelease(&walrcv->mutex);
break;
}
if (walrcv->walRcvState == WALRCV_STOPPING)
{
/*
* We should've received SIGTERM if the startup process wants us
* to die, but might as well check it here too.
*/
SpinLockRelease(&walrcv->mutex);
exit(1);
}
SpinLockRelease(&walrcv->mutex);
(void) WaitLatch(walrcv->latch, WL_LATCH_SET | WL_EXIT_ON_PM_DEATH, 0,
WAIT_EVENT_WAL_RECEIVER_WAIT_START);
}
if (update_process_title)
{
char activitymsg[50];
snprintf(activitymsg, sizeof(activitymsg), "restarting at %X/%X",
(uint32) (*startpoint >> 32),
(uint32) *startpoint);
set_ps_display(activitymsg, false);
}
}
/*
* Fetch any missing timeline history files between 'first' and 'last'
* (inclusive) from the server.
*/
static void
WalRcvFetchTimeLineHistoryFiles(TimeLineID first, TimeLineID last)
{
TimeLineID tli;
for (tli = first; tli <= last; tli++)
{
/* there's no history file for timeline 1 */
if (tli != 1 && !existsTimeLineHistory(tli))
{
char *fname;
char *content;
int len;
char expectedfname[MAXFNAMELEN];
ereport(LOG,
(errmsg("fetching timeline history file for timeline %u from primary server",
tli)));
walrcv_readtimelinehistoryfile(wrconn, tli, &fname, &content, &len);
/*
* Check that the filename on the master matches what we
* calculated ourselves. This is just a sanity check, it should
* always match.
*/
TLHistoryFileName(expectedfname, tli);
if (strcmp(fname, expectedfname) != 0)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg_internal("primary reported unexpected file name for timeline history file of timeline %u",
tli)));
/*
* Write the file to pg_wal.
*/
writeTimeLineHistoryFile(tli, content, len);
pfree(fname);
pfree(content);
}
}
}
/*
* Mark us as STOPPED in shared memory at exit.
*/
static void
WalRcvDie(int code, Datum arg)
{
WalRcvData *walrcv = WalRcv;
/* Ensure that all WAL records received are flushed to disk */
XLogWalRcvFlush(true);
/* Mark ourselves inactive in shared memory */
SpinLockAcquire(&walrcv->mutex);
Assert(walrcv->walRcvState == WALRCV_STREAMING ||
walrcv->walRcvState == WALRCV_RESTARTING ||
walrcv->walRcvState == WALRCV_STARTING ||
walrcv->walRcvState == WALRCV_WAITING ||
walrcv->walRcvState == WALRCV_STOPPING);
Assert(walrcv->pid == MyProcPid);
walrcv->walRcvState = WALRCV_STOPPED;
walrcv->pid = 0;
walrcv->ready_to_display = false;
walrcv->latch = NULL;
SpinLockRelease(&walrcv->mutex);
/* Terminate the connection gracefully. */
if (wrconn != NULL)
walrcv_disconnect(wrconn);
/* Wake up the startup process to notice promptly that we're gone */
WakeupRecovery();
}
/* SIGHUP: set flag to re-read config file at next convenient time */
static void
WalRcvSigHupHandler(SIGNAL_ARGS)
{
got_SIGHUP = true;
}
/* SIGTERM: set flag for ProcessWalRcvInterrupts */
static void
WalRcvShutdownHandler(SIGNAL_ARGS)
{
int save_errno = errno;
got_SIGTERM = true;
if (WalRcv->latch)
SetLatch(WalRcv->latch);
errno = save_errno;
}
/*
* Accept the message from XLOG stream, and process it.
*/
static void
XLogWalRcvProcessMsg(unsigned char type, char *buf, Size len)
{
int hdrlen;
XLogRecPtr dataStart;
XLogRecPtr walEnd;
TimestampTz sendTime;
bool replyRequested;
resetStringInfo(&incoming_message);
switch (type)
{
case 'w': /* WAL records */
{
/* copy message to StringInfo */
hdrlen = sizeof(int64) + sizeof(int64) + sizeof(int64);
if (len < hdrlen)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg_internal("invalid WAL message received from primary")));
appendBinaryStringInfo(&incoming_message, buf, hdrlen);
/* read the fields */
dataStart = pq_getmsgint64(&incoming_message);
walEnd = pq_getmsgint64(&incoming_message);
sendTime = pq_getmsgint64(&incoming_message);
ProcessWalSndrMessage(walEnd, sendTime);
buf += hdrlen;
len -= hdrlen;
XLogWalRcvWrite(buf, len, dataStart);
break;
}
case 'k': /* Keepalive */
{
/* copy message to StringInfo */
hdrlen = sizeof(int64) + sizeof(int64) + sizeof(char);
if (len != hdrlen)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg_internal("invalid keepalive message received from primary")));
appendBinaryStringInfo(&incoming_message, buf, hdrlen);
/* read the fields */
walEnd = pq_getmsgint64(&incoming_message);
sendTime = pq_getmsgint64(&incoming_message);
replyRequested = pq_getmsgbyte(&incoming_message);
ProcessWalSndrMessage(walEnd, sendTime);
/* If the primary requested a reply, send one immediately */
if (replyRequested)
XLogWalRcvSendReply(true, false);
break;
}
default:
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg_internal("invalid replication message type %d",
type)));
}
}
/*
* Write XLOG data to disk.
*/
static void
XLogWalRcvWrite(char *buf, Size nbytes, XLogRecPtr recptr)
{
int startoff;
int byteswritten;
while (nbytes > 0)
{
int segbytes;
if (recvFile < 0 || !XLByteInSeg(recptr, recvSegNo, wal_segment_size))
{
bool use_existent;
/*
* fsync() and close current file before we switch to next one. We
* would otherwise have to reopen this file to fsync it later
*/
if (recvFile >= 0)
{
char xlogfname[MAXFNAMELEN];
XLogWalRcvFlush(false);
XLogFileName(xlogfname, recvFileTLI, recvSegNo, wal_segment_size);
/*
* XLOG segment files will be re-read by recovery in startup
* process soon, so we don't advise the OS to release cache
* pages associated with the file like XLogFileClose() does.
*/
if (close(recvFile) != 0)
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not close log segment %s: %m",
xlogfname)));
/*
* Create .done file forcibly to prevent the streamed segment
* from being archived later.
*/
if (XLogArchiveMode != ARCHIVE_MODE_ALWAYS)
XLogArchiveForceDone(xlogfname);
else
XLogArchiveNotify(xlogfname);
}
recvFile = -1;
/* Create/use new log file */
XLByteToSeg(recptr, recvSegNo, wal_segment_size);
use_existent = true;
recvFile = XLogFileInit(recvSegNo, &use_existent, true);
recvFileTLI = ThisTimeLineID;
recvOff = 0;
}
/* Calculate the start offset of the received logs */
startoff = XLogSegmentOffset(recptr, wal_segment_size);
if (startoff + nbytes > wal_segment_size)
segbytes = wal_segment_size - startoff;
else
segbytes = nbytes;
/* Need to seek in the file? */
if (recvOff != startoff)
{
if (lseek(recvFile, (off_t) startoff, SEEK_SET) < 0)
{
char xlogfname[MAXFNAMELEN];
int save_errno = errno;
XLogFileName(xlogfname, recvFileTLI, recvSegNo, wal_segment_size);
errno = save_errno;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not seek in log segment %s to offset %u: %m",
xlogfname, startoff)));
}
recvOff = startoff;
}
/* OK to write the logs */
errno = 0;
byteswritten = write(recvFile, buf, segbytes);
if (byteswritten <= 0)
{
char xlogfname[MAXFNAMELEN];
int save_errno;
/* if write didn't set errno, assume no disk space */
if (errno == 0)
errno = ENOSPC;
save_errno = errno;
XLogFileName(xlogfname, recvFileTLI, recvSegNo, wal_segment_size);
errno = save_errno;
ereport(PANIC,
(errcode_for_file_access(),
errmsg("could not write to log segment %s "
"at offset %u, length %lu: %m",
xlogfname, recvOff, (unsigned long) segbytes)));
}
/* Update state for write */
recptr += byteswritten;
recvOff += byteswritten;
nbytes -= byteswritten;
buf += byteswritten;
LogstreamResult.Write = recptr;
}
}
/*
* Flush the log to disk.
*
* If we're in the midst of dying, it's unwise to do anything that might throw
* an error, so we skip sending a reply in that case.
*/
static void
XLogWalRcvFlush(bool dying)
{
if (LogstreamResult.Flush < LogstreamResult.Write)
{
WalRcvData *walrcv = WalRcv;
issue_xlog_fsync(recvFile, recvSegNo);
LogstreamResult.Flush = LogstreamResult.Write;
/* Update shared-memory status */
SpinLockAcquire(&walrcv->mutex);
if (walrcv->receivedUpto < LogstreamResult.Flush)
{
walrcv->latestChunkStart = walrcv->receivedUpto;
walrcv->receivedUpto = LogstreamResult.Flush;
walrcv->receivedTLI = ThisTimeLineID;
}
SpinLockRelease(&walrcv->mutex);
/* Signal the startup process and walsender that new WAL has arrived */
WakeupRecovery();
if (AllowCascadeReplication())
WalSndWakeup();
/* Report XLOG streaming progress in PS display */
if (update_process_title)
{
char activitymsg[50];
snprintf(activitymsg, sizeof(activitymsg), "streaming %X/%X",
(uint32) (LogstreamResult.Write >> 32),
(uint32) LogstreamResult.Write);
set_ps_display(activitymsg, false);
}
/* Also let the master know that we made some progress */
if (!dying)
{
XLogWalRcvSendReply(false, false);
XLogWalRcvSendHSFeedback(false);
}
}
}
/*
* Send reply message to primary, indicating our current WAL locations, oldest
* xmin and the current time.
*
* If 'force' is not set, the message is only sent if enough time has
* passed since last status update to reach wal_receiver_status_interval.
* If wal_receiver_status_interval is disabled altogether and 'force' is
* false, this is a no-op.
*
* If 'requestReply' is true, requests the server to reply immediately upon
* receiving this message. This is used for heartbeats, when approaching
* wal_receiver_timeout.
*/
static void
XLogWalRcvSendReply(bool force, bool requestReply)
{
static XLogRecPtr writePtr = 0;
static XLogRecPtr flushPtr = 0;
XLogRecPtr applyPtr;
static TimestampTz sendTime = 0;
TimestampTz now;
/*
* If the user doesn't want status to be reported to the master, be sure
* to exit before doing anything at all.
*/
if (!force && wal_receiver_status_interval <= 0)
return;
/* Get current timestamp. */
now = GetCurrentTimestamp();
/*
* We can compare the write and flush positions to the last message we
* sent without taking any lock, but the apply position requires a spin
* lock, so we don't check that unless something else has changed or 10
* seconds have passed. This means that the apply WAL location will
* appear, from the master's point of view, to lag slightly, but since
* this is only for reporting purposes and only on idle systems, that's
* probably OK.
*/
if (!force
&& writePtr == LogstreamResult.Write
&& flushPtr == LogstreamResult.Flush
&& !TimestampDifferenceExceeds(sendTime, now,
wal_receiver_status_interval * 1000))
return;
sendTime = now;
/* Construct a new message */
writePtr = LogstreamResult.Write;
flushPtr = LogstreamResult.Flush;
applyPtr = GetXLogReplayRecPtr(NULL);
resetStringInfo(&reply_message);
pq_sendbyte(&reply_message, 'r');
pq_sendint64(&reply_message, writePtr);
pq_sendint64(&reply_message, flushPtr);
pq_sendint64(&reply_message, applyPtr);
pq_sendint64(&reply_message, GetCurrentTimestamp());
pq_sendbyte(&reply_message, requestReply ? 1 : 0);
/* Send it */
elog(DEBUG2, "sending write %X/%X flush %X/%X apply %X/%X%s",
(uint32) (writePtr >> 32), (uint32) writePtr,
(uint32) (flushPtr >> 32), (uint32) flushPtr,
(uint32) (applyPtr >> 32), (uint32) applyPtr,
requestReply ? " (reply requested)" : "");
walrcv_send(wrconn, reply_message.data, reply_message.len);
}
/*
* Send hot standby feedback message to primary, plus the current time,
* in case they don't have a watch.
*
* If the user disables feedback, send one final message to tell sender
* to forget about the xmin on this standby. We also send this message
* on first connect because a previous connection might have set xmin
* on a replication slot. (If we're not using a slot it's harmless to
* send a feedback message explicitly setting InvalidTransactionId).
*/
static void
XLogWalRcvSendHSFeedback(bool immed)
{
TimestampTz now;
FullTransactionId nextFullXid;
TransactionId nextXid;
uint32 xmin_epoch,
catalog_xmin_epoch;
TransactionId xmin,
catalog_xmin;
static TimestampTz sendTime = 0;
/* initially true so we always send at least one feedback message */
static bool master_has_standby_xmin = true;
/*
* If the user doesn't want status to be reported to the master, be sure
* to exit before doing anything at all.
*/
if ((wal_receiver_status_interval <= 0 || !hot_standby_feedback) &&
!master_has_standby_xmin)
return;
/* Get current timestamp. */
now = GetCurrentTimestamp();
if (!immed)
{
/*
* Send feedback at most once per wal_receiver_status_interval.
*/
if (!TimestampDifferenceExceeds(sendTime, now,
wal_receiver_status_interval * 1000))
return;
sendTime = now;
}
/*
* If Hot Standby is not yet accepting connections there is nothing to
* send. Check this after the interval has expired to reduce number of
* calls.
*
* Bailing out here also ensures that we don't send feedback until we've
* read our own replication slot state, so we don't tell the master to
* discard needed xmin or catalog_xmin from any slots that may exist on
* this replica.
*/
if (!HotStandbyActive())
return;
/*
* Make the expensive call to get the oldest xmin once we are certain
* everything else has been checked.
*/
if (hot_standby_feedback)
{
TransactionId slot_xmin;
/*
* Usually GetOldestXmin() would include both global replication slot
* xmin and catalog_xmin in its calculations, but we want to derive
* separate values for each of those. So we ask for an xmin that
* excludes the catalog_xmin.
*/
xmin = GetOldestXmin(NULL,
PROCARRAY_FLAGS_DEFAULT | PROCARRAY_SLOTS_XMIN);
ProcArrayGetReplicationSlotXmin(&slot_xmin, &catalog_xmin);
if (TransactionIdIsValid(slot_xmin) &&
TransactionIdPrecedes(slot_xmin, xmin))
xmin = slot_xmin;
}
else
{
xmin = InvalidTransactionId;
catalog_xmin = InvalidTransactionId;
}
/*
* Get epoch and adjust if nextXid and oldestXmin are different sides of
* the epoch boundary.
*/
nextFullXid = ReadNextFullTransactionId();
nextXid = XidFromFullTransactionId(nextFullXid);
xmin_epoch = EpochFromFullTransactionId(nextFullXid);
catalog_xmin_epoch = xmin_epoch;
if (nextXid < xmin)
xmin_epoch--;
if (nextXid < catalog_xmin)
catalog_xmin_epoch--;
elog(DEBUG2, "sending hot standby feedback xmin %u epoch %u catalog_xmin %u catalog_xmin_epoch %u",
xmin, xmin_epoch, catalog_xmin, catalog_xmin_epoch);
/* Construct the message and send it. */
resetStringInfo(&reply_message);
pq_sendbyte(&reply_message, 'h');
pq_sendint64(&reply_message, GetCurrentTimestamp());
pq_sendint32(&reply_message, xmin);
pq_sendint32(&reply_message, xmin_epoch);
pq_sendint32(&reply_message, catalog_xmin);
pq_sendint32(&reply_message, catalog_xmin_epoch);
walrcv_send(wrconn, reply_message.data, reply_message.len);
if (TransactionIdIsValid(xmin) || TransactionIdIsValid(catalog_xmin))
master_has_standby_xmin = true;
else
master_has_standby_xmin = false;
}
/*
* Update shared memory status upon receiving a message from primary.
*
* 'walEnd' and 'sendTime' are the end-of-WAL and timestamp of the latest
* message, reported by primary.
*/
static void
ProcessWalSndrMessage(XLogRecPtr walEnd, TimestampTz sendTime)
{
WalRcvData *walrcv = WalRcv;
TimestampTz lastMsgReceiptTime = GetCurrentTimestamp();
/* Update shared-memory status */
SpinLockAcquire(&walrcv->mutex);
if (walrcv->latestWalEnd < walEnd)
walrcv->latestWalEndTime = sendTime;
walrcv->latestWalEnd = walEnd;
walrcv->lastMsgSendTime = sendTime;
walrcv->lastMsgReceiptTime = lastMsgReceiptTime;
SpinLockRelease(&walrcv->mutex);
if (log_min_messages <= DEBUG2)
{
char *sendtime;
char *receipttime;
int applyDelay;
/* Copy because timestamptz_to_str returns a static buffer */
sendtime = pstrdup(timestamptz_to_str(sendTime));
receipttime = pstrdup(timestamptz_to_str(lastMsgReceiptTime));
applyDelay = GetReplicationApplyDelay();
/* apply delay is not available */
if (applyDelay == -1)
elog(DEBUG2, "sendtime %s receipttime %s replication apply delay (N/A) transfer latency %d ms",
sendtime,
receipttime,
GetReplicationTransferLatency());
else
elog(DEBUG2, "sendtime %s receipttime %s replication apply delay %d ms transfer latency %d ms",
sendtime,
receipttime,
applyDelay,
GetReplicationTransferLatency());
pfree(sendtime);
pfree(receipttime);
}
}
/*
* Wake up the walreceiver main loop.
*
* This is called by the startup process whenever interesting xlog records
* are applied, so that walreceiver can check if it needs to send an apply
* notification back to the master which may be waiting in a COMMIT with
* synchronous_commit = remote_apply.
*/
void
WalRcvForceReply(void)
{
Latch *latch;
WalRcv->force_reply = true;
/* fetching the latch pointer might not be atomic, so use spinlock */
SpinLockAcquire(&WalRcv->mutex);
latch = WalRcv->latch;
SpinLockRelease(&WalRcv->mutex);
if (latch)
SetLatch(latch);
}
/*
* Return a string constant representing the state. This is used
* in system functions and views, and should *not* be translated.
*/
static const char *
WalRcvGetStateString(WalRcvState state)
{
switch (state)
{
case WALRCV_STOPPED:
return "stopped";
case WALRCV_STARTING:
return "starting";
case WALRCV_STREAMING:
return "streaming";
case WALRCV_WAITING:
return "waiting";
case WALRCV_RESTARTING:
return "restarting";
case WALRCV_STOPPING:
return "stopping";
}
return "UNKNOWN";
}
/*
* Returns activity of WAL receiver, including pid, state and xlog locations
* received from the WAL sender of another server.
*/
Datum
pg_stat_get_wal_receiver(PG_FUNCTION_ARGS)
{
TupleDesc tupdesc;
Datum *values;
bool *nulls;
int pid;
bool ready_to_display;
WalRcvState state;
XLogRecPtr receive_start_lsn;
TimeLineID receive_start_tli;
XLogRecPtr received_lsn;
TimeLineID received_tli;
TimestampTz last_send_time;
TimestampTz last_receipt_time;
XLogRecPtr latest_end_lsn;
TimestampTz latest_end_time;
char sender_host[NI_MAXHOST];
int sender_port = 0;
char slotname[NAMEDATALEN];
char conninfo[MAXCONNINFO];
/* Take a lock to ensure value consistency */
SpinLockAcquire(&WalRcv->mutex);
pid = (int) WalRcv->pid;
ready_to_display = WalRcv->ready_to_display;
state = WalRcv->walRcvState;
receive_start_lsn = WalRcv->receiveStart;
receive_start_tli = WalRcv->receiveStartTLI;
received_lsn = WalRcv->receivedUpto;
received_tli = WalRcv->receivedTLI;
last_send_time = WalRcv->lastMsgSendTime;
last_receipt_time = WalRcv->lastMsgReceiptTime;
latest_end_lsn = WalRcv->latestWalEnd;
latest_end_time = WalRcv->latestWalEndTime;
strlcpy(slotname, (char *) WalRcv->slotname, sizeof(slotname));
strlcpy(sender_host, (char *) WalRcv->sender_host, sizeof(sender_host));
sender_port = WalRcv->sender_port;
strlcpy(conninfo, (char *) WalRcv->conninfo, sizeof(conninfo));
SpinLockRelease(&WalRcv->mutex);
/*
* No WAL receiver (or not ready yet), just return a tuple with NULL
* values
*/
if (pid == 0 || !ready_to_display)
PG_RETURN_NULL();
/* determine result type */
if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
elog(ERROR, "return type must be a row type");
values = palloc0(sizeof(Datum) * tupdesc->natts);
nulls = palloc0(sizeof(bool) * tupdesc->natts);
/* Fetch values */
values[0] = Int32GetDatum(pid);
if (!is_member_of_role(GetUserId(), DEFAULT_ROLE_READ_ALL_STATS))
{
/*
* Only superusers and members of pg_read_all_stats can see details.
* Other users only get the pid value to know whether it is a WAL
* receiver, but no details.
*/
MemSet(&nulls[1], true, sizeof(bool) * (tupdesc->natts - 1));
}
else
{
values[1] = CStringGetTextDatum(WalRcvGetStateString(state));
if (XLogRecPtrIsInvalid(receive_start_lsn))
nulls[2] = true;
else
values[2] = LSNGetDatum(receive_start_lsn);
values[3] = Int32GetDatum(receive_start_tli);
if (XLogRecPtrIsInvalid(received_lsn))
nulls[4] = true;
else
values[4] = LSNGetDatum(received_lsn);
values[5] = Int32GetDatum(received_tli);
if (last_send_time == 0)
nulls[6] = true;
else
values[6] = TimestampTzGetDatum(last_send_time);
if (last_receipt_time == 0)
nulls[7] = true;
else
values[7] = TimestampTzGetDatum(last_receipt_time);
if (XLogRecPtrIsInvalid(latest_end_lsn))
nulls[8] = true;
else
values[8] = LSNGetDatum(latest_end_lsn);
if (latest_end_time == 0)
nulls[9] = true;
else
values[9] = TimestampTzGetDatum(latest_end_time);
if (*slotname == '\0')
nulls[10] = true;
else
values[10] = CStringGetTextDatum(slotname);
if (*sender_host == '\0')
nulls[11] = true;
else
values[11] = CStringGetTextDatum(sender_host);
if (sender_port == 0)
nulls[12] = true;
else
values[12] = Int32GetDatum(sender_port);
if (*conninfo == '\0')
nulls[13] = true;
else
values[13] = CStringGetTextDatum(conninfo);
}
/* Returns the record as Datum */
PG_RETURN_DATUM(HeapTupleGetDatum(heap_form_tuple(tupdesc, values, nulls)));
}