postgresql/src/backend/statistics/extended_stats.c

1423 lines
40 KiB
C

/*-------------------------------------------------------------------------
*
* extended_stats.c
* POSTGRES extended statistics
*
* Generic code supporting statistics objects created via CREATE STATISTICS.
*
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/statistics/extended_stats.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/detoast.h"
#include "access/genam.h"
#include "access/htup_details.h"
#include "access/table.h"
#include "catalog/indexing.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_statistic_ext.h"
#include "catalog/pg_statistic_ext_data.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/optimizer.h"
#include "postmaster/autovacuum.h"
#include "statistics/extended_stats_internal.h"
#include "statistics/statistics.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/rel.h"
#include "utils/selfuncs.h"
#include "utils/syscache.h"
/*
* To avoid consuming too much memory during analysis and/or too much space
* in the resulting pg_statistic rows, we ignore varlena datums that are wider
* than WIDTH_THRESHOLD (after detoasting!). This is legitimate for MCV
* and distinct-value calculations since a wide value is unlikely to be
* duplicated at all, much less be a most-common value. For the same reason,
* ignoring wide values will not affect our estimates of histogram bin
* boundaries very much.
*/
#define WIDTH_THRESHOLD 1024
/*
* Used internally to refer to an individual statistics object, i.e.,
* a pg_statistic_ext entry.
*/
typedef struct StatExtEntry
{
Oid statOid; /* OID of pg_statistic_ext entry */
char *schema; /* statistics object's schema */
char *name; /* statistics object's name */
Bitmapset *columns; /* attribute numbers covered by the object */
List *types; /* 'char' list of enabled statistic kinds */
int stattarget; /* statistics target (-1 for default) */
} StatExtEntry;
static List *fetch_statentries_for_relation(Relation pg_statext, Oid relid);
static VacAttrStats **lookup_var_attr_stats(Relation rel, Bitmapset *attrs,
int nvacatts, VacAttrStats **vacatts);
static void statext_store(Oid relid,
MVNDistinct *ndistinct, MVDependencies *dependencies,
MCVList *mcv, VacAttrStats **stats);
static int statext_compute_stattarget(int stattarget,
int natts, VacAttrStats **stats);
/*
* Compute requested extended stats, using the rows sampled for the plain
* (single-column) stats.
*
* This fetches a list of stats types from pg_statistic_ext, computes the
* requested stats, and serializes them back into the catalog.
*/
void
BuildRelationExtStatistics(Relation onerel, double totalrows,
int numrows, HeapTuple *rows,
int natts, VacAttrStats **vacattrstats)
{
Relation pg_stext;
ListCell *lc;
List *stats;
MemoryContext cxt;
MemoryContext oldcxt;
cxt = AllocSetContextCreate(CurrentMemoryContext,
"BuildRelationExtStatistics",
ALLOCSET_DEFAULT_SIZES);
oldcxt = MemoryContextSwitchTo(cxt);
pg_stext = table_open(StatisticExtRelationId, RowExclusiveLock);
stats = fetch_statentries_for_relation(pg_stext, RelationGetRelid(onerel));
foreach(lc, stats)
{
StatExtEntry *stat = (StatExtEntry *) lfirst(lc);
MVNDistinct *ndistinct = NULL;
MVDependencies *dependencies = NULL;
MCVList *mcv = NULL;
VacAttrStats **stats;
ListCell *lc2;
int stattarget;
/*
* Check if we can build these stats based on the column analyzed. If
* not, report this fact (except in autovacuum) and move on.
*/
stats = lookup_var_attr_stats(onerel, stat->columns,
natts, vacattrstats);
if (!stats)
{
if (!IsAutoVacuumWorkerProcess())
ereport(WARNING,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("statistics object \"%s.%s\" could not be computed for relation \"%s.%s\"",
stat->schema, stat->name,
get_namespace_name(onerel->rd_rel->relnamespace),
RelationGetRelationName(onerel)),
errtable(onerel)));
continue;
}
/* check allowed number of dimensions */
Assert(bms_num_members(stat->columns) >= 2 &&
bms_num_members(stat->columns) <= STATS_MAX_DIMENSIONS);
/* compute statistics target for this statistics */
stattarget = statext_compute_stattarget(stat->stattarget,
bms_num_members(stat->columns),
stats);
/*
* Don't rebuild statistics objects with statistics target set to 0 (we
* just leave the existing values around, just like we do for regular
* per-column statistics).
*/
if (stattarget == 0)
continue;
/* compute statistic of each requested type */
foreach(lc2, stat->types)
{
char t = (char) lfirst_int(lc2);
if (t == STATS_EXT_NDISTINCT)
ndistinct = statext_ndistinct_build(totalrows, numrows, rows,
stat->columns, stats);
else if (t == STATS_EXT_DEPENDENCIES)
dependencies = statext_dependencies_build(numrows, rows,
stat->columns, stats);
else if (t == STATS_EXT_MCV)
mcv = statext_mcv_build(numrows, rows, stat->columns, stats,
totalrows, stattarget);
}
/* store the statistics in the catalog */
statext_store(stat->statOid, ndistinct, dependencies, mcv, stats);
}
table_close(pg_stext, RowExclusiveLock);
MemoryContextSwitchTo(oldcxt);
MemoryContextDelete(cxt);
}
/*
* ComputeExtStatisticsRows
* Compute number of rows required by extended statistics on a table.
*
* Computes number of rows we need to sample to build extended statistics on a
* table. This only looks at statistics we can actually build - for example
* when analyzing only some of the columns, this will skip statistics objects
* that would require additional columns.
*
* See statext_compute_stattarget for details about how we compute statistics
* target for a statistics objects (from the object target, attribute targets
* and default statistics target).
*/
int
ComputeExtStatisticsRows(Relation onerel,
int natts, VacAttrStats **vacattrstats)
{
Relation pg_stext;
ListCell *lc;
List *lstats;
MemoryContext cxt;
MemoryContext oldcxt;
int result = 0;
cxt = AllocSetContextCreate(CurrentMemoryContext,
"ComputeExtStatisticsRows",
ALLOCSET_DEFAULT_SIZES);
oldcxt = MemoryContextSwitchTo(cxt);
pg_stext = table_open(StatisticExtRelationId, RowExclusiveLock);
lstats = fetch_statentries_for_relation(pg_stext, RelationGetRelid(onerel));
foreach(lc, lstats)
{
StatExtEntry *stat = (StatExtEntry *) lfirst(lc);
int stattarget = stat->stattarget;
VacAttrStats **stats;
int nattrs = bms_num_members(stat->columns);
/*
* Check if we can build this statistics object based on the columns
* analyzed. If not, ignore it (don't report anything, we'll do that
* during the actual build BuildRelationExtStatistics).
*/
stats = lookup_var_attr_stats(onerel, stat->columns,
natts, vacattrstats);
if (!stats)
continue;
/*
* Compute statistics target, based on what's set for the statistic
* object itself, and for its attributes.
*/
stattarget = statext_compute_stattarget(stat->stattarget,
nattrs, stats);
/* Use the largest value for all statistics objects. */
if (stattarget > result)
result = stattarget;
}
table_close(pg_stext, RowExclusiveLock);
MemoryContextSwitchTo(oldcxt);
MemoryContextDelete(cxt);
/* compute sample size based on the statistics target */
return (300 * result);
}
/*
* statext_compute_stattarget
* compute statistics target for an extended statistic
*
* When computing target for extended statistics objects, we consider three
* places where the target may be set - the statistics object itself,
* attributes the statistics is defined on, and then the default statistics
* target.
*
* First we look at what's set for the statistics object itself, using the
* ALTER STATISTICS ... SET STATISTICS command. If we find a valid value
* there (i.e. not -1) we're done. Otherwise we look at targets set for any
* of the attributes the statistic is defined on, and if there are columns
* with defined target, we use the maximum value. We do this mostly for
* backwards compatibility, because this is what we did before having
* statistics target for extended statistics.
*
* And finally, if we still don't have a statistics target, we use the value
* set in default_statistics_target.
*/
static int
statext_compute_stattarget(int stattarget, int nattrs, VacAttrStats **stats)
{
int i;
/*
* If there's statistics target set for the statistics object, use it.
* It may be set to 0 which disables building of that statistic.
*/
if (stattarget >= 0)
return stattarget;
/*
* The target for the statistics object is set to -1, in which case we
* look at the maximum target set for any of the attributes the object
* is defined on.
*/
for (i = 0; i < nattrs; i++)
{
/* keep the maximmum statistics target */
if (stats[i]->attr->attstattarget > stattarget)
stattarget = stats[i]->attr->attstattarget;
}
/*
* If the value is still negative (so neither the statistics object nor
* any of the columns have custom statistics target set), use the global
* default target.
*/
if (stattarget < 0)
stattarget = default_statistics_target;
/* As this point we should have a valid statistics target. */
Assert((stattarget >= 0) && (stattarget <= 10000));
return stattarget;
}
/*
* statext_is_kind_built
* Is this stat kind built in the given pg_statistic_ext_data tuple?
*/
bool
statext_is_kind_built(HeapTuple htup, char type)
{
AttrNumber attnum;
switch (type)
{
case STATS_EXT_NDISTINCT:
attnum = Anum_pg_statistic_ext_data_stxdndistinct;
break;
case STATS_EXT_DEPENDENCIES:
attnum = Anum_pg_statistic_ext_data_stxddependencies;
break;
case STATS_EXT_MCV:
attnum = Anum_pg_statistic_ext_data_stxdmcv;
break;
default:
elog(ERROR, "unexpected statistics type requested: %d", type);
}
return !heap_attisnull(htup, attnum, NULL);
}
/*
* Return a list (of StatExtEntry) of statistics objects for the given relation.
*/
static List *
fetch_statentries_for_relation(Relation pg_statext, Oid relid)
{
SysScanDesc scan;
ScanKeyData skey;
HeapTuple htup;
List *result = NIL;
/*
* Prepare to scan pg_statistic_ext for entries having stxrelid = this
* rel.
*/
ScanKeyInit(&skey,
Anum_pg_statistic_ext_stxrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(relid));
scan = systable_beginscan(pg_statext, StatisticExtRelidIndexId, true,
NULL, 1, &skey);
while (HeapTupleIsValid(htup = systable_getnext(scan)))
{
StatExtEntry *entry;
Datum datum;
bool isnull;
int i;
ArrayType *arr;
char *enabled;
Form_pg_statistic_ext staForm;
entry = palloc0(sizeof(StatExtEntry));
staForm = (Form_pg_statistic_ext) GETSTRUCT(htup);
entry->statOid = staForm->oid;
entry->schema = get_namespace_name(staForm->stxnamespace);
entry->name = pstrdup(NameStr(staForm->stxname));
entry->stattarget = staForm->stxstattarget;
for (i = 0; i < staForm->stxkeys.dim1; i++)
{
entry->columns = bms_add_member(entry->columns,
staForm->stxkeys.values[i]);
}
/* decode the stxkind char array into a list of chars */
datum = SysCacheGetAttr(STATEXTOID, htup,
Anum_pg_statistic_ext_stxkind, &isnull);
Assert(!isnull);
arr = DatumGetArrayTypeP(datum);
if (ARR_NDIM(arr) != 1 ||
ARR_HASNULL(arr) ||
ARR_ELEMTYPE(arr) != CHAROID)
elog(ERROR, "stxkind is not a 1-D char array");
enabled = (char *) ARR_DATA_PTR(arr);
for (i = 0; i < ARR_DIMS(arr)[0]; i++)
{
Assert((enabled[i] == STATS_EXT_NDISTINCT) ||
(enabled[i] == STATS_EXT_DEPENDENCIES) ||
(enabled[i] == STATS_EXT_MCV));
entry->types = lappend_int(entry->types, (int) enabled[i]);
}
result = lappend(result, entry);
}
systable_endscan(scan);
return result;
}
/*
* Using 'vacatts' of size 'nvacatts' as input data, return a newly built
* VacAttrStats array which includes only the items corresponding to
* attributes indicated by 'stxkeys'. If we don't have all of the per column
* stats available to compute the extended stats, then we return NULL to indicate
* to the caller that the stats should not be built.
*/
static VacAttrStats **
lookup_var_attr_stats(Relation rel, Bitmapset *attrs,
int nvacatts, VacAttrStats **vacatts)
{
int i = 0;
int x = -1;
VacAttrStats **stats;
stats = (VacAttrStats **)
palloc(bms_num_members(attrs) * sizeof(VacAttrStats *));
/* lookup VacAttrStats info for the requested columns (same attnum) */
while ((x = bms_next_member(attrs, x)) >= 0)
{
int j;
stats[i] = NULL;
for (j = 0; j < nvacatts; j++)
{
if (x == vacatts[j]->tupattnum)
{
stats[i] = vacatts[j];
break;
}
}
if (!stats[i])
{
/*
* Looks like stats were not gathered for one of the columns
* required. We'll be unable to build the extended stats without
* this column.
*/
pfree(stats);
return NULL;
}
/*
* Sanity check that the column is not dropped - stats should have
* been removed in this case.
*/
Assert(!stats[i]->attr->attisdropped);
i++;
}
return stats;
}
/*
* statext_store
* Serializes the statistics and stores them into the pg_statistic_ext_data
* tuple.
*/
static void
statext_store(Oid statOid,
MVNDistinct *ndistinct, MVDependencies *dependencies,
MCVList *mcv, VacAttrStats **stats)
{
HeapTuple stup,
oldtup;
Datum values[Natts_pg_statistic_ext_data];
bool nulls[Natts_pg_statistic_ext_data];
bool replaces[Natts_pg_statistic_ext_data];
Relation pg_stextdata;
memset(nulls, true, sizeof(nulls));
memset(replaces, false, sizeof(replaces));
memset(values, 0, sizeof(values));
/*
* Construct a new pg_statistic_ext_data tuple, replacing the calculated
* stats.
*/
if (ndistinct != NULL)
{
bytea *data = statext_ndistinct_serialize(ndistinct);
nulls[Anum_pg_statistic_ext_data_stxdndistinct - 1] = (data == NULL);
values[Anum_pg_statistic_ext_data_stxdndistinct - 1] = PointerGetDatum(data);
}
if (dependencies != NULL)
{
bytea *data = statext_dependencies_serialize(dependencies);
nulls[Anum_pg_statistic_ext_data_stxddependencies - 1] = (data == NULL);
values[Anum_pg_statistic_ext_data_stxddependencies - 1] = PointerGetDatum(data);
}
if (mcv != NULL)
{
bytea *data = statext_mcv_serialize(mcv, stats);
nulls[Anum_pg_statistic_ext_data_stxdmcv - 1] = (data == NULL);
values[Anum_pg_statistic_ext_data_stxdmcv - 1] = PointerGetDatum(data);
}
/* always replace the value (either by bytea or NULL) */
replaces[Anum_pg_statistic_ext_data_stxdndistinct - 1] = true;
replaces[Anum_pg_statistic_ext_data_stxddependencies - 1] = true;
replaces[Anum_pg_statistic_ext_data_stxdmcv - 1] = true;
/* there should already be a pg_statistic_ext_data tuple */
oldtup = SearchSysCache1(STATEXTDATASTXOID, ObjectIdGetDatum(statOid));
if (!HeapTupleIsValid(oldtup))
elog(ERROR, "cache lookup failed for statistics object %u", statOid);
/* replace it */
pg_stextdata = table_open(StatisticExtDataRelationId, RowExclusiveLock);
stup = heap_modify_tuple(oldtup,
RelationGetDescr(pg_stextdata),
values,
nulls,
replaces);
ReleaseSysCache(oldtup);
CatalogTupleUpdate(pg_stextdata, &stup->t_self, stup);
heap_freetuple(stup);
table_close(pg_stextdata, RowExclusiveLock);
}
/* initialize multi-dimensional sort */
MultiSortSupport
multi_sort_init(int ndims)
{
MultiSortSupport mss;
Assert(ndims >= 2);
mss = (MultiSortSupport) palloc0(offsetof(MultiSortSupportData, ssup)
+ sizeof(SortSupportData) * ndims);
mss->ndims = ndims;
return mss;
}
/*
* Prepare sort support info using the given sort operator and collation
* at the position 'sortdim'
*/
void
multi_sort_add_dimension(MultiSortSupport mss, int sortdim,
Oid oper, Oid collation)
{
SortSupport ssup = &mss->ssup[sortdim];
ssup->ssup_cxt = CurrentMemoryContext;
ssup->ssup_collation = collation;
ssup->ssup_nulls_first = false;
PrepareSortSupportFromOrderingOp(oper, ssup);
}
/* compare all the dimensions in the selected order */
int
multi_sort_compare(const void *a, const void *b, void *arg)
{
MultiSortSupport mss = (MultiSortSupport) arg;
SortItem *ia = (SortItem *) a;
SortItem *ib = (SortItem *) b;
int i;
for (i = 0; i < mss->ndims; i++)
{
int compare;
compare = ApplySortComparator(ia->values[i], ia->isnull[i],
ib->values[i], ib->isnull[i],
&mss->ssup[i]);
if (compare != 0)
return compare;
}
/* equal by default */
return 0;
}
/* compare selected dimension */
int
multi_sort_compare_dim(int dim, const SortItem *a, const SortItem *b,
MultiSortSupport mss)
{
return ApplySortComparator(a->values[dim], a->isnull[dim],
b->values[dim], b->isnull[dim],
&mss->ssup[dim]);
}
int
multi_sort_compare_dims(int start, int end,
const SortItem *a, const SortItem *b,
MultiSortSupport mss)
{
int dim;
for (dim = start; dim <= end; dim++)
{
int r = ApplySortComparator(a->values[dim], a->isnull[dim],
b->values[dim], b->isnull[dim],
&mss->ssup[dim]);
if (r != 0)
return r;
}
return 0;
}
int
compare_scalars_simple(const void *a, const void *b, void *arg)
{
return compare_datums_simple(*(Datum *) a,
*(Datum *) b,
(SortSupport) arg);
}
int
compare_datums_simple(Datum a, Datum b, SortSupport ssup)
{
return ApplySortComparator(a, false, b, false, ssup);
}
/* simple counterpart to qsort_arg */
void *
bsearch_arg(const void *key, const void *base, size_t nmemb, size_t size,
int (*compar) (const void *, const void *, void *),
void *arg)
{
size_t l,
u,
idx;
const void *p;
int comparison;
l = 0;
u = nmemb;
while (l < u)
{
idx = (l + u) / 2;
p = (void *) (((const char *) base) + (idx * size));
comparison = (*compar) (key, p, arg);
if (comparison < 0)
u = idx;
else if (comparison > 0)
l = idx + 1;
else
return (void *) p;
}
return NULL;
}
/*
* build_attnums_array
* Transforms a bitmap into an array of AttrNumber values.
*
* This is used for extended statistics only, so all the attribute must be
* user-defined. That means offsetting by FirstLowInvalidHeapAttributeNumber
* is not necessary here (and when querying the bitmap).
*/
AttrNumber *
build_attnums_array(Bitmapset *attrs, int *numattrs)
{
int i,
j;
AttrNumber *attnums;
int num = bms_num_members(attrs);
if (numattrs)
*numattrs = num;
/* build attnums from the bitmapset */
attnums = (AttrNumber *) palloc(sizeof(AttrNumber) * num);
i = 0;
j = -1;
while ((j = bms_next_member(attrs, j)) >= 0)
{
/*
* Make sure the bitmap contains only user-defined attributes. As
* bitmaps can't contain negative values, this can be violated in two
* ways. Firstly, the bitmap might contain 0 as a member, and secondly
* the integer value might be larger than MaxAttrNumber.
*/
Assert(AttrNumberIsForUserDefinedAttr(j));
Assert(j <= MaxAttrNumber);
attnums[i++] = (AttrNumber) j;
/* protect against overflows */
Assert(i <= num);
}
return attnums;
}
/*
* build_sorted_items
* build a sorted array of SortItem with values from rows
*
* Note: All the memory is allocated in a single chunk, so that the caller
* can simply pfree the return value to release all of it.
*/
SortItem *
build_sorted_items(int numrows, int *nitems, HeapTuple *rows, TupleDesc tdesc,
MultiSortSupport mss, int numattrs, AttrNumber *attnums)
{
int i,
j,
len,
idx;
int nvalues = numrows * numattrs;
SortItem *items;
Datum *values;
bool *isnull;
char *ptr;
/* Compute the total amount of memory we need (both items and values). */
len = numrows * sizeof(SortItem) + nvalues * (sizeof(Datum) + sizeof(bool));
/* Allocate the memory and split it into the pieces. */
ptr = palloc0(len);
/* items to sort */
items = (SortItem *) ptr;
ptr += numrows * sizeof(SortItem);
/* values and null flags */
values = (Datum *) ptr;
ptr += nvalues * sizeof(Datum);
isnull = (bool *) ptr;
ptr += nvalues * sizeof(bool);
/* make sure we consumed the whole buffer exactly */
Assert((ptr - (char *) items) == len);
/* fix the pointers to Datum and bool arrays */
idx = 0;
for (i = 0; i < numrows; i++)
{
bool toowide = false;
items[idx].values = &values[idx * numattrs];
items[idx].isnull = &isnull[idx * numattrs];
/* load the values/null flags from sample rows */
for (j = 0; j < numattrs; j++)
{
Datum value;
bool isnull;
value = heap_getattr(rows[i], attnums[j], tdesc, &isnull);
/*
* If this is a varlena value, check if it's too wide and if yes
* then skip the whole item. Otherwise detoast the value.
*
* XXX It may happen that we've already detoasted some preceding
* values for the current item. We don't bother to cleanup those
* on the assumption that those are small (below WIDTH_THRESHOLD)
* and will be discarded at the end of analyze.
*/
if ((!isnull) &&
(TupleDescAttr(tdesc, attnums[j] - 1)->attlen == -1))
{
if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
{
toowide = true;
break;
}
value = PointerGetDatum(PG_DETOAST_DATUM(value));
}
items[idx].values[j] = value;
items[idx].isnull[j] = isnull;
}
if (toowide)
continue;
idx++;
}
/* store the actual number of items (ignoring the too-wide ones) */
*nitems = idx;
/* all items were too wide */
if (idx == 0)
{
/* everything is allocated as a single chunk */
pfree(items);
return NULL;
}
/* do the sort, using the multi-sort */
qsort_arg((void *) items, idx, sizeof(SortItem),
multi_sort_compare, mss);
return items;
}
/*
* has_stats_of_kind
* Check whether the list contains statistic of a given kind
*/
bool
has_stats_of_kind(List *stats, char requiredkind)
{
ListCell *l;
foreach(l, stats)
{
StatisticExtInfo *stat = (StatisticExtInfo *) lfirst(l);
if (stat->kind == requiredkind)
return true;
}
return false;
}
/*
* choose_best_statistics
* Look for and return statistics with the specified 'requiredkind' which
* have keys that match at least two of the given attnums. Return NULL if
* there's no match.
*
* The current selection criteria is very simple - we choose the statistics
* object referencing the most attributes in covered (and still unestimated
* clauses), breaking ties in favor of objects with fewer keys overall.
*
* The clause_attnums is an array of bitmaps, storing attnums for individual
* clauses. A NULL element means the clause is either incompatible or already
* estimated.
*
* XXX If multiple statistics objects tie on both criteria, then which object
* is chosen depends on the order that they appear in the stats list. Perhaps
* further tiebreakers are needed.
*/
StatisticExtInfo *
choose_best_statistics(List *stats, char requiredkind,
Bitmapset **clause_attnums, int nclauses)
{
ListCell *lc;
StatisticExtInfo *best_match = NULL;
int best_num_matched = 2; /* goal #1: maximize */
int best_match_keys = (STATS_MAX_DIMENSIONS + 1); /* goal #2: minimize */
foreach(lc, stats)
{
int i;
StatisticExtInfo *info = (StatisticExtInfo *) lfirst(lc);
Bitmapset *matched = NULL;
int num_matched;
int numkeys;
/* skip statistics that are not of the correct type */
if (info->kind != requiredkind)
continue;
/*
* Collect attributes in remaining (unestimated) clauses fully covered
* by this statistic object.
*/
for (i = 0; i < nclauses; i++)
{
/* ignore incompatible/estimated clauses */
if (!clause_attnums[i])
continue;
/* ignore clauses that are not covered by this object */
if (!bms_is_subset(clause_attnums[i], info->keys))
continue;
matched = bms_add_members(matched, clause_attnums[i]);
}
num_matched = bms_num_members(matched);
bms_free(matched);
/*
* save the actual number of keys in the stats so that we can choose
* the narrowest stats with the most matching keys.
*/
numkeys = bms_num_members(info->keys);
/*
* Use this object when it increases the number of matched clauses or
* when it matches the same number of attributes but these stats have
* fewer keys than any previous match.
*/
if (num_matched > best_num_matched ||
(num_matched == best_num_matched && numkeys < best_match_keys))
{
best_match = info;
best_num_matched = num_matched;
best_match_keys = numkeys;
}
}
return best_match;
}
/*
* statext_is_compatible_clause_internal
* Determines if the clause is compatible with MCV lists.
*
* Does the heavy lifting of actually inspecting the clauses for
* statext_is_compatible_clause. It needs to be split like this because
* of recursion. The attnums bitmap is an input/output parameter collecting
* attribute numbers from all compatible clauses (recursively).
*/
static bool
statext_is_compatible_clause_internal(PlannerInfo *root, Node *clause,
Index relid, Bitmapset **attnums)
{
/* Look inside any binary-compatible relabeling (as in examine_variable) */
if (IsA(clause, RelabelType))
clause = (Node *) ((RelabelType *) clause)->arg;
/* plain Var references (boolean Vars or recursive checks) */
if (IsA(clause, Var))
{
Var *var = (Var *) clause;
/* Ensure var is from the correct relation */
if (var->varno != relid)
return false;
/* we also better ensure the Var is from the current level */
if (var->varlevelsup > 0)
return false;
/* Also skip system attributes (we don't allow stats on those). */
if (!AttrNumberIsForUserDefinedAttr(var->varattno))
return false;
*attnums = bms_add_member(*attnums, var->varattno);
return true;
}
/* (Var op Const) or (Const op Var) */
if (is_opclause(clause))
{
RangeTblEntry *rte = root->simple_rte_array[relid];
OpExpr *expr = (OpExpr *) clause;
Var *var;
/* Only expressions with two arguments are considered compatible. */
if (list_length(expr->args) != 2)
return false;
/* Check if the expression the right shape (one Var, one Const) */
if (!examine_opclause_expression(expr, &var, NULL, NULL))
return false;
/*
* If it's not one of the supported operators ("=", "<", ">", etc.),
* just ignore the clause, as it's not compatible with MCV lists.
*
* This uses the function for estimating selectivity, not the operator
* directly (a bit awkward, but well ...).
*/
switch (get_oprrest(expr->opno))
{
case F_EQSEL:
case F_NEQSEL:
case F_SCALARLTSEL:
case F_SCALARLESEL:
case F_SCALARGTSEL:
case F_SCALARGESEL:
/* supported, will continue with inspection of the Var */
break;
default:
/* other estimators are considered unknown/unsupported */
return false;
}
/*
* If there are any securityQuals on the RTE from security barrier
* views or RLS policies, then the user may not have access to all the
* table's data, and we must check that the operator is leak-proof.
*
* If the operator is leaky, then we must ignore this clause for the
* purposes of estimating with MCV lists, otherwise the operator might
* reveal values from the MCV list that the user doesn't have
* permission to see.
*/
if (rte->securityQuals != NIL &&
!get_func_leakproof(get_opcode(expr->opno)))
return false;
return statext_is_compatible_clause_internal(root, (Node *) var,
relid, attnums);
}
/* AND/OR/NOT clause */
if (is_andclause(clause) ||
is_orclause(clause) ||
is_notclause(clause))
{
/*
* AND/OR/NOT-clauses are supported if all sub-clauses are supported
*
* Perhaps we could improve this by handling mixed cases, when some of
* the clauses are supported and some are not. Selectivity for the
* supported subclauses would be computed using extended statistics,
* and the remaining clauses would be estimated using the traditional
* algorithm (product of selectivities).
*
* It however seems overly complex, and in a way we already do that
* because if we reject the whole clause as unsupported here, it will
* be eventually passed to clauselist_selectivity() which does exactly
* this (split into supported/unsupported clauses etc).
*/
BoolExpr *expr = (BoolExpr *) clause;
ListCell *lc;
foreach(lc, expr->args)
{
/*
* Had we found incompatible clause in the arguments, treat the
* whole clause as incompatible.
*/
if (!statext_is_compatible_clause_internal(root,
(Node *) lfirst(lc),
relid, attnums))
return false;
}
return true;
}
/* Var IS NULL */
if (IsA(clause, NullTest))
{
NullTest *nt = (NullTest *) clause;
/*
* Only simple (Var IS NULL) expressions supported for now. Maybe we
* could use examine_variable to fix this?
*/
if (!IsA(nt->arg, Var))
return false;
return statext_is_compatible_clause_internal(root, (Node *) (nt->arg),
relid, attnums);
}
return false;
}
/*
* statext_is_compatible_clause
* Determines if the clause is compatible with MCV lists.
*
* Currently, we only support three types of clauses:
*
* (a) OpExprs of the form (Var op Const), or (Const op Var), where the op
* is one of ("=", "<", ">", ">=", "<=")
*
* (b) (Var IS [NOT] NULL)
*
* (c) combinations using AND/OR/NOT
*
* In the future, the range of supported clauses may be expanded to more
* complex cases, for example (Var op Var).
*/
static bool
statext_is_compatible_clause(PlannerInfo *root, Node *clause, Index relid,
Bitmapset **attnums)
{
RangeTblEntry *rte = root->simple_rte_array[relid];
RestrictInfo *rinfo = (RestrictInfo *) clause;
Oid userid;
if (!IsA(rinfo, RestrictInfo))
return false;
/* Pseudoconstants are not really interesting here. */
if (rinfo->pseudoconstant)
return false;
/* clauses referencing multiple varnos are incompatible */
if (bms_membership(rinfo->clause_relids) != BMS_SINGLETON)
return false;
/* Check the clause and determine what attributes it references. */
if (!statext_is_compatible_clause_internal(root, (Node *) rinfo->clause,
relid, attnums))
return false;
/*
* Check that the user has permission to read all these attributes. Use
* checkAsUser if it's set, in case we're accessing the table via a view.
*/
userid = rte->checkAsUser ? rte->checkAsUser : GetUserId();
if (pg_class_aclcheck(rte->relid, userid, ACL_SELECT) != ACLCHECK_OK)
{
/* Don't have table privilege, must check individual columns */
if (bms_is_member(InvalidAttrNumber, *attnums))
{
/* Have a whole-row reference, must have access to all columns */
if (pg_attribute_aclcheck_all(rte->relid, userid, ACL_SELECT,
ACLMASK_ALL) != ACLCHECK_OK)
return false;
}
else
{
/* Check the columns referenced by the clause */
int attnum = -1;
while ((attnum = bms_next_member(*attnums, attnum)) >= 0)
{
if (pg_attribute_aclcheck(rte->relid, attnum, userid,
ACL_SELECT) != ACLCHECK_OK)
return false;
}
}
}
/* If we reach here, the clause is OK */
return true;
}
/*
* statext_mcv_clauselist_selectivity
* Estimate clauses using the best multi-column statistics.
*
* Applies available extended (multi-column) statistics on a table. There may
* be multiple applicable statistics (with respect to the clauses), in which
* case we use greedy approach. In each round we select the best statistic on
* a table (measured by the number of attributes extracted from the clauses
* and covered by it), and compute the selectivity for the supplied clauses.
* We repeat this process with the remaining clauses (if any), until none of
* the available statistics can be used.
*
* One of the main challenges with using MCV lists is how to extrapolate the
* estimate to the data not covered by the MCV list. To do that, we compute
* not only the "MCV selectivity" (selectivities for MCV items matching the
* supplied clauses), but also a couple of derived selectivities:
*
* - simple selectivity: Computed without extended statistic, i.e. as if the
* columns/clauses were independent
*
* - base selectivity: Similar to simple selectivity, but is computed using
* the extended statistic by adding up the base frequencies (that we compute
* and store for each MCV item) of matching MCV items.
*
* - total selectivity: Selectivity covered by the whole MCV list.
*
* - other selectivity: A selectivity estimate for data not covered by the MCV
* list (i.e. satisfying the clauses, but not common enough to make it into
* the MCV list)
*
* Note: While simple and base selectivities are defined in a quite similar
* way, the values are computed differently and are not therefore equal. The
* simple selectivity is computed as a product of per-clause estimates, while
* the base selectivity is computed by adding up base frequencies of matching
* items of the multi-column MCV list. So the values may differ for two main
* reasons - (a) the MCV list may not cover 100% of the data and (b) some of
* the MCV items did not match the estimated clauses.
*
* As both (a) and (b) reduce the base selectivity value, it generally holds
* that (simple_selectivity >= base_selectivity). If the MCV list covers all
* the data, the values may be equal.
*
* So, (simple_selectivity - base_selectivity) is an estimate for the part
* not covered by the MCV list, and (mcv_selectivity - base_selectivity) may
* be seen as a correction for the part covered by the MCV list. Those two
* statements are actually equivalent.
*
* Note: Due to rounding errors and minor differences in how the estimates
* are computed, the inequality may not always hold. Which is why we clamp
* the selectivities to prevent strange estimate (negative etc.).
*
* 'estimatedclauses' is an input/output parameter. We set bits for the
* 0-based 'clauses' indexes we estimate for and also skip clause items that
* already have a bit set.
*/
static Selectivity
statext_mcv_clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid,
JoinType jointype, SpecialJoinInfo *sjinfo,
RelOptInfo *rel, Bitmapset **estimatedclauses)
{
ListCell *l;
Bitmapset **list_attnums;
int listidx;
Selectivity sel = 1.0;
/* check if there's any stats that might be useful for us. */
if (!has_stats_of_kind(rel->statlist, STATS_EXT_MCV))
return 1.0;
list_attnums = (Bitmapset **) palloc(sizeof(Bitmapset *) *
list_length(clauses));
/*
* Pre-process the clauses list to extract the attnums seen in each item.
* We need to determine if there's any clauses which will be useful for
* selectivity estimations with extended stats. Along the way we'll record
* all of the attnums for each clause in a list which we'll reference
* later so we don't need to repeat the same work again. We'll also keep
* track of all attnums seen.
*
* We also skip clauses that we already estimated using different types of
* statistics (we treat them as incompatible).
*/
listidx = 0;
foreach(l, clauses)
{
Node *clause = (Node *) lfirst(l);
Bitmapset *attnums = NULL;
if (!bms_is_member(listidx, *estimatedclauses) &&
statext_is_compatible_clause(root, clause, rel->relid, &attnums))
list_attnums[listidx] = attnums;
else
list_attnums[listidx] = NULL;
listidx++;
}
/* apply as many extended statistics as possible */
while (true)
{
StatisticExtInfo *stat;
List *stat_clauses;
Selectivity simple_sel,
mcv_sel,
mcv_basesel,
mcv_totalsel,
other_sel,
stat_sel;
/* find the best suited statistics object for these attnums */
stat = choose_best_statistics(rel->statlist, STATS_EXT_MCV,
list_attnums, list_length(clauses));
/* if no (additional) matching stats could be found then we've nothing to do */
if (!stat)
break;
/* Ensure choose_best_statistics produced an expected stats type. */
Assert(stat->kind == STATS_EXT_MCV);
/* now filter the clauses to be estimated using the selected MCV */
stat_clauses = NIL;
listidx = 0;
foreach(l, clauses)
{
/*
* If the clause is compatible with the selected statistics, mark it
* as estimated and add it to the list to estimate.
*/
if (list_attnums[listidx] != NULL &&
bms_is_subset(list_attnums[listidx], stat->keys))
{
stat_clauses = lappend(stat_clauses, (Node *) lfirst(l));
*estimatedclauses = bms_add_member(*estimatedclauses, listidx);
bms_free(list_attnums[listidx]);
list_attnums[listidx] = NULL;
}
listidx++;
}
/*
* First compute "simple" selectivity, i.e. without the extended
* statistics, and essentially assuming independence of the
* columns/clauses. We'll then use the various selectivities computed from
* MCV list to improve it.
*/
simple_sel = clauselist_selectivity_simple(root, stat_clauses, varRelid,
jointype, sjinfo, NULL);
/*
* Now compute the multi-column estimate from the MCV list, along with the
* other selectivities (base & total selectivity).
*/
mcv_sel = mcv_clauselist_selectivity(root, stat, stat_clauses, varRelid,
jointype, sjinfo, rel,
&mcv_basesel, &mcv_totalsel);
/* Estimated selectivity of values not covered by MCV matches */
other_sel = simple_sel - mcv_basesel;
CLAMP_PROBABILITY(other_sel);
/* The non-MCV selectivity can't exceed the 1 - mcv_totalsel. */
if (other_sel > 1.0 - mcv_totalsel)
other_sel = 1.0 - mcv_totalsel;
/* Overall selectivity is the combination of MCV and non-MCV estimates. */
stat_sel = mcv_sel + other_sel;
CLAMP_PROBABILITY(stat_sel);
/* Factor the estimate from this MCV to the oveall estimate. */
sel *= stat_sel;
}
return sel;
}
/*
* statext_clauselist_selectivity
* Estimate clauses using the best multi-column statistics.
*/
Selectivity
statext_clauselist_selectivity(PlannerInfo *root, List *clauses, int varRelid,
JoinType jointype, SpecialJoinInfo *sjinfo,
RelOptInfo *rel, Bitmapset **estimatedclauses)
{
Selectivity sel;
/* First, try estimating clauses using a multivariate MCV list. */
sel = statext_mcv_clauselist_selectivity(root, clauses, varRelid, jointype,
sjinfo, rel, estimatedclauses);
/*
* Then, apply functional dependencies on the remaining clauses by calling
* dependencies_clauselist_selectivity. Pass 'estimatedclauses' so the
* function can properly skip clauses already estimated above.
*
* The reasoning for applying dependencies last is that the more complex
* stats can track more complex correlations between the attributes, and
* so may be considered more reliable.
*
* For example, MCV list can give us an exact selectivity for values in
* two columns, while functional dependencies can only provide information
* about the overall strength of the dependency.
*/
sel *= dependencies_clauselist_selectivity(root, clauses, varRelid,
jointype, sjinfo, rel,
estimatedclauses);
return sel;
}
/*
* examine_opclause_expression
* Split expression into Var and Const parts.
*
* Attempts to match the arguments to either (Var op Const) or (Const op Var),
* possibly with a RelabelType on top. When the expression matches this form,
* returns true, otherwise returns false.
*
* Optionally returns pointers to the extracted Var/Const nodes, when passed
* non-null pointers (varp, cstp and varonleftp). The varonleftp flag specifies
* on which side of the operator we found the Var node.
*/
bool
examine_opclause_expression(OpExpr *expr, Var **varp, Const **cstp, bool *varonleftp)
{
Var *var;
Const *cst;
bool varonleft;
Node *leftop,
*rightop;
/* enforced by statext_is_compatible_clause_internal */
Assert(list_length(expr->args) == 2);
leftop = linitial(expr->args);
rightop = lsecond(expr->args);
/* strip RelabelType from either side of the expression */
if (IsA(leftop, RelabelType))
leftop = (Node *) ((RelabelType *) leftop)->arg;
if (IsA(rightop, RelabelType))
rightop = (Node *) ((RelabelType *) rightop)->arg;
if (IsA(leftop, Var) && IsA(rightop, Const))
{
var = (Var *) leftop;
cst = (Const *) rightop;
varonleft = true;
}
else if (IsA(leftop, Const) && IsA(rightop, Var))
{
var = (Var *) rightop;
cst = (Const *) leftop;
varonleft = false;
}
else
return false;
/* return pointers to the extracted parts if requested */
if (varp)
*varp = var;
if (cstp)
*cstp = cst;
if (varonleftp)
*varonleftp = varonleft;
return true;
}