postgresql/src/common/exec.c

692 lines
17 KiB
C

/*-------------------------------------------------------------------------
*
* exec.c
* Functions for finding and validating executable files
*
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/common/exec.c
*
*-------------------------------------------------------------------------
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include <signal.h>
#include <sys/stat.h>
#include <sys/wait.h>
#include <unistd.h>
/*
* Hacky solution to allow expressing both frontend and backend error reports
* in one macro call. First argument of log_error is an errcode() call of
* some sort (ignored if FRONTEND); the rest are errmsg_internal() arguments,
* i.e. message string and any parameters for it.
*
* Caller must provide the gettext wrapper around the message string, if
* appropriate, so that it gets translated in the FRONTEND case; this
* motivates using errmsg_internal() not errmsg(). We handle appending a
* newline, if needed, inside the macro, so that there's only one translatable
* string per call not two.
*/
#ifndef FRONTEND
#define log_error(errcodefn, ...) \
ereport(LOG, (errcodefn, errmsg_internal(__VA_ARGS__)))
#else
#define log_error(errcodefn, ...) \
(fprintf(stderr, __VA_ARGS__), fputc('\n', stderr))
#endif
#ifdef _MSC_VER
#define getcwd(cwd,len) GetCurrentDirectory(len, cwd)
#endif
static int resolve_symlinks(char *path);
#ifdef WIN32
static BOOL GetTokenUser(HANDLE hToken, PTOKEN_USER *ppTokenUser);
#endif
/*
* validate_exec -- validate "path" as an executable file
*
* returns 0 if the file is found and no error is encountered.
* -1 if the regular file "path" does not exist or cannot be executed.
* -2 if the file is otherwise valid but cannot be read.
*/
int
validate_exec(const char *path)
{
struct stat buf;
int is_r;
int is_x;
#ifdef WIN32
char path_exe[MAXPGPATH + sizeof(".exe") - 1];
/* Win32 requires a .exe suffix for stat() */
if (strlen(path) >= strlen(".exe") &&
pg_strcasecmp(path + strlen(path) - strlen(".exe"), ".exe") != 0)
{
strlcpy(path_exe, path, sizeof(path_exe) - 4);
strcat(path_exe, ".exe");
path = path_exe;
}
#endif
/*
* Ensure that the file exists and is a regular file.
*
* XXX if you have a broken system where stat() looks at the symlink
* instead of the underlying file, you lose.
*/
if (stat(path, &buf) < 0)
return -1;
if (!S_ISREG(buf.st_mode))
return -1;
/*
* Ensure that the file is both executable and readable (required for
* dynamic loading).
*/
#ifndef WIN32
is_r = (access(path, R_OK) == 0);
is_x = (access(path, X_OK) == 0);
#else
is_r = buf.st_mode & S_IRUSR;
is_x = buf.st_mode & S_IXUSR;
#endif
return is_x ? (is_r ? 0 : -2) : -1;
}
/*
* find_my_exec -- find an absolute path to a valid executable
*
* argv0 is the name passed on the command line
* retpath is the output area (must be of size MAXPGPATH)
* Returns 0 if OK, -1 if error.
*
* The reason we have to work so hard to find an absolute path is that
* on some platforms we can't do dynamic loading unless we know the
* executable's location. Also, we need a full path not a relative
* path because we will later change working directory. Finally, we want
* a true path not a symlink location, so that we can locate other files
* that are part of our installation relative to the executable.
*/
int
find_my_exec(const char *argv0, char *retpath)
{
char cwd[MAXPGPATH],
test_path[MAXPGPATH];
char *path;
if (!getcwd(cwd, MAXPGPATH))
{
log_error(errcode_for_file_access(),
_("could not identify current directory: %m"));
return -1;
}
/*
* If argv0 contains a separator, then PATH wasn't used.
*/
if (first_dir_separator(argv0) != NULL)
{
if (is_absolute_path(argv0))
strlcpy(retpath, argv0, MAXPGPATH);
else
join_path_components(retpath, cwd, argv0);
canonicalize_path(retpath);
if (validate_exec(retpath) == 0)
return resolve_symlinks(retpath);
log_error(errcode(ERRCODE_WRONG_OBJECT_TYPE),
_("invalid binary \"%s\""), retpath);
return -1;
}
#ifdef WIN32
/* Win32 checks the current directory first for names without slashes */
join_path_components(retpath, cwd, argv0);
if (validate_exec(retpath) == 0)
return resolve_symlinks(retpath);
#endif
/*
* Since no explicit path was supplied, the user must have been relying on
* PATH. We'll search the same PATH.
*/
if ((path = getenv("PATH")) && *path)
{
char *startp = NULL,
*endp = NULL;
do
{
if (!startp)
startp = path;
else
startp = endp + 1;
endp = first_path_var_separator(startp);
if (!endp)
endp = startp + strlen(startp); /* point to end */
strlcpy(test_path, startp, Min(endp - startp + 1, MAXPGPATH));
if (is_absolute_path(test_path))
join_path_components(retpath, test_path, argv0);
else
{
join_path_components(retpath, cwd, test_path);
join_path_components(retpath, retpath, argv0);
}
canonicalize_path(retpath);
switch (validate_exec(retpath))
{
case 0: /* found ok */
return resolve_symlinks(retpath);
case -1: /* wasn't even a candidate, keep looking */
break;
case -2: /* found but disqualified */
log_error(errcode(ERRCODE_WRONG_OBJECT_TYPE),
_("could not read binary \"%s\""),
retpath);
break;
}
} while (*endp);
}
log_error(errcode(ERRCODE_UNDEFINED_FILE),
_("could not find a \"%s\" to execute"), argv0);
return -1;
}
/*
* resolve_symlinks - resolve symlinks to the underlying file
*
* Replace "path" by the absolute path to the referenced file.
*
* Returns 0 if OK, -1 if error.
*
* Note: we are not particularly tense about producing nice error messages
* because we are not really expecting error here; we just determined that
* the symlink does point to a valid executable.
*/
static int
resolve_symlinks(char *path)
{
#ifdef HAVE_READLINK
struct stat buf;
char orig_wd[MAXPGPATH],
link_buf[MAXPGPATH];
char *fname;
/*
* To resolve a symlink properly, we have to chdir into its directory and
* then chdir to where the symlink points; otherwise we may fail to
* resolve relative links correctly (consider cases involving mount
* points, for example). After following the final symlink, we use
* getcwd() to figure out where the heck we're at.
*
* One might think we could skip all this if path doesn't point to a
* symlink to start with, but that's wrong. We also want to get rid of
* any directory symlinks that are present in the given path. We expect
* getcwd() to give us an accurate, symlink-free path.
*/
if (!getcwd(orig_wd, MAXPGPATH))
{
log_error(errcode_for_file_access(),
_("could not identify current directory: %m"));
return -1;
}
for (;;)
{
char *lsep;
int rllen;
lsep = last_dir_separator(path);
if (lsep)
{
*lsep = '\0';
if (chdir(path) == -1)
{
log_error(errcode_for_file_access(),
_("could not change directory to \"%s\": %m"), path);
return -1;
}
fname = lsep + 1;
}
else
fname = path;
if (lstat(fname, &buf) < 0 ||
!S_ISLNK(buf.st_mode))
break;
errno = 0;
rllen = readlink(fname, link_buf, sizeof(link_buf));
if (rllen < 0 || rllen >= sizeof(link_buf))
{
log_error(errcode_for_file_access(),
_("could not read symbolic link \"%s\": %m"), fname);
return -1;
}
link_buf[rllen] = '\0';
strcpy(path, link_buf);
}
/* must copy final component out of 'path' temporarily */
strlcpy(link_buf, fname, sizeof(link_buf));
if (!getcwd(path, MAXPGPATH))
{
log_error(errcode_for_file_access(),
_("could not identify current directory: %m"));
return -1;
}
join_path_components(path, path, link_buf);
canonicalize_path(path);
if (chdir(orig_wd) == -1)
{
log_error(errcode_for_file_access(),
_("could not change directory to \"%s\": %m"), orig_wd);
return -1;
}
#endif /* HAVE_READLINK */
return 0;
}
/*
* Find another program in our binary's directory,
* then make sure it is the proper version.
*/
int
find_other_exec(const char *argv0, const char *target,
const char *versionstr, char *retpath)
{
char cmd[MAXPGPATH];
char line[MAXPGPATH];
if (find_my_exec(argv0, retpath) < 0)
return -1;
/* Trim off program name and keep just directory */
*last_dir_separator(retpath) = '\0';
canonicalize_path(retpath);
/* Now append the other program's name */
snprintf(retpath + strlen(retpath), MAXPGPATH - strlen(retpath),
"/%s%s", target, EXE);
if (validate_exec(retpath) != 0)
return -1;
snprintf(cmd, sizeof(cmd), "\"%s\" -V", retpath);
if (!pipe_read_line(cmd, line, sizeof(line)))
return -1;
if (strcmp(line, versionstr) != 0)
return -2;
return 0;
}
/*
* Execute a command in a pipe and read the first line from it.
*/
char *
pipe_read_line(char *cmd, char *line, int maxsize)
{
FILE *pgver;
/* flush output buffers in case popen does not... */
fflush(stdout);
fflush(stderr);
errno = 0;
if ((pgver = popen(cmd, "r")) == NULL)
{
perror("popen failure");
return NULL;
}
errno = 0;
if (fgets(line, maxsize, pgver) == NULL)
{
if (feof(pgver))
fprintf(stderr, "no data was returned by command \"%s\"\n", cmd);
else
perror("fgets failure");
pclose(pgver); /* no error checking */
return NULL;
}
if (pclose_check(pgver))
return NULL;
return line;
}
/*
* pclose() plus useful error reporting
*/
int
pclose_check(FILE *stream)
{
int exitstatus;
char *reason;
exitstatus = pclose(stream);
if (exitstatus == 0)
return 0; /* all is well */
if (exitstatus == -1)
{
/* pclose() itself failed, and hopefully set errno */
log_error(errcode(ERRCODE_SYSTEM_ERROR),
_("pclose failed: %m"));
}
else
{
reason = wait_result_to_str(exitstatus);
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"%s", reason);
pfree(reason);
}
return exitstatus;
}
/*
* set_pglocale_pgservice
*
* Set application-specific locale and service directory
*
* This function takes the value of argv[0] rather than a full path.
*
* (You may be wondering why this is in exec.c. It requires this module's
* services and doesn't introduce any new dependencies, so this seems as
* good as anyplace.)
*/
void
set_pglocale_pgservice(const char *argv0, const char *app)
{
char path[MAXPGPATH];
char my_exec_path[MAXPGPATH];
/* don't set LC_ALL in the backend */
if (strcmp(app, PG_TEXTDOMAIN("postgres")) != 0)
{
setlocale(LC_ALL, "");
/*
* One could make a case for reproducing here PostmasterMain()'s test
* for whether the process is multithreaded. Unlike the postmaster,
* no frontend program calls sigprocmask() or otherwise provides for
* mutual exclusion between signal handlers. While frontends using
* fork(), if multithreaded, are formally exposed to undefined
* behavior, we have not witnessed a concrete bug. Therefore,
* complaining about multithreading here may be mere pedantry.
*/
}
if (find_my_exec(argv0, my_exec_path) < 0)
return;
#ifdef ENABLE_NLS
get_locale_path(my_exec_path, path);
bindtextdomain(app, path);
textdomain(app);
/* set for libpq to use, but don't override existing setting */
setenv("PGLOCALEDIR", path, 0);
#endif
if (getenv("PGSYSCONFDIR") == NULL)
{
get_etc_path(my_exec_path, path);
/* set for libpq to use */
setenv("PGSYSCONFDIR", path, 0);
}
}
#ifdef WIN32
/*
* AddUserToTokenDacl(HANDLE hToken)
*
* This function adds the current user account to the restricted
* token used when we create a restricted process.
*
* This is required because of some security changes in Windows
* that appeared in patches to XP/2K3 and in Vista/2008.
*
* On these machines, the Administrator account is not included in
* the default DACL - you just get Administrators + System. For
* regular users you get User + System. Because we strip Administrators
* when we create the restricted token, we are left with only System
* in the DACL which leads to access denied errors for later CreatePipe()
* and CreateProcess() calls when running as Administrator.
*
* This function fixes this problem by modifying the DACL of the
* token the process will use, and explicitly re-adding the current
* user account. This is still secure because the Administrator account
* inherits its privileges from the Administrators group - it doesn't
* have any of its own.
*/
BOOL
AddUserToTokenDacl(HANDLE hToken)
{
int i;
ACL_SIZE_INFORMATION asi;
ACCESS_ALLOWED_ACE *pace;
DWORD dwNewAclSize;
DWORD dwSize = 0;
DWORD dwTokenInfoLength = 0;
PACL pacl = NULL;
PTOKEN_USER pTokenUser = NULL;
TOKEN_DEFAULT_DACL tddNew;
TOKEN_DEFAULT_DACL *ptdd = NULL;
TOKEN_INFORMATION_CLASS tic = TokenDefaultDacl;
BOOL ret = FALSE;
/* Figure out the buffer size for the DACL info */
if (!GetTokenInformation(hToken, tic, (LPVOID) NULL, dwTokenInfoLength, &dwSize))
{
if (GetLastError() == ERROR_INSUFFICIENT_BUFFER)
{
ptdd = (TOKEN_DEFAULT_DACL *) LocalAlloc(LPTR, dwSize);
if (ptdd == NULL)
{
log_error(errcode(ERRCODE_OUT_OF_MEMORY),
_("out of memory"));
goto cleanup;
}
if (!GetTokenInformation(hToken, tic, (LPVOID) ptdd, dwSize, &dwSize))
{
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"could not get token information: error code %lu",
GetLastError());
goto cleanup;
}
}
else
{
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"could not get token information buffer size: error code %lu",
GetLastError());
goto cleanup;
}
}
/* Get the ACL info */
if (!GetAclInformation(ptdd->DefaultDacl, (LPVOID) &asi,
(DWORD) sizeof(ACL_SIZE_INFORMATION),
AclSizeInformation))
{
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"could not get ACL information: error code %lu",
GetLastError());
goto cleanup;
}
/* Get the current user SID */
if (!GetTokenUser(hToken, &pTokenUser))
goto cleanup; /* callee printed a message */
/* Figure out the size of the new ACL */
dwNewAclSize = asi.AclBytesInUse + sizeof(ACCESS_ALLOWED_ACE) +
GetLengthSid(pTokenUser->User.Sid) - sizeof(DWORD);
/* Allocate the ACL buffer & initialize it */
pacl = (PACL) LocalAlloc(LPTR, dwNewAclSize);
if (pacl == NULL)
{
log_error(errcode(ERRCODE_OUT_OF_MEMORY),
_("out of memory"));
goto cleanup;
}
if (!InitializeAcl(pacl, dwNewAclSize, ACL_REVISION))
{
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"could not initialize ACL: error code %lu", GetLastError());
goto cleanup;
}
/* Loop through the existing ACEs, and build the new ACL */
for (i = 0; i < (int) asi.AceCount; i++)
{
if (!GetAce(ptdd->DefaultDacl, i, (LPVOID *) &pace))
{
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"could not get ACE: error code %lu", GetLastError());
goto cleanup;
}
if (!AddAce(pacl, ACL_REVISION, MAXDWORD, pace, ((PACE_HEADER) pace)->AceSize))
{
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"could not add ACE: error code %lu", GetLastError());
goto cleanup;
}
}
/* Add the new ACE for the current user */
if (!AddAccessAllowedAceEx(pacl, ACL_REVISION, OBJECT_INHERIT_ACE, GENERIC_ALL, pTokenUser->User.Sid))
{
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"could not add access allowed ACE: error code %lu",
GetLastError());
goto cleanup;
}
/* Set the new DACL in the token */
tddNew.DefaultDacl = pacl;
if (!SetTokenInformation(hToken, tic, (LPVOID) &tddNew, dwNewAclSize))
{
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"could not set token information: error code %lu",
GetLastError());
goto cleanup;
}
ret = TRUE;
cleanup:
if (pTokenUser)
LocalFree((HLOCAL) pTokenUser);
if (pacl)
LocalFree((HLOCAL) pacl);
if (ptdd)
LocalFree((HLOCAL) ptdd);
return ret;
}
/*
* GetTokenUser(HANDLE hToken, PTOKEN_USER *ppTokenUser)
*
* Get the users token information from a process token.
*
* The caller of this function is responsible for calling LocalFree() on the
* returned TOKEN_USER memory.
*/
static BOOL
GetTokenUser(HANDLE hToken, PTOKEN_USER *ppTokenUser)
{
DWORD dwLength;
*ppTokenUser = NULL;
if (!GetTokenInformation(hToken,
TokenUser,
NULL,
0,
&dwLength))
{
if (GetLastError() == ERROR_INSUFFICIENT_BUFFER)
{
*ppTokenUser = (PTOKEN_USER) LocalAlloc(LPTR, dwLength);
if (*ppTokenUser == NULL)
{
log_error(errcode(ERRCODE_OUT_OF_MEMORY),
_("out of memory"));
return FALSE;
}
}
else
{
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"could not get token information buffer size: error code %lu",
GetLastError());
return FALSE;
}
}
if (!GetTokenInformation(hToken,
TokenUser,
*ppTokenUser,
dwLength,
&dwLength))
{
LocalFree(*ppTokenUser);
*ppTokenUser = NULL;
log_error(errcode(ERRCODE_SYSTEM_ERROR),
"could not get token information: error code %lu",
GetLastError());
return FALSE;
}
/* Memory in *ppTokenUser is LocalFree():d by the caller */
return TRUE;
}
#endif