postgresql/src/backend/utils/adt/timestamp.c

5555 lines
135 KiB
C

/*-------------------------------------------------------------------------
*
* timestamp.c
* Functions for the built-in SQL types "timestamp" and "interval".
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/utils/adt/timestamp.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <math.h>
#include <limits.h>
#include <sys/time.h>
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "common/int128.h"
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "nodes/supportnodes.h"
#include "parser/scansup.h"
#include "utils/array.h"
#include "utils/builtins.h"
#include "utils/datetime.h"
#include "utils/float.h"
/*
* gcc's -ffast-math switch breaks routines that expect exact results from
* expressions like timeval / SECS_PER_HOUR, where timeval is double.
*/
#ifdef __FAST_MATH__
#error -ffast-math is known to break this code
#endif
#define SAMESIGN(a,b) (((a) < 0) == ((b) < 0))
/* Set at postmaster start */
TimestampTz PgStartTime;
/* Set at configuration reload */
TimestampTz PgReloadTime;
typedef struct
{
Timestamp current;
Timestamp finish;
Interval step;
int step_sign;
} generate_series_timestamp_fctx;
typedef struct
{
TimestampTz current;
TimestampTz finish;
Interval step;
int step_sign;
} generate_series_timestamptz_fctx;
static TimeOffset time2t(const int hour, const int min, const int sec, const fsec_t fsec);
static Timestamp dt2local(Timestamp dt, int timezone);
static void AdjustIntervalForTypmod(Interval *interval, int32 typmod);
static TimestampTz timestamp2timestamptz(Timestamp timestamp);
static Timestamp timestamptz2timestamp(TimestampTz timestamp);
/* common code for timestamptypmodin and timestamptztypmodin */
static int32
anytimestamp_typmodin(bool istz, ArrayType *ta)
{
int32 *tl;
int n;
tl = ArrayGetIntegerTypmods(ta, &n);
/*
* we're not too tense about good error message here because grammar
* shouldn't allow wrong number of modifiers for TIMESTAMP
*/
if (n != 1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid type modifier")));
return anytimestamp_typmod_check(istz, tl[0]);
}
/* exported so parse_expr.c can use it */
int32
anytimestamp_typmod_check(bool istz, int32 typmod)
{
if (typmod < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("TIMESTAMP(%d)%s precision must not be negative",
typmod, (istz ? " WITH TIME ZONE" : ""))));
if (typmod > MAX_TIMESTAMP_PRECISION)
{
ereport(WARNING,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("TIMESTAMP(%d)%s precision reduced to maximum allowed, %d",
typmod, (istz ? " WITH TIME ZONE" : ""),
MAX_TIMESTAMP_PRECISION)));
typmod = MAX_TIMESTAMP_PRECISION;
}
return typmod;
}
/* common code for timestamptypmodout and timestamptztypmodout */
static char *
anytimestamp_typmodout(bool istz, int32 typmod)
{
const char *tz = istz ? " with time zone" : " without time zone";
if (typmod >= 0)
return psprintf("(%d)%s", (int) typmod, tz);
else
return psprintf("%s", tz);
}
/*****************************************************************************
* USER I/O ROUTINES *
*****************************************************************************/
/* timestamp_in()
* Convert a string to internal form.
*/
Datum
timestamp_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Timestamp result;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
int tz;
int dtype;
int nf;
int dterr;
char *field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS];
char workbuf[MAXDATELEN + MAXDATEFIELDS];
dterr = ParseDateTime(str, workbuf, sizeof(workbuf),
field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz);
if (dterr != 0)
DateTimeParseError(dterr, str, "timestamp");
switch (dtype)
{
case DTK_DATE:
if (tm2timestamp(tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: \"%s\"", str)));
break;
case DTK_EPOCH:
result = SetEpochTimestamp();
break;
case DTK_LATE:
TIMESTAMP_NOEND(result);
break;
case DTK_EARLY:
TIMESTAMP_NOBEGIN(result);
break;
default:
elog(ERROR, "unexpected dtype %d while parsing timestamp \"%s\"",
dtype, str);
TIMESTAMP_NOEND(result);
}
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMP(result);
}
/* timestamp_out()
* Convert a timestamp to external form.
*/
Datum
timestamp_out(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
char *result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
char buf[MAXDATELEN + 1];
if (TIMESTAMP_NOT_FINITE(timestamp))
EncodeSpecialTimestamp(timestamp, buf);
else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) == 0)
EncodeDateTime(tm, fsec, false, 0, NULL, DateStyle, buf);
else
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* timestamp_recv - converts external binary format to timestamp
*/
Datum
timestamp_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Timestamp timestamp;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
timestamp = (Timestamp) pq_getmsgint64(buf);
/* range check: see if timestamp_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
/* ok */ ;
else if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0 ||
!IS_VALID_TIMESTAMP(timestamp))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
AdjustTimestampForTypmod(&timestamp, typmod);
PG_RETURN_TIMESTAMP(timestamp);
}
/*
* timestamp_send - converts timestamp to binary format
*/
Datum
timestamp_send(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint64(&buf, timestamp);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Datum
timestamptypmodin(PG_FUNCTION_ARGS)
{
ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0);
PG_RETURN_INT32(anytimestamp_typmodin(false, ta));
}
Datum
timestamptypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
PG_RETURN_CSTRING(anytimestamp_typmodout(false, typmod));
}
/*
* timestamp_support()
*
* Planner support function for the timestamp_scale() and timestamptz_scale()
* length coercion functions (we need not distinguish them here).
*/
Datum
timestamp_support(PG_FUNCTION_ARGS)
{
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
Node *ret = NULL;
if (IsA(rawreq, SupportRequestSimplify))
{
SupportRequestSimplify *req = (SupportRequestSimplify *) rawreq;
ret = TemporalSimplify(MAX_TIMESTAMP_PRECISION, (Node *) req->fcall);
}
PG_RETURN_POINTER(ret);
}
/* timestamp_scale()
* Adjust time type for specified scale factor.
* Used by PostgreSQL type system to stuff columns.
*/
Datum
timestamp_scale(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
int32 typmod = PG_GETARG_INT32(1);
Timestamp result;
result = timestamp;
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMP(result);
}
/*
* AdjustTimestampForTypmodError --- round off a timestamp to suit given typmod
* Works for either timestamp or timestamptz.
*/
bool
AdjustTimestampForTypmodError(Timestamp *time, int32 typmod, bool *error)
{
static const int64 TimestampScales[MAX_TIMESTAMP_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
INT64CONST(10000),
INT64CONST(1000),
INT64CONST(100),
INT64CONST(10),
INT64CONST(1)
};
static const int64 TimestampOffsets[MAX_TIMESTAMP_PRECISION + 1] = {
INT64CONST(500000),
INT64CONST(50000),
INT64CONST(5000),
INT64CONST(500),
INT64CONST(50),
INT64CONST(5),
INT64CONST(0)
};
if (!TIMESTAMP_NOT_FINITE(*time)
&& (typmod != -1) && (typmod != MAX_TIMESTAMP_PRECISION))
{
if (typmod < 0 || typmod > MAX_TIMESTAMP_PRECISION)
{
if (error)
{
*error = true;
return false;
}
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp(%d) precision must be between %d and %d",
typmod, 0, MAX_TIMESTAMP_PRECISION)));
}
if (*time >= INT64CONST(0))
{
*time = ((*time + TimestampOffsets[typmod]) / TimestampScales[typmod]) *
TimestampScales[typmod];
}
else
{
*time = -((((-*time) + TimestampOffsets[typmod]) / TimestampScales[typmod])
* TimestampScales[typmod]);
}
}
return true;
}
void
AdjustTimestampForTypmod(Timestamp *time, int32 typmod)
{
(void) AdjustTimestampForTypmodError(time, typmod, NULL);
}
/* timestamptz_in()
* Convert a string to internal form.
*/
Datum
timestamptz_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
TimestampTz result;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
int tz;
int dtype;
int nf;
int dterr;
char *field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS];
char workbuf[MAXDATELEN + MAXDATEFIELDS];
dterr = ParseDateTime(str, workbuf, sizeof(workbuf),
field, ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeDateTime(field, ftype, nf, &dtype, tm, &fsec, &tz);
if (dterr != 0)
DateTimeParseError(dterr, str, "timestamp with time zone");
switch (dtype)
{
case DTK_DATE:
if (tm2timestamp(tm, fsec, &tz, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: \"%s\"", str)));
break;
case DTK_EPOCH:
result = SetEpochTimestamp();
break;
case DTK_LATE:
TIMESTAMP_NOEND(result);
break;
case DTK_EARLY:
TIMESTAMP_NOBEGIN(result);
break;
default:
elog(ERROR, "unexpected dtype %d while parsing timestamptz \"%s\"",
dtype, str);
TIMESTAMP_NOEND(result);
}
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMPTZ(result);
}
/*
* Try to parse a timezone specification, and return its timezone offset value
* if it's acceptable. Otherwise, an error is thrown.
*
* Note: some code paths update tm->tm_isdst, and some don't; current callers
* don't care, so we don't bother being consistent.
*/
static int
parse_sane_timezone(struct pg_tm *tm, text *zone)
{
char tzname[TZ_STRLEN_MAX + 1];
int rt;
int tz;
text_to_cstring_buffer(zone, tzname, sizeof(tzname));
/*
* Look up the requested timezone. First we try to interpret it as a
* numeric timezone specification; if DecodeTimezone decides it doesn't
* like the format, we look in the timezone abbreviation table (to handle
* cases like "EST"), and if that also fails, we look in the timezone
* database (to handle cases like "America/New_York"). (This matches the
* order in which timestamp input checks the cases; it's important because
* the timezone database unwisely uses a few zone names that are identical
* to offset abbreviations.)
*
* Note pg_tzset happily parses numeric input that DecodeTimezone would
* reject. To avoid having it accept input that would otherwise be seen
* as invalid, it's enough to disallow having a digit in the first
* position of our input string.
*/
if (isdigit((unsigned char) *tzname))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid input syntax for type %s: \"%s\"",
"numeric time zone", tzname),
errhint("Numeric time zones must have \"-\" or \"+\" as first character.")));
rt = DecodeTimezone(tzname, &tz);
if (rt != 0)
{
char *lowzone;
int type,
val;
pg_tz *tzp;
if (rt == DTERR_TZDISP_OVERFLOW)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("numeric time zone \"%s\" out of range", tzname)));
else if (rt != DTERR_BAD_FORMAT)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized", tzname)));
/* DecodeTimezoneAbbrev requires lowercase input */
lowzone = downcase_truncate_identifier(tzname,
strlen(tzname),
false);
type = DecodeTimezoneAbbrev(0, lowzone, &val, &tzp);
if (type == TZ || type == DTZ)
{
/* fixed-offset abbreviation */
tz = -val;
}
else if (type == DYNTZ)
{
/* dynamic-offset abbreviation, resolve using specified time */
tz = DetermineTimeZoneAbbrevOffset(tm, tzname, tzp);
}
else
{
/* try it as a full zone name */
tzp = pg_tzset(tzname);
if (tzp)
tz = DetermineTimeZoneOffset(tm, tzp);
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized", tzname)));
}
}
return tz;
}
/*
* make_timestamp_internal
* workhorse for make_timestamp and make_timestamptz
*/
static Timestamp
make_timestamp_internal(int year, int month, int day,
int hour, int min, double sec)
{
struct pg_tm tm;
TimeOffset date;
TimeOffset time;
int dterr;
Timestamp result;
tm.tm_year = year;
tm.tm_mon = month;
tm.tm_mday = day;
/*
* Note: we'll reject zero or negative year values. Perhaps negatives
* should be allowed to represent BC years?
*/
dterr = ValidateDate(DTK_DATE_M, false, false, false, &tm);
if (dterr != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
errmsg("date field value out of range: %d-%02d-%02d",
year, month, day)));
if (!IS_VALID_JULIAN(tm.tm_year, tm.tm_mon, tm.tm_mday))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("date out of range: %d-%02d-%02d",
year, month, day)));
date = date2j(tm.tm_year, tm.tm_mon, tm.tm_mday) - POSTGRES_EPOCH_JDATE;
/*
* This should match the checks in DecodeTimeOnly, except that since we're
* dealing with a float "sec" value, we also explicitly reject NaN. (An
* infinity input should get rejected by the range comparisons, but we
* can't be sure how those will treat a NaN.)
*/
if (hour < 0 || min < 0 || min > MINS_PER_HOUR - 1 ||
isnan(sec) ||
sec < 0 || sec > SECS_PER_MINUTE ||
hour > HOURS_PER_DAY ||
/* test for > 24:00:00 */
(hour == HOURS_PER_DAY && (min > 0 || sec > 0)))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_FIELD_OVERFLOW),
errmsg("time field value out of range: %d:%02d:%02g",
hour, min, sec)));
/* This should match tm2time */
time = (((hour * MINS_PER_HOUR + min) * SECS_PER_MINUTE)
* USECS_PER_SEC) + rint(sec * USECS_PER_SEC);
result = date * USECS_PER_DAY + time;
/* check for major overflow */
if ((result - time) / USECS_PER_DAY != date)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g",
year, month, day,
hour, min, sec)));
/* check for just-barely overflow (okay except time-of-day wraps) */
/* caution: we want to allow 1999-12-31 24:00:00 */
if ((result < 0 && date > 0) ||
(result > 0 && date < -1))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g",
year, month, day,
hour, min, sec)));
/* final range check catches just-out-of-range timestamps */
if (!IS_VALID_TIMESTAMP(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: %d-%02d-%02d %d:%02d:%02g",
year, month, day,
hour, min, sec)));
return result;
}
/*
* make_timestamp() - timestamp constructor
*/
Datum
make_timestamp(PG_FUNCTION_ARGS)
{
int32 year = PG_GETARG_INT32(0);
int32 month = PG_GETARG_INT32(1);
int32 mday = PG_GETARG_INT32(2);
int32 hour = PG_GETARG_INT32(3);
int32 min = PG_GETARG_INT32(4);
float8 sec = PG_GETARG_FLOAT8(5);
Timestamp result;
result = make_timestamp_internal(year, month, mday,
hour, min, sec);
PG_RETURN_TIMESTAMP(result);
}
/*
* make_timestamptz() - timestamp with time zone constructor
*/
Datum
make_timestamptz(PG_FUNCTION_ARGS)
{
int32 year = PG_GETARG_INT32(0);
int32 month = PG_GETARG_INT32(1);
int32 mday = PG_GETARG_INT32(2);
int32 hour = PG_GETARG_INT32(3);
int32 min = PG_GETARG_INT32(4);
float8 sec = PG_GETARG_FLOAT8(5);
Timestamp result;
result = make_timestamp_internal(year, month, mday,
hour, min, sec);
PG_RETURN_TIMESTAMPTZ(timestamp2timestamptz(result));
}
/*
* Construct a timestamp with time zone.
* As above, but the time zone is specified as seventh argument.
*/
Datum
make_timestamptz_at_timezone(PG_FUNCTION_ARGS)
{
int32 year = PG_GETARG_INT32(0);
int32 month = PG_GETARG_INT32(1);
int32 mday = PG_GETARG_INT32(2);
int32 hour = PG_GETARG_INT32(3);
int32 min = PG_GETARG_INT32(4);
float8 sec = PG_GETARG_FLOAT8(5);
text *zone = PG_GETARG_TEXT_PP(6);
TimestampTz result;
Timestamp timestamp;
struct pg_tm tt;
int tz;
fsec_t fsec;
timestamp = make_timestamp_internal(year, month, mday,
hour, min, sec);
if (timestamp2tm(timestamp, NULL, &tt, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
tz = parse_sane_timezone(&tt, zone);
result = dt2local(timestamp, -tz);
if (!IS_VALID_TIMESTAMP(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
PG_RETURN_TIMESTAMPTZ(result);
}
/*
* to_timestamp(double precision)
* Convert UNIX epoch to timestamptz.
*/
Datum
float8_timestamptz(PG_FUNCTION_ARGS)
{
float8 seconds = PG_GETARG_FLOAT8(0);
TimestampTz result;
/* Deal with NaN and infinite inputs ... */
if (isnan(seconds))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp cannot be NaN")));
if (isinf(seconds))
{
if (seconds < 0)
TIMESTAMP_NOBEGIN(result);
else
TIMESTAMP_NOEND(result);
}
else
{
/* Out of range? */
if (seconds <
(float8) SECS_PER_DAY * (DATETIME_MIN_JULIAN - UNIX_EPOCH_JDATE)
|| seconds >=
(float8) SECS_PER_DAY * (TIMESTAMP_END_JULIAN - UNIX_EPOCH_JDATE))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: \"%g\"", seconds)));
/* Convert UNIX epoch to Postgres epoch */
seconds -= ((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
seconds = rint(seconds * USECS_PER_SEC);
result = (int64) seconds;
/* Recheck in case roundoff produces something just out of range */
if (!IS_VALID_TIMESTAMP(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range: \"%g\"",
PG_GETARG_FLOAT8(0))));
}
PG_RETURN_TIMESTAMP(result);
}
/* timestamptz_out()
* Convert a timestamp to external form.
*/
Datum
timestamptz_out(PG_FUNCTION_ARGS)
{
TimestampTz dt = PG_GETARG_TIMESTAMPTZ(0);
char *result;
int tz;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
const char *tzn;
char buf[MAXDATELEN + 1];
if (TIMESTAMP_NOT_FINITE(dt))
EncodeSpecialTimestamp(dt, buf);
else if (timestamp2tm(dt, &tz, tm, &fsec, &tzn, NULL) == 0)
EncodeDateTime(tm, fsec, true, tz, tzn, DateStyle, buf);
else
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* timestamptz_recv - converts external binary format to timestamptz
*/
Datum
timestamptz_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
TimestampTz timestamp;
int tz;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
timestamp = (TimestampTz) pq_getmsgint64(buf);
/* range check: see if timestamptz_out would like it */
if (TIMESTAMP_NOT_FINITE(timestamp))
/* ok */ ;
else if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0 ||
!IS_VALID_TIMESTAMP(timestamp))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
AdjustTimestampForTypmod(&timestamp, typmod);
PG_RETURN_TIMESTAMPTZ(timestamp);
}
/*
* timestamptz_send - converts timestamptz to binary format
*/
Datum
timestamptz_send(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint64(&buf, timestamp);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
Datum
timestamptztypmodin(PG_FUNCTION_ARGS)
{
ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0);
PG_RETURN_INT32(anytimestamp_typmodin(true, ta));
}
Datum
timestamptztypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
PG_RETURN_CSTRING(anytimestamp_typmodout(true, typmod));
}
/* timestamptz_scale()
* Adjust time type for specified scale factor.
* Used by PostgreSQL type system to stuff columns.
*/
Datum
timestamptz_scale(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
int32 typmod = PG_GETARG_INT32(1);
TimestampTz result;
result = timestamp;
AdjustTimestampForTypmod(&result, typmod);
PG_RETURN_TIMESTAMPTZ(result);
}
/* interval_in()
* Convert a string to internal form.
*
* External format(s):
* Uses the generic date/time parsing and decoding routines.
*/
Datum
interval_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Interval *result;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
int dtype;
int nf;
int range;
int dterr;
char *field[MAXDATEFIELDS];
int ftype[MAXDATEFIELDS];
char workbuf[256];
tm->tm_year = 0;
tm->tm_mon = 0;
tm->tm_mday = 0;
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
fsec = 0;
if (typmod >= 0)
range = INTERVAL_RANGE(typmod);
else
range = INTERVAL_FULL_RANGE;
dterr = ParseDateTime(str, workbuf, sizeof(workbuf), field,
ftype, MAXDATEFIELDS, &nf);
if (dterr == 0)
dterr = DecodeInterval(field, ftype, nf, range,
&dtype, tm, &fsec);
/* if those functions think it's a bad format, try ISO8601 style */
if (dterr == DTERR_BAD_FORMAT)
dterr = DecodeISO8601Interval(str,
&dtype, tm, &fsec);
if (dterr != 0)
{
if (dterr == DTERR_FIELD_OVERFLOW)
dterr = DTERR_INTERVAL_OVERFLOW;
DateTimeParseError(dterr, str, "interval");
}
result = (Interval *) palloc(sizeof(Interval));
switch (dtype)
{
case DTK_DELTA:
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
break;
default:
elog(ERROR, "unexpected dtype %d while parsing interval \"%s\"",
dtype, str);
}
AdjustIntervalForTypmod(result, typmod);
PG_RETURN_INTERVAL_P(result);
}
/* interval_out()
* Convert a time span to external form.
*/
Datum
interval_out(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
char *result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
char buf[MAXDATELEN + 1];
if (interval2tm(*span, tm, &fsec) != 0)
elog(ERROR, "could not convert interval to tm");
EncodeInterval(tm, fsec, IntervalStyle, buf);
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* interval_recv - converts external binary format to interval
*/
Datum
interval_recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
#ifdef NOT_USED
Oid typelem = PG_GETARG_OID(1);
#endif
int32 typmod = PG_GETARG_INT32(2);
Interval *interval;
interval = (Interval *) palloc(sizeof(Interval));
interval->time = pq_getmsgint64(buf);
interval->day = pq_getmsgint(buf, sizeof(interval->day));
interval->month = pq_getmsgint(buf, sizeof(interval->month));
AdjustIntervalForTypmod(interval, typmod);
PG_RETURN_INTERVAL_P(interval);
}
/*
* interval_send - converts interval to binary format
*/
Datum
interval_send(PG_FUNCTION_ARGS)
{
Interval *interval = PG_GETARG_INTERVAL_P(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint64(&buf, interval->time);
pq_sendint32(&buf, interval->day);
pq_sendint32(&buf, interval->month);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*
* The interval typmod stores a "range" in its high 16 bits and a "precision"
* in its low 16 bits. Both contribute to defining the resolution of the
* type. Range addresses resolution granules larger than one second, and
* precision specifies resolution below one second. This representation can
* express all SQL standard resolutions, but we implement them all in terms of
* truncating rightward from some position. Range is a bitmap of permitted
* fields, but only the temporally-smallest such field is significant to our
* calculations. Precision is a count of sub-second decimal places to retain.
* Setting all bits (INTERVAL_FULL_PRECISION) gives the same truncation
* semantics as choosing MAX_INTERVAL_PRECISION.
*/
Datum
intervaltypmodin(PG_FUNCTION_ARGS)
{
ArrayType *ta = PG_GETARG_ARRAYTYPE_P(0);
int32 *tl;
int n;
int32 typmod;
tl = ArrayGetIntegerTypmods(ta, &n);
/*
* tl[0] - interval range (fields bitmask) tl[1] - precision (optional)
*
* Note we must validate tl[0] even though it's normally guaranteed
* correct by the grammar --- consider SELECT 'foo'::"interval"(1000).
*/
if (n > 0)
{
switch (tl[0])
{
case INTERVAL_MASK(YEAR):
case INTERVAL_MASK(MONTH):
case INTERVAL_MASK(DAY):
case INTERVAL_MASK(HOUR):
case INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(SECOND):
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
case INTERVAL_FULL_RANGE:
/* all OK */
break;
default:
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid INTERVAL type modifier")));
}
}
if (n == 1)
{
if (tl[0] != INTERVAL_FULL_RANGE)
typmod = INTERVAL_TYPMOD(INTERVAL_FULL_PRECISION, tl[0]);
else
typmod = -1;
}
else if (n == 2)
{
if (tl[1] < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("INTERVAL(%d) precision must not be negative",
tl[1])));
if (tl[1] > MAX_INTERVAL_PRECISION)
{
ereport(WARNING,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("INTERVAL(%d) precision reduced to maximum allowed, %d",
tl[1], MAX_INTERVAL_PRECISION)));
typmod = INTERVAL_TYPMOD(MAX_INTERVAL_PRECISION, tl[0]);
}
else
typmod = INTERVAL_TYPMOD(tl[1], tl[0]);
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid INTERVAL type modifier")));
typmod = 0; /* keep compiler quiet */
}
PG_RETURN_INT32(typmod);
}
Datum
intervaltypmodout(PG_FUNCTION_ARGS)
{
int32 typmod = PG_GETARG_INT32(0);
char *res = (char *) palloc(64);
int fields;
int precision;
const char *fieldstr;
if (typmod < 0)
{
*res = '\0';
PG_RETURN_CSTRING(res);
}
fields = INTERVAL_RANGE(typmod);
precision = INTERVAL_PRECISION(typmod);
switch (fields)
{
case INTERVAL_MASK(YEAR):
fieldstr = " year";
break;
case INTERVAL_MASK(MONTH):
fieldstr = " month";
break;
case INTERVAL_MASK(DAY):
fieldstr = " day";
break;
case INTERVAL_MASK(HOUR):
fieldstr = " hour";
break;
case INTERVAL_MASK(MINUTE):
fieldstr = " minute";
break;
case INTERVAL_MASK(SECOND):
fieldstr = " second";
break;
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
fieldstr = " year to month";
break;
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
fieldstr = " day to hour";
break;
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
fieldstr = " day to minute";
break;
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
fieldstr = " day to second";
break;
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
fieldstr = " hour to minute";
break;
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
fieldstr = " hour to second";
break;
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
fieldstr = " minute to second";
break;
case INTERVAL_FULL_RANGE:
fieldstr = "";
break;
default:
elog(ERROR, "invalid INTERVAL typmod: 0x%x", typmod);
fieldstr = "";
break;
}
if (precision != INTERVAL_FULL_PRECISION)
snprintf(res, 64, "%s(%d)", fieldstr, precision);
else
snprintf(res, 64, "%s", fieldstr);
PG_RETURN_CSTRING(res);
}
/*
* Given an interval typmod value, return a code for the least-significant
* field that the typmod allows to be nonzero, for instance given
* INTERVAL DAY TO HOUR we want to identify "hour".
*
* The results should be ordered by field significance, which means
* we can't use the dt.h macros YEAR etc, because for some odd reason
* they aren't ordered that way. Instead, arbitrarily represent
* SECOND = 0, MINUTE = 1, HOUR = 2, DAY = 3, MONTH = 4, YEAR = 5.
*/
static int
intervaltypmodleastfield(int32 typmod)
{
if (typmod < 0)
return 0; /* SECOND */
switch (INTERVAL_RANGE(typmod))
{
case INTERVAL_MASK(YEAR):
return 5; /* YEAR */
case INTERVAL_MASK(MONTH):
return 4; /* MONTH */
case INTERVAL_MASK(DAY):
return 3; /* DAY */
case INTERVAL_MASK(HOUR):
return 2; /* HOUR */
case INTERVAL_MASK(MINUTE):
return 1; /* MINUTE */
case INTERVAL_MASK(SECOND):
return 0; /* SECOND */
case INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH):
return 4; /* MONTH */
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR):
return 2; /* HOUR */
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
return 1; /* MINUTE */
case INTERVAL_MASK(DAY) | INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
return 0; /* SECOND */
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE):
return 1; /* MINUTE */
case INTERVAL_MASK(HOUR) | INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
return 0; /* SECOND */
case INTERVAL_MASK(MINUTE) | INTERVAL_MASK(SECOND):
return 0; /* SECOND */
case INTERVAL_FULL_RANGE:
return 0; /* SECOND */
default:
elog(ERROR, "invalid INTERVAL typmod: 0x%x", typmod);
break;
}
return 0; /* can't get here, but keep compiler quiet */
}
/*
* interval_support()
*
* Planner support function for interval_scale().
*
* Flatten superfluous calls to interval_scale(). The interval typmod is
* complex to permit accepting and regurgitating all SQL standard variations.
* For truncation purposes, it boils down to a single, simple granularity.
*/
Datum
interval_support(PG_FUNCTION_ARGS)
{
Node *rawreq = (Node *) PG_GETARG_POINTER(0);
Node *ret = NULL;
if (IsA(rawreq, SupportRequestSimplify))
{
SupportRequestSimplify *req = (SupportRequestSimplify *) rawreq;
FuncExpr *expr = req->fcall;
Node *typmod;
Assert(list_length(expr->args) >= 2);
typmod = (Node *) lsecond(expr->args);
if (IsA(typmod, Const) &&!((Const *) typmod)->constisnull)
{
Node *source = (Node *) linitial(expr->args);
int32 new_typmod = DatumGetInt32(((Const *) typmod)->constvalue);
bool noop;
if (new_typmod < 0)
noop = true;
else
{
int32 old_typmod = exprTypmod(source);
int old_least_field;
int new_least_field;
int old_precis;
int new_precis;
old_least_field = intervaltypmodleastfield(old_typmod);
new_least_field = intervaltypmodleastfield(new_typmod);
if (old_typmod < 0)
old_precis = INTERVAL_FULL_PRECISION;
else
old_precis = INTERVAL_PRECISION(old_typmod);
new_precis = INTERVAL_PRECISION(new_typmod);
/*
* Cast is a no-op if least field stays the same or decreases
* while precision stays the same or increases. But
* precision, which is to say, sub-second precision, only
* affects ranges that include SECOND.
*/
noop = (new_least_field <= old_least_field) &&
(old_least_field > 0 /* SECOND */ ||
new_precis >= MAX_INTERVAL_PRECISION ||
new_precis >= old_precis);
}
if (noop)
ret = relabel_to_typmod(source, new_typmod);
}
}
PG_RETURN_POINTER(ret);
}
/* interval_scale()
* Adjust interval type for specified fields.
* Used by PostgreSQL type system to stuff columns.
*/
Datum
interval_scale(PG_FUNCTION_ARGS)
{
Interval *interval = PG_GETARG_INTERVAL_P(0);
int32 typmod = PG_GETARG_INT32(1);
Interval *result;
result = palloc(sizeof(Interval));
*result = *interval;
AdjustIntervalForTypmod(result, typmod);
PG_RETURN_INTERVAL_P(result);
}
/*
* Adjust interval for specified precision, in both YEAR to SECOND
* range and sub-second precision.
*/
static void
AdjustIntervalForTypmod(Interval *interval, int32 typmod)
{
static const int64 IntervalScales[MAX_INTERVAL_PRECISION + 1] = {
INT64CONST(1000000),
INT64CONST(100000),
INT64CONST(10000),
INT64CONST(1000),
INT64CONST(100),
INT64CONST(10),
INT64CONST(1)
};
static const int64 IntervalOffsets[MAX_INTERVAL_PRECISION + 1] = {
INT64CONST(500000),
INT64CONST(50000),
INT64CONST(5000),
INT64CONST(500),
INT64CONST(50),
INT64CONST(5),
INT64CONST(0)
};
/*
* Unspecified range and precision? Then not necessary to adjust. Setting
* typmod to -1 is the convention for all data types.
*/
if (typmod >= 0)
{
int range = INTERVAL_RANGE(typmod);
int precision = INTERVAL_PRECISION(typmod);
/*
* Our interpretation of intervals with a limited set of fields is
* that fields to the right of the last one specified are zeroed out,
* but those to the left of it remain valid. Thus for example there
* is no operational difference between INTERVAL YEAR TO MONTH and
* INTERVAL MONTH. In some cases we could meaningfully enforce that
* higher-order fields are zero; for example INTERVAL DAY could reject
* nonzero "month" field. However that seems a bit pointless when we
* can't do it consistently. (We cannot enforce a range limit on the
* highest expected field, since we do not have any equivalent of
* SQL's <interval leading field precision>.) If we ever decide to
* revisit this, interval_support will likely require adjusting.
*
* Note: before PG 8.4 we interpreted a limited set of fields as
* actually causing a "modulo" operation on a given value, potentially
* losing high-order as well as low-order information. But there is
* no support for such behavior in the standard, and it seems fairly
* undesirable on data consistency grounds anyway. Now we only
* perform truncation or rounding of low-order fields.
*/
if (range == INTERVAL_FULL_RANGE)
{
/* Do nothing... */
}
else if (range == INTERVAL_MASK(YEAR))
{
interval->month = (interval->month / MONTHS_PER_YEAR) * MONTHS_PER_YEAR;
interval->day = 0;
interval->time = 0;
}
else if (range == INTERVAL_MASK(MONTH))
{
interval->day = 0;
interval->time = 0;
}
/* YEAR TO MONTH */
else if (range == (INTERVAL_MASK(YEAR) | INTERVAL_MASK(MONTH)))
{
interval->day = 0;
interval->time = 0;
}
else if (range == INTERVAL_MASK(DAY))
{
interval->time = 0;
}
else if (range == INTERVAL_MASK(HOUR))
{
interval->time = (interval->time / USECS_PER_HOUR) *
USECS_PER_HOUR;
}
else if (range == INTERVAL_MASK(MINUTE))
{
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
}
else if (range == INTERVAL_MASK(SECOND))
{
/* fractional-second rounding will be dealt with below */
}
/* DAY TO HOUR */
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR)))
{
interval->time = (interval->time / USECS_PER_HOUR) *
USECS_PER_HOUR;
}
/* DAY TO MINUTE */
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE)))
{
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
}
/* DAY TO SECOND */
else if (range == (INTERVAL_MASK(DAY) |
INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE) |
INTERVAL_MASK(SECOND)))
{
/* fractional-second rounding will be dealt with below */
}
/* HOUR TO MINUTE */
else if (range == (INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE)))
{
interval->time = (interval->time / USECS_PER_MINUTE) *
USECS_PER_MINUTE;
}
/* HOUR TO SECOND */
else if (range == (INTERVAL_MASK(HOUR) |
INTERVAL_MASK(MINUTE) |
INTERVAL_MASK(SECOND)))
{
/* fractional-second rounding will be dealt with below */
}
/* MINUTE TO SECOND */
else if (range == (INTERVAL_MASK(MINUTE) |
INTERVAL_MASK(SECOND)))
{
/* fractional-second rounding will be dealt with below */
}
else
elog(ERROR, "unrecognized interval typmod: %d", typmod);
/* Need to adjust sub-second precision? */
if (precision != INTERVAL_FULL_PRECISION)
{
if (precision < 0 || precision > MAX_INTERVAL_PRECISION)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval(%d) precision must be between %d and %d",
precision, 0, MAX_INTERVAL_PRECISION)));
if (interval->time >= INT64CONST(0))
{
interval->time = ((interval->time +
IntervalOffsets[precision]) /
IntervalScales[precision]) *
IntervalScales[precision];
}
else
{
interval->time = -(((-interval->time +
IntervalOffsets[precision]) /
IntervalScales[precision]) *
IntervalScales[precision]);
}
}
}
}
/*
* make_interval - numeric Interval constructor
*/
Datum
make_interval(PG_FUNCTION_ARGS)
{
int32 years = PG_GETARG_INT32(0);
int32 months = PG_GETARG_INT32(1);
int32 weeks = PG_GETARG_INT32(2);
int32 days = PG_GETARG_INT32(3);
int32 hours = PG_GETARG_INT32(4);
int32 mins = PG_GETARG_INT32(5);
double secs = PG_GETARG_FLOAT8(6);
Interval *result;
/*
* Reject out-of-range inputs. We really ought to check the integer
* inputs as well, but it's not entirely clear what limits to apply.
*/
if (isinf(secs) || isnan(secs))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result = (Interval *) palloc(sizeof(Interval));
result->month = years * MONTHS_PER_YEAR + months;
result->day = weeks * 7 + days;
secs = rint(secs * USECS_PER_SEC);
result->time = hours * ((int64) SECS_PER_HOUR * USECS_PER_SEC) +
mins * ((int64) SECS_PER_MINUTE * USECS_PER_SEC) +
(int64) secs;
PG_RETURN_INTERVAL_P(result);
}
/* EncodeSpecialTimestamp()
* Convert reserved timestamp data type to string.
*/
void
EncodeSpecialTimestamp(Timestamp dt, char *str)
{
if (TIMESTAMP_IS_NOBEGIN(dt))
strcpy(str, EARLY);
else if (TIMESTAMP_IS_NOEND(dt))
strcpy(str, LATE);
else /* shouldn't happen */
elog(ERROR, "invalid argument for EncodeSpecialTimestamp");
}
Datum
now(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(GetCurrentTransactionStartTimestamp());
}
Datum
statement_timestamp(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(GetCurrentStatementStartTimestamp());
}
Datum
clock_timestamp(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(GetCurrentTimestamp());
}
Datum
pg_postmaster_start_time(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(PgStartTime);
}
Datum
pg_conf_load_time(PG_FUNCTION_ARGS)
{
PG_RETURN_TIMESTAMPTZ(PgReloadTime);
}
/*
* GetCurrentTimestamp -- get the current operating system time
*
* Result is in the form of a TimestampTz value, and is expressed to the
* full precision of the gettimeofday() syscall
*/
TimestampTz
GetCurrentTimestamp(void)
{
TimestampTz result;
struct timeval tp;
gettimeofday(&tp, NULL);
result = (TimestampTz) tp.tv_sec -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
result = (result * USECS_PER_SEC) + tp.tv_usec;
return result;
}
/*
* GetSQLCurrentTimestamp -- implements CURRENT_TIMESTAMP, CURRENT_TIMESTAMP(n)
*/
TimestampTz
GetSQLCurrentTimestamp(int32 typmod)
{
TimestampTz ts;
ts = GetCurrentTransactionStartTimestamp();
if (typmod >= 0)
AdjustTimestampForTypmod(&ts, typmod);
return ts;
}
/*
* GetSQLLocalTimestamp -- implements LOCALTIMESTAMP, LOCALTIMESTAMP(n)
*/
Timestamp
GetSQLLocalTimestamp(int32 typmod)
{
Timestamp ts;
ts = timestamptz2timestamp(GetCurrentTransactionStartTimestamp());
if (typmod >= 0)
AdjustTimestampForTypmod(&ts, typmod);
return ts;
}
/*
* timeofday(*) -- returns the current time as a text.
*/
Datum
timeofday(PG_FUNCTION_ARGS)
{
struct timeval tp;
char templ[128];
char buf[128];
pg_time_t tt;
gettimeofday(&tp, NULL);
tt = (pg_time_t) tp.tv_sec;
pg_strftime(templ, sizeof(templ), "%a %b %d %H:%M:%S.%%06d %Y %Z",
pg_localtime(&tt, session_timezone));
snprintf(buf, sizeof(buf), templ, tp.tv_usec);
PG_RETURN_TEXT_P(cstring_to_text(buf));
}
/*
* TimestampDifference -- convert the difference between two timestamps
* into integer seconds and microseconds
*
* Both inputs must be ordinary finite timestamps (in current usage,
* they'll be results from GetCurrentTimestamp()).
*
* We expect start_time <= stop_time. If not, we return zeros; for current
* callers there is no need to be tense about which way division rounds on
* negative inputs.
*/
void
TimestampDifference(TimestampTz start_time, TimestampTz stop_time,
long *secs, int *microsecs)
{
TimestampTz diff = stop_time - start_time;
if (diff <= 0)
{
*secs = 0;
*microsecs = 0;
}
else
{
*secs = (long) (diff / USECS_PER_SEC);
*microsecs = (int) (diff % USECS_PER_SEC);
}
}
/*
* TimestampDifferenceExceeds -- report whether the difference between two
* timestamps is >= a threshold (expressed in milliseconds)
*
* Both inputs must be ordinary finite timestamps (in current usage,
* they'll be results from GetCurrentTimestamp()).
*/
bool
TimestampDifferenceExceeds(TimestampTz start_time,
TimestampTz stop_time,
int msec)
{
TimestampTz diff = stop_time - start_time;
return (diff >= msec * INT64CONST(1000));
}
/*
* Convert a time_t to TimestampTz.
*
* We do not use time_t internally in Postgres, but this is provided for use
* by functions that need to interpret, say, a stat(2) result.
*
* To avoid having the function's ABI vary depending on the width of time_t,
* we declare the argument as pg_time_t, which is cast-compatible with
* time_t but always 64 bits wide (unless the platform has no 64-bit type).
* This detail should be invisible to callers, at least at source code level.
*/
TimestampTz
time_t_to_timestamptz(pg_time_t tm)
{
TimestampTz result;
result = (TimestampTz) tm -
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY);
result *= USECS_PER_SEC;
return result;
}
/*
* Convert a TimestampTz to time_t.
*
* This too is just marginally useful, but some places need it.
*
* To avoid having the function's ABI vary depending on the width of time_t,
* we declare the result as pg_time_t, which is cast-compatible with
* time_t but always 64 bits wide (unless the platform has no 64-bit type).
* This detail should be invisible to callers, at least at source code level.
*/
pg_time_t
timestamptz_to_time_t(TimestampTz t)
{
pg_time_t result;
result = (pg_time_t) (t / USECS_PER_SEC +
((POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY));
return result;
}
/*
* Produce a C-string representation of a TimestampTz.
*
* This is mostly for use in emitting messages. The primary difference
* from timestamptz_out is that we force the output format to ISO. Note
* also that the result is in a static buffer, not pstrdup'd.
*/
const char *
timestamptz_to_str(TimestampTz t)
{
static char buf[MAXDATELEN + 1];
int tz;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
const char *tzn;
if (TIMESTAMP_NOT_FINITE(t))
EncodeSpecialTimestamp(t, buf);
else if (timestamp2tm(t, &tz, tm, &fsec, &tzn, NULL) == 0)
EncodeDateTime(tm, fsec, true, tz, tzn, USE_ISO_DATES, buf);
else
strlcpy(buf, "(timestamp out of range)", sizeof(buf));
return buf;
}
void
dt2time(Timestamp jd, int *hour, int *min, int *sec, fsec_t *fsec)
{
TimeOffset time;
time = jd;
*hour = time / USECS_PER_HOUR;
time -= (*hour) * USECS_PER_HOUR;
*min = time / USECS_PER_MINUTE;
time -= (*min) * USECS_PER_MINUTE;
*sec = time / USECS_PER_SEC;
*fsec = time - (*sec * USECS_PER_SEC);
} /* dt2time() */
/*
* timestamp2tm() - Convert timestamp data type to POSIX time structure.
*
* Note that year is _not_ 1900-based, but is an explicit full value.
* Also, month is one-based, _not_ zero-based.
* Returns:
* 0 on success
* -1 on out of range
*
* If attimezone is NULL, the global timezone setting will be used.
*/
int
timestamp2tm(Timestamp dt, int *tzp, struct pg_tm *tm, fsec_t *fsec, const char **tzn, pg_tz *attimezone)
{
Timestamp date;
Timestamp time;
pg_time_t utime;
/* Use session timezone if caller asks for default */
if (attimezone == NULL)
attimezone = session_timezone;
time = dt;
TMODULO(time, date, USECS_PER_DAY);
if (time < INT64CONST(0))
{
time += USECS_PER_DAY;
date -= 1;
}
/* add offset to go from J2000 back to standard Julian date */
date += POSTGRES_EPOCH_JDATE;
/* Julian day routine does not work for negative Julian days */
if (date < 0 || date > (Timestamp) INT_MAX)
return -1;
j2date((int) date, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
dt2time(time, &tm->tm_hour, &tm->tm_min, &tm->tm_sec, fsec);
/* Done if no TZ conversion wanted */
if (tzp == NULL)
{
tm->tm_isdst = -1;
tm->tm_gmtoff = 0;
tm->tm_zone = NULL;
if (tzn != NULL)
*tzn = NULL;
return 0;
}
/*
* If the time falls within the range of pg_time_t, use pg_localtime() to
* rotate to the local time zone.
*
* First, convert to an integral timestamp, avoiding possibly
* platform-specific roundoff-in-wrong-direction errors, and adjust to
* Unix epoch. Then see if we can convert to pg_time_t without loss. This
* coding avoids hardwiring any assumptions about the width of pg_time_t,
* so it should behave sanely on machines without int64.
*/
dt = (dt - *fsec) / USECS_PER_SEC +
(POSTGRES_EPOCH_JDATE - UNIX_EPOCH_JDATE) * SECS_PER_DAY;
utime = (pg_time_t) dt;
if ((Timestamp) utime == dt)
{
struct pg_tm *tx = pg_localtime(&utime, attimezone);
tm->tm_year = tx->tm_year + 1900;
tm->tm_mon = tx->tm_mon + 1;
tm->tm_mday = tx->tm_mday;
tm->tm_hour = tx->tm_hour;
tm->tm_min = tx->tm_min;
tm->tm_sec = tx->tm_sec;
tm->tm_isdst = tx->tm_isdst;
tm->tm_gmtoff = tx->tm_gmtoff;
tm->tm_zone = tx->tm_zone;
*tzp = -tm->tm_gmtoff;
if (tzn != NULL)
*tzn = tm->tm_zone;
}
else
{
/*
* When out of range of pg_time_t, treat as GMT
*/
*tzp = 0;
/* Mark this as *no* time zone available */
tm->tm_isdst = -1;
tm->tm_gmtoff = 0;
tm->tm_zone = NULL;
if (tzn != NULL)
*tzn = NULL;
}
return 0;
}
/* tm2timestamp()
* Convert a tm structure to a timestamp data type.
* Note that year is _not_ 1900-based, but is an explicit full value.
* Also, month is one-based, _not_ zero-based.
*
* Returns -1 on failure (value out of range).
*/
int
tm2timestamp(struct pg_tm *tm, fsec_t fsec, int *tzp, Timestamp *result)
{
TimeOffset date;
TimeOffset time;
/* Prevent overflow in Julian-day routines */
if (!IS_VALID_JULIAN(tm->tm_year, tm->tm_mon, tm->tm_mday))
{
*result = 0; /* keep compiler quiet */
return -1;
}
date = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) - POSTGRES_EPOCH_JDATE;
time = time2t(tm->tm_hour, tm->tm_min, tm->tm_sec, fsec);
*result = date * USECS_PER_DAY + time;
/* check for major overflow */
if ((*result - time) / USECS_PER_DAY != date)
{
*result = 0; /* keep compiler quiet */
return -1;
}
/* check for just-barely overflow (okay except time-of-day wraps) */
/* caution: we want to allow 1999-12-31 24:00:00 */
if ((*result < 0 && date > 0) ||
(*result > 0 && date < -1))
{
*result = 0; /* keep compiler quiet */
return -1;
}
if (tzp != NULL)
*result = dt2local(*result, -(*tzp));
/* final range check catches just-out-of-range timestamps */
if (!IS_VALID_TIMESTAMP(*result))
{
*result = 0; /* keep compiler quiet */
return -1;
}
return 0;
}
/* interval2tm()
* Convert an interval data type to a tm structure.
*/
int
interval2tm(Interval span, struct pg_tm *tm, fsec_t *fsec)
{
TimeOffset time;
TimeOffset tfrac;
tm->tm_year = span.month / MONTHS_PER_YEAR;
tm->tm_mon = span.month % MONTHS_PER_YEAR;
tm->tm_mday = span.day;
time = span.time;
tfrac = time / USECS_PER_HOUR;
time -= tfrac * USECS_PER_HOUR;
tm->tm_hour = tfrac;
if (!SAMESIGN(tm->tm_hour, tfrac))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
tfrac = time / USECS_PER_MINUTE;
time -= tfrac * USECS_PER_MINUTE;
tm->tm_min = tfrac;
tfrac = time / USECS_PER_SEC;
*fsec = time - (tfrac * USECS_PER_SEC);
tm->tm_sec = tfrac;
return 0;
}
int
tm2interval(struct pg_tm *tm, fsec_t fsec, Interval *span)
{
double total_months = (double) tm->tm_year * MONTHS_PER_YEAR + tm->tm_mon;
if (total_months > INT_MAX || total_months < INT_MIN)
return -1;
span->month = total_months;
span->day = tm->tm_mday;
span->time = (((((tm->tm_hour * INT64CONST(60)) +
tm->tm_min) * INT64CONST(60)) +
tm->tm_sec) * USECS_PER_SEC) + fsec;
return 0;
}
static TimeOffset
time2t(const int hour, const int min, const int sec, const fsec_t fsec)
{
return (((((hour * MINS_PER_HOUR) + min) * SECS_PER_MINUTE) + sec) * USECS_PER_SEC) + fsec;
}
static Timestamp
dt2local(Timestamp dt, int tz)
{
dt -= (tz * USECS_PER_SEC);
return dt;
}
/*****************************************************************************
* PUBLIC ROUTINES *
*****************************************************************************/
Datum
timestamp_finite(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
PG_RETURN_BOOL(!TIMESTAMP_NOT_FINITE(timestamp));
}
Datum
interval_finite(PG_FUNCTION_ARGS)
{
PG_RETURN_BOOL(true);
}
/*----------------------------------------------------------
* Relational operators for timestamp.
*---------------------------------------------------------*/
void
GetEpochTime(struct pg_tm *tm)
{
struct pg_tm *t0;
pg_time_t epoch = 0;
t0 = pg_gmtime(&epoch);
if (t0 == NULL)
elog(ERROR, "could not convert epoch to timestamp: %m");
tm->tm_year = t0->tm_year;
tm->tm_mon = t0->tm_mon;
tm->tm_mday = t0->tm_mday;
tm->tm_hour = t0->tm_hour;
tm->tm_min = t0->tm_min;
tm->tm_sec = t0->tm_sec;
tm->tm_year += 1900;
tm->tm_mon++;
}
Timestamp
SetEpochTimestamp(void)
{
Timestamp dt;
struct pg_tm tt,
*tm = &tt;
GetEpochTime(tm);
/* we don't bother to test for failure ... */
tm2timestamp(tm, 0, NULL, &dt);
return dt;
} /* SetEpochTimestamp() */
/*
* We are currently sharing some code between timestamp and timestamptz.
* The comparison functions are among them. - thomas 2001-09-25
*
* timestamp_relop - is timestamp1 relop timestamp2
*/
int
timestamp_cmp_internal(Timestamp dt1, Timestamp dt2)
{
return (dt1 < dt2) ? -1 : ((dt1 > dt2) ? 1 : 0);
}
Datum
timestamp_eq(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
}
Datum
timestamp_ne(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
}
Datum
timestamp_lt(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
}
Datum
timestamp_gt(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
}
Datum
timestamp_le(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
}
Datum
timestamp_ge(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
}
Datum
timestamp_cmp(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2));
}
/* note: this is used for timestamptz also */
static int
timestamp_fastcmp(Datum x, Datum y, SortSupport ssup)
{
Timestamp a = DatumGetTimestamp(x);
Timestamp b = DatumGetTimestamp(y);
return timestamp_cmp_internal(a, b);
}
Datum
timestamp_sortsupport(PG_FUNCTION_ARGS)
{
SortSupport ssup = (SortSupport) PG_GETARG_POINTER(0);
ssup->comparator = timestamp_fastcmp;
PG_RETURN_VOID();
}
Datum
timestamp_hash(PG_FUNCTION_ARGS)
{
return hashint8(fcinfo);
}
Datum
timestamp_hash_extended(PG_FUNCTION_ARGS)
{
return hashint8extended(fcinfo);
}
/*
* Cross-type comparison functions for timestamp vs timestamptz
*/
Datum
timestamp_eq_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
}
Datum
timestamp_ne_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
}
Datum
timestamp_lt_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
}
Datum
timestamp_gt_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
}
Datum
timestamp_le_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
}
Datum
timestamp_ge_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
}
Datum
timestamp_cmp_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestampVal = PG_GETARG_TIMESTAMP(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz dt1;
dt1 = timestamp2timestamptz(timestampVal);
PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2));
}
Datum
timestamptz_eq_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) == 0);
}
Datum
timestamptz_ne_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) != 0);
}
Datum
timestamptz_lt_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) < 0);
}
Datum
timestamptz_gt_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) > 0);
}
Datum
timestamptz_le_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) <= 0);
}
Datum
timestamptz_ge_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_BOOL(timestamp_cmp_internal(dt1, dt2) >= 0);
}
Datum
timestamptz_cmp_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
Timestamp timestampVal = PG_GETARG_TIMESTAMP(1);
TimestampTz dt2;
dt2 = timestamp2timestamptz(timestampVal);
PG_RETURN_INT32(timestamp_cmp_internal(dt1, dt2));
}
/*
* interval_relop - is interval1 relop interval2
*
* Interval comparison is based on converting interval values to a linear
* representation expressed in the units of the time field (microseconds,
* in the case of integer timestamps) with days assumed to be always 24 hours
* and months assumed to be always 30 days. To avoid overflow, we need a
* wider-than-int64 datatype for the linear representation, so use INT128.
*/
static inline INT128
interval_cmp_value(const Interval *interval)
{
INT128 span;
int64 dayfraction;
int64 days;
/*
* Separate time field into days and dayfraction, then add the month and
* day fields to the days part. We cannot overflow int64 days here.
*/
dayfraction = interval->time % USECS_PER_DAY;
days = interval->time / USECS_PER_DAY;
days += interval->month * INT64CONST(30);
days += interval->day;
/* Widen dayfraction to 128 bits */
span = int64_to_int128(dayfraction);
/* Scale up days to microseconds, forming a 128-bit product */
int128_add_int64_mul_int64(&span, days, USECS_PER_DAY);
return span;
}
static int
interval_cmp_internal(Interval *interval1, Interval *interval2)
{
INT128 span1 = interval_cmp_value(interval1);
INT128 span2 = interval_cmp_value(interval2);
return int128_compare(span1, span2);
}
Datum
interval_eq(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) == 0);
}
Datum
interval_ne(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) != 0);
}
Datum
interval_lt(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) < 0);
}
Datum
interval_gt(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) > 0);
}
Datum
interval_le(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) <= 0);
}
Datum
interval_ge(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_BOOL(interval_cmp_internal(interval1, interval2) >= 0);
}
Datum
interval_cmp(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
PG_RETURN_INT32(interval_cmp_internal(interval1, interval2));
}
/*
* Hashing for intervals
*
* We must produce equal hashvals for values that interval_cmp_internal()
* considers equal. So, compute the net span the same way it does,
* and then hash that.
*/
Datum
interval_hash(PG_FUNCTION_ARGS)
{
Interval *interval = PG_GETARG_INTERVAL_P(0);
INT128 span = interval_cmp_value(interval);
int64 span64;
/*
* Use only the least significant 64 bits for hashing. The upper 64 bits
* seldom add any useful information, and besides we must do it like this
* for compatibility with hashes calculated before use of INT128 was
* introduced.
*/
span64 = int128_to_int64(span);
return DirectFunctionCall1(hashint8, Int64GetDatumFast(span64));
}
Datum
interval_hash_extended(PG_FUNCTION_ARGS)
{
Interval *interval = PG_GETARG_INTERVAL_P(0);
INT128 span = interval_cmp_value(interval);
int64 span64;
/* Same approach as interval_hash */
span64 = int128_to_int64(span);
return DirectFunctionCall2(hashint8extended, Int64GetDatumFast(span64),
PG_GETARG_DATUM(1));
}
/* overlaps_timestamp() --- implements the SQL OVERLAPS operator.
*
* Algorithm is per SQL spec. This is much harder than you'd think
* because the spec requires us to deliver a non-null answer in some cases
* where some of the inputs are null.
*/
Datum
overlaps_timestamp(PG_FUNCTION_ARGS)
{
/*
* The arguments are Timestamps, but we leave them as generic Datums to
* avoid unnecessary conversions between value and reference forms --- not
* to mention possible dereferences of null pointers.
*/
Datum ts1 = PG_GETARG_DATUM(0);
Datum te1 = PG_GETARG_DATUM(1);
Datum ts2 = PG_GETARG_DATUM(2);
Datum te2 = PG_GETARG_DATUM(3);
bool ts1IsNull = PG_ARGISNULL(0);
bool te1IsNull = PG_ARGISNULL(1);
bool ts2IsNull = PG_ARGISNULL(2);
bool te2IsNull = PG_ARGISNULL(3);
#define TIMESTAMP_GT(t1,t2) \
DatumGetBool(DirectFunctionCall2(timestamp_gt,t1,t2))
#define TIMESTAMP_LT(t1,t2) \
DatumGetBool(DirectFunctionCall2(timestamp_lt,t1,t2))
/*
* If both endpoints of interval 1 are null, the result is null (unknown).
* If just one endpoint is null, take ts1 as the non-null one. Otherwise,
* take ts1 as the lesser endpoint.
*/
if (ts1IsNull)
{
if (te1IsNull)
PG_RETURN_NULL();
/* swap null for non-null */
ts1 = te1;
te1IsNull = true;
}
else if (!te1IsNull)
{
if (TIMESTAMP_GT(ts1, te1))
{
Datum tt = ts1;
ts1 = te1;
te1 = tt;
}
}
/* Likewise for interval 2. */
if (ts2IsNull)
{
if (te2IsNull)
PG_RETURN_NULL();
/* swap null for non-null */
ts2 = te2;
te2IsNull = true;
}
else if (!te2IsNull)
{
if (TIMESTAMP_GT(ts2, te2))
{
Datum tt = ts2;
ts2 = te2;
te2 = tt;
}
}
/*
* At this point neither ts1 nor ts2 is null, so we can consider three
* cases: ts1 > ts2, ts1 < ts2, ts1 = ts2
*/
if (TIMESTAMP_GT(ts1, ts2))
{
/*
* This case is ts1 < te2 OR te1 < te2, which may look redundant but
* in the presence of nulls it's not quite completely so.
*/
if (te2IsNull)
PG_RETURN_NULL();
if (TIMESTAMP_LT(ts1, te2))
PG_RETURN_BOOL(true);
if (te1IsNull)
PG_RETURN_NULL();
/*
* If te1 is not null then we had ts1 <= te1 above, and we just found
* ts1 >= te2, hence te1 >= te2.
*/
PG_RETURN_BOOL(false);
}
else if (TIMESTAMP_LT(ts1, ts2))
{
/* This case is ts2 < te1 OR te2 < te1 */
if (te1IsNull)
PG_RETURN_NULL();
if (TIMESTAMP_LT(ts2, te1))
PG_RETURN_BOOL(true);
if (te2IsNull)
PG_RETURN_NULL();
/*
* If te2 is not null then we had ts2 <= te2 above, and we just found
* ts2 >= te1, hence te2 >= te1.
*/
PG_RETURN_BOOL(false);
}
else
{
/*
* For ts1 = ts2 the spec says te1 <> te2 OR te1 = te2, which is a
* rather silly way of saying "true if both are non-null, else null".
*/
if (te1IsNull || te2IsNull)
PG_RETURN_NULL();
PG_RETURN_BOOL(true);
}
#undef TIMESTAMP_GT
#undef TIMESTAMP_LT
}
/*----------------------------------------------------------
* "Arithmetic" operators on date/times.
*---------------------------------------------------------*/
Datum
timestamp_smaller(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Timestamp result;
/* use timestamp_cmp_internal to be sure this agrees with comparisons */
if (timestamp_cmp_internal(dt1, dt2) < 0)
result = dt1;
else
result = dt2;
PG_RETURN_TIMESTAMP(result);
}
Datum
timestamp_larger(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Timestamp result;
if (timestamp_cmp_internal(dt1, dt2) > 0)
result = dt1;
else
result = dt2;
PG_RETURN_TIMESTAMP(result);
}
Datum
timestamp_mi(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
if (TIMESTAMP_NOT_FINITE(dt1) || TIMESTAMP_NOT_FINITE(dt2))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("cannot subtract infinite timestamps")));
result->time = dt1 - dt2;
result->month = 0;
result->day = 0;
/*----------
* This is wrong, but removing it breaks a lot of regression tests.
* For example:
*
* test=> SET timezone = 'EST5EDT';
* test=> SELECT
* test-> ('2005-10-30 13:22:00-05'::timestamptz -
* test(> '2005-10-29 13:22:00-04'::timestamptz);
* ?column?
* ----------------
* 1 day 01:00:00
* (1 row)
*
* so adding that to the first timestamp gets:
*
* test=> SELECT
* test-> ('2005-10-29 13:22:00-04'::timestamptz +
* test(> ('2005-10-30 13:22:00-05'::timestamptz -
* test(> '2005-10-29 13:22:00-04'::timestamptz)) at time zone 'EST';
* timezone
* --------------------
* 2005-10-30 14:22:00
* (1 row)
*----------
*/
result = DatumGetIntervalP(DirectFunctionCall1(interval_justify_hours,
IntervalPGetDatum(result)));
PG_RETURN_INTERVAL_P(result);
}
/*
* interval_justify_interval()
*
* Adjust interval so 'month', 'day', and 'time' portions are within
* customary bounds. Specifically:
*
* 0 <= abs(time) < 24 hours
* 0 <= abs(day) < 30 days
*
* Also, the sign bit on all three fields is made equal, so either
* all three fields are negative or all are positive.
*/
Datum
interval_justify_interval(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
Interval *result;
TimeOffset wholeday;
int32 wholemonth;
result = (Interval *) palloc(sizeof(Interval));
result->month = span->month;
result->day = span->day;
result->time = span->time;
TMODULO(result->time, wholeday, USECS_PER_DAY);
result->day += wholeday; /* could overflow... */
wholemonth = result->day / DAYS_PER_MONTH;
result->day -= wholemonth * DAYS_PER_MONTH;
result->month += wholemonth;
if (result->month > 0 &&
(result->day < 0 || (result->day == 0 && result->time < 0)))
{
result->day += DAYS_PER_MONTH;
result->month--;
}
else if (result->month < 0 &&
(result->day > 0 || (result->day == 0 && result->time > 0)))
{
result->day -= DAYS_PER_MONTH;
result->month++;
}
if (result->day > 0 && result->time < 0)
{
result->time += USECS_PER_DAY;
result->day--;
}
else if (result->day < 0 && result->time > 0)
{
result->time -= USECS_PER_DAY;
result->day++;
}
PG_RETURN_INTERVAL_P(result);
}
/*
* interval_justify_hours()
*
* Adjust interval so 'time' contains less than a whole day, adding
* the excess to 'day'. This is useful for
* situations (such as non-TZ) where '1 day' = '24 hours' is valid,
* e.g. interval subtraction and division.
*/
Datum
interval_justify_hours(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
Interval *result;
TimeOffset wholeday;
result = (Interval *) palloc(sizeof(Interval));
result->month = span->month;
result->day = span->day;
result->time = span->time;
TMODULO(result->time, wholeday, USECS_PER_DAY);
result->day += wholeday; /* could overflow... */
if (result->day > 0 && result->time < 0)
{
result->time += USECS_PER_DAY;
result->day--;
}
else if (result->day < 0 && result->time > 0)
{
result->time -= USECS_PER_DAY;
result->day++;
}
PG_RETURN_INTERVAL_P(result);
}
/*
* interval_justify_days()
*
* Adjust interval so 'day' contains less than 30 days, adding
* the excess to 'month'.
*/
Datum
interval_justify_days(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
Interval *result;
int32 wholemonth;
result = (Interval *) palloc(sizeof(Interval));
result->month = span->month;
result->day = span->day;
result->time = span->time;
wholemonth = result->day / DAYS_PER_MONTH;
result->day -= wholemonth * DAYS_PER_MONTH;
result->month += wholemonth;
if (result->month > 0 && result->day < 0)
{
result->day += DAYS_PER_MONTH;
result->month--;
}
else if (result->month < 0 && result->day > 0)
{
result->day -= DAYS_PER_MONTH;
result->month++;
}
PG_RETURN_INTERVAL_P(result);
}
/* timestamp_pl_interval()
* Add an interval to a timestamp data type.
* Note that interval has provisions for qualitative year/month and day
* units, so try to do the right thing with them.
* To add a month, increment the month, and use the same day of month.
* Then, if the next month has fewer days, set the day of month
* to the last day of month.
* To add a day, increment the mday, and use the same time of day.
* Lastly, add in the "quantitative time".
*/
Datum
timestamp_pl_interval(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
Timestamp result;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else
{
if (span->month != 0)
{
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
tm->tm_mon += span->month;
if (tm->tm_mon > MONTHS_PER_YEAR)
{
tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR;
tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1;
}
else if (tm->tm_mon < 1)
{
tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1;
tm->tm_mon = tm->tm_mon % MONTHS_PER_YEAR + MONTHS_PER_YEAR;
}
/* adjust for end of month boundary problems... */
if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]);
if (tm2timestamp(tm, fsec, NULL, &timestamp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
if (span->day != 0)
{
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
int julian;
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
/* Add days by converting to and from Julian */
julian = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + span->day;
j2date(julian, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
if (tm2timestamp(tm, fsec, NULL, &timestamp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
timestamp += span->time;
if (!IS_VALID_TIMESTAMP(timestamp))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
result = timestamp;
}
PG_RETURN_TIMESTAMP(result);
}
Datum
timestamp_mi_interval(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
Interval tspan;
tspan.month = -span->month;
tspan.day = -span->day;
tspan.time = -span->time;
return DirectFunctionCall2(timestamp_pl_interval,
TimestampGetDatum(timestamp),
PointerGetDatum(&tspan));
}
/* timestamptz_pl_interval()
* Add an interval to a timestamp with time zone data type.
* Note that interval has provisions for qualitative year/month
* units, so try to do the right thing with them.
* To add a month, increment the month, and use the same day of month.
* Then, if the next month has fewer days, set the day of month
* to the last day of month.
* Lastly, add in the "quantitative time".
*/
Datum
timestamptz_pl_interval(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
TimestampTz result;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else
{
if (span->month != 0)
{
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
tm->tm_mon += span->month;
if (tm->tm_mon > MONTHS_PER_YEAR)
{
tm->tm_year += (tm->tm_mon - 1) / MONTHS_PER_YEAR;
tm->tm_mon = ((tm->tm_mon - 1) % MONTHS_PER_YEAR) + 1;
}
else if (tm->tm_mon < 1)
{
tm->tm_year += tm->tm_mon / MONTHS_PER_YEAR - 1;
tm->tm_mon = tm->tm_mon % MONTHS_PER_YEAR + MONTHS_PER_YEAR;
}
/* adjust for end of month boundary problems... */
if (tm->tm_mday > day_tab[isleap(tm->tm_year)][tm->tm_mon - 1])
tm->tm_mday = (day_tab[isleap(tm->tm_year)][tm->tm_mon - 1]);
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &timestamp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
if (span->day != 0)
{
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
int julian;
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
/* Add days by converting to and from Julian */
julian = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday) + span->day;
j2date(julian, &tm->tm_year, &tm->tm_mon, &tm->tm_mday);
tz = DetermineTimeZoneOffset(tm, session_timezone);
if (tm2timestamp(tm, fsec, &tz, &timestamp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
timestamp += span->time;
if (!IS_VALID_TIMESTAMP(timestamp))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
result = timestamp;
}
PG_RETURN_TIMESTAMP(result);
}
Datum
timestamptz_mi_interval(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
Interval *span = PG_GETARG_INTERVAL_P(1);
Interval tspan;
tspan.month = -span->month;
tspan.day = -span->day;
tspan.time = -span->time;
return DirectFunctionCall2(timestamptz_pl_interval,
TimestampGetDatum(timestamp),
PointerGetDatum(&tspan));
}
Datum
interval_um(PG_FUNCTION_ARGS)
{
Interval *interval = PG_GETARG_INTERVAL_P(0);
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
result->time = -interval->time;
/* overflow check copied from int4um */
if (interval->time != 0 && SAMESIGN(result->time, interval->time))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->day = -interval->day;
if (interval->day != 0 && SAMESIGN(result->day, interval->day))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->month = -interval->month;
if (interval->month != 0 && SAMESIGN(result->month, interval->month))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
PG_RETURN_INTERVAL_P(result);
}
Datum
interval_smaller(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
Interval *result;
/* use interval_cmp_internal to be sure this agrees with comparisons */
if (interval_cmp_internal(interval1, interval2) < 0)
result = interval1;
else
result = interval2;
PG_RETURN_INTERVAL_P(result);
}
Datum
interval_larger(PG_FUNCTION_ARGS)
{
Interval *interval1 = PG_GETARG_INTERVAL_P(0);
Interval *interval2 = PG_GETARG_INTERVAL_P(1);
Interval *result;
if (interval_cmp_internal(interval1, interval2) > 0)
result = interval1;
else
result = interval2;
PG_RETURN_INTERVAL_P(result);
}
Datum
interval_pl(PG_FUNCTION_ARGS)
{
Interval *span1 = PG_GETARG_INTERVAL_P(0);
Interval *span2 = PG_GETARG_INTERVAL_P(1);
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
result->month = span1->month + span2->month;
/* overflow check copied from int4pl */
if (SAMESIGN(span1->month, span2->month) &&
!SAMESIGN(result->month, span1->month))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->day = span1->day + span2->day;
if (SAMESIGN(span1->day, span2->day) &&
!SAMESIGN(result->day, span1->day))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->time = span1->time + span2->time;
if (SAMESIGN(span1->time, span2->time) &&
!SAMESIGN(result->time, span1->time))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
PG_RETURN_INTERVAL_P(result);
}
Datum
interval_mi(PG_FUNCTION_ARGS)
{
Interval *span1 = PG_GETARG_INTERVAL_P(0);
Interval *span2 = PG_GETARG_INTERVAL_P(1);
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
result->month = span1->month - span2->month;
/* overflow check copied from int4mi */
if (!SAMESIGN(span1->month, span2->month) &&
!SAMESIGN(result->month, span1->month))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->day = span1->day - span2->day;
if (!SAMESIGN(span1->day, span2->day) &&
!SAMESIGN(result->day, span1->day))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->time = span1->time - span2->time;
if (!SAMESIGN(span1->time, span2->time) &&
!SAMESIGN(result->time, span1->time))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
PG_RETURN_INTERVAL_P(result);
}
/*
* There is no interval_abs(): it is unclear what value to return:
* http://archives.postgresql.org/pgsql-general/2009-10/msg01031.php
* http://archives.postgresql.org/pgsql-general/2009-11/msg00041.php
*/
Datum
interval_mul(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
float8 factor = PG_GETARG_FLOAT8(1);
double month_remainder_days,
sec_remainder,
result_double;
int32 orig_month = span->month,
orig_day = span->day;
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
result_double = span->month * factor;
if (isnan(result_double) ||
result_double > INT_MAX || result_double < INT_MIN)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->month = (int32) result_double;
result_double = span->day * factor;
if (isnan(result_double) ||
result_double > INT_MAX || result_double < INT_MIN)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->day = (int32) result_double;
/*
* The above correctly handles the whole-number part of the month and day
* products, but we have to do something with any fractional part
* resulting when the factor is non-integral. We cascade the fractions
* down to lower units using the conversion factors DAYS_PER_MONTH and
* SECS_PER_DAY. Note we do NOT cascade up, since we are not forced to do
* so by the representation. The user can choose to cascade up later,
* using justify_hours and/or justify_days.
*/
/*
* Fractional months full days into days.
*
* Floating point calculation are inherently imprecise, so these
* calculations are crafted to produce the most reliable result possible.
* TSROUND() is needed to more accurately produce whole numbers where
* appropriate.
*/
month_remainder_days = (orig_month * factor - result->month) * DAYS_PER_MONTH;
month_remainder_days = TSROUND(month_remainder_days);
sec_remainder = (orig_day * factor - result->day +
month_remainder_days - (int) month_remainder_days) * SECS_PER_DAY;
sec_remainder = TSROUND(sec_remainder);
/*
* Might have 24:00:00 hours due to rounding, or >24 hours because of time
* cascade from months and days. It might still be >24 if the combination
* of cascade and the seconds factor operation itself.
*/
if (Abs(sec_remainder) >= SECS_PER_DAY)
{
result->day += (int) (sec_remainder / SECS_PER_DAY);
sec_remainder -= (int) (sec_remainder / SECS_PER_DAY) * SECS_PER_DAY;
}
/* cascade units down */
result->day += (int32) month_remainder_days;
result_double = rint(span->time * factor + sec_remainder * USECS_PER_SEC);
if (isnan(result_double) || !FLOAT8_FITS_IN_INT64(result_double))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
result->time = (int64) result_double;
PG_RETURN_INTERVAL_P(result);
}
Datum
mul_d_interval(PG_FUNCTION_ARGS)
{
/* Args are float8 and Interval *, but leave them as generic Datum */
Datum factor = PG_GETARG_DATUM(0);
Datum span = PG_GETARG_DATUM(1);
return DirectFunctionCall2(interval_mul, span, factor);
}
Datum
interval_div(PG_FUNCTION_ARGS)
{
Interval *span = PG_GETARG_INTERVAL_P(0);
float8 factor = PG_GETARG_FLOAT8(1);
double month_remainder_days,
sec_remainder;
int32 orig_month = span->month,
orig_day = span->day;
Interval *result;
result = (Interval *) palloc(sizeof(Interval));
if (factor == 0.0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
result->month = (int32) (span->month / factor);
result->day = (int32) (span->day / factor);
/*
* Fractional months full days into days. See comment in interval_mul().
*/
month_remainder_days = (orig_month / factor - result->month) * DAYS_PER_MONTH;
month_remainder_days = TSROUND(month_remainder_days);
sec_remainder = (orig_day / factor - result->day +
month_remainder_days - (int) month_remainder_days) * SECS_PER_DAY;
sec_remainder = TSROUND(sec_remainder);
if (Abs(sec_remainder) >= SECS_PER_DAY)
{
result->day += (int) (sec_remainder / SECS_PER_DAY);
sec_remainder -= (int) (sec_remainder / SECS_PER_DAY) * SECS_PER_DAY;
}
/* cascade units down */
result->day += (int32) month_remainder_days;
result->time = rint(span->time / factor + sec_remainder * USECS_PER_SEC);
PG_RETURN_INTERVAL_P(result);
}
/*
* in_range support functions for timestamps and intervals.
*
* Per SQL spec, we support these with interval as the offset type.
* The spec's restriction that the offset not be negative is a bit hard to
* decipher for intervals, but we choose to interpret it the same as our
* interval comparison operators would.
*/
Datum
in_range_timestamptz_interval(PG_FUNCTION_ARGS)
{
TimestampTz val = PG_GETARG_TIMESTAMPTZ(0);
TimestampTz base = PG_GETARG_TIMESTAMPTZ(1);
Interval *offset = PG_GETARG_INTERVAL_P(2);
bool sub = PG_GETARG_BOOL(3);
bool less = PG_GETARG_BOOL(4);
TimestampTz sum;
if (int128_compare(interval_cmp_value(offset), int64_to_int128(0)) < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
errmsg("invalid preceding or following size in window function")));
/* We don't currently bother to avoid overflow hazards here */
if (sub)
sum = DatumGetTimestampTz(DirectFunctionCall2(timestamptz_mi_interval,
TimestampTzGetDatum(base),
IntervalPGetDatum(offset)));
else
sum = DatumGetTimestampTz(DirectFunctionCall2(timestamptz_pl_interval,
TimestampTzGetDatum(base),
IntervalPGetDatum(offset)));
if (less)
PG_RETURN_BOOL(val <= sum);
else
PG_RETURN_BOOL(val >= sum);
}
Datum
in_range_timestamp_interval(PG_FUNCTION_ARGS)
{
Timestamp val = PG_GETARG_TIMESTAMP(0);
Timestamp base = PG_GETARG_TIMESTAMP(1);
Interval *offset = PG_GETARG_INTERVAL_P(2);
bool sub = PG_GETARG_BOOL(3);
bool less = PG_GETARG_BOOL(4);
Timestamp sum;
if (int128_compare(interval_cmp_value(offset), int64_to_int128(0)) < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
errmsg("invalid preceding or following size in window function")));
/* We don't currently bother to avoid overflow hazards here */
if (sub)
sum = DatumGetTimestamp(DirectFunctionCall2(timestamp_mi_interval,
TimestampGetDatum(base),
IntervalPGetDatum(offset)));
else
sum = DatumGetTimestamp(DirectFunctionCall2(timestamp_pl_interval,
TimestampGetDatum(base),
IntervalPGetDatum(offset)));
if (less)
PG_RETURN_BOOL(val <= sum);
else
PG_RETURN_BOOL(val >= sum);
}
Datum
in_range_interval_interval(PG_FUNCTION_ARGS)
{
Interval *val = PG_GETARG_INTERVAL_P(0);
Interval *base = PG_GETARG_INTERVAL_P(1);
Interval *offset = PG_GETARG_INTERVAL_P(2);
bool sub = PG_GETARG_BOOL(3);
bool less = PG_GETARG_BOOL(4);
Interval *sum;
if (int128_compare(interval_cmp_value(offset), int64_to_int128(0)) < 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE),
errmsg("invalid preceding or following size in window function")));
/* We don't currently bother to avoid overflow hazards here */
if (sub)
sum = DatumGetIntervalP(DirectFunctionCall2(interval_mi,
IntervalPGetDatum(base),
IntervalPGetDatum(offset)));
else
sum = DatumGetIntervalP(DirectFunctionCall2(interval_pl,
IntervalPGetDatum(base),
IntervalPGetDatum(offset)));
if (less)
PG_RETURN_BOOL(interval_cmp_internal(val, sum) <= 0);
else
PG_RETURN_BOOL(interval_cmp_internal(val, sum) >= 0);
}
/*
* interval_accum, interval_accum_inv, and interval_avg implement the
* AVG(interval) aggregate.
*
* The transition datatype for this aggregate is a 2-element array of
* intervals, where the first is the running sum and the second contains
* the number of values so far in its 'time' field. This is a bit ugly
* but it beats inventing a specialized datatype for the purpose.
*/
Datum
interval_accum(PG_FUNCTION_ARGS)
{
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
Interval *newval = PG_GETARG_INTERVAL_P(1);
Datum *transdatums;
int ndatums;
Interval sumX,
N;
Interval *newsum;
ArrayType *result;
deconstruct_array(transarray,
INTERVALOID, sizeof(Interval), false, 'd',
&transdatums, NULL, &ndatums);
if (ndatums != 2)
elog(ERROR, "expected 2-element interval array");
sumX = *(DatumGetIntervalP(transdatums[0]));
N = *(DatumGetIntervalP(transdatums[1]));
newsum = DatumGetIntervalP(DirectFunctionCall2(interval_pl,
IntervalPGetDatum(&sumX),
IntervalPGetDatum(newval)));
N.time += 1;
transdatums[0] = IntervalPGetDatum(newsum);
transdatums[1] = IntervalPGetDatum(&N);
result = construct_array(transdatums, 2,
INTERVALOID, sizeof(Interval), false, 'd');
PG_RETURN_ARRAYTYPE_P(result);
}
Datum
interval_combine(PG_FUNCTION_ARGS)
{
ArrayType *transarray1 = PG_GETARG_ARRAYTYPE_P(0);
ArrayType *transarray2 = PG_GETARG_ARRAYTYPE_P(1);
Datum *transdatums1;
Datum *transdatums2;
int ndatums1;
int ndatums2;
Interval sum1,
N1;
Interval sum2,
N2;
Interval *newsum;
ArrayType *result;
deconstruct_array(transarray1,
INTERVALOID, sizeof(Interval), false, 'd',
&transdatums1, NULL, &ndatums1);
if (ndatums1 != 2)
elog(ERROR, "expected 2-element interval array");
sum1 = *(DatumGetIntervalP(transdatums1[0]));
N1 = *(DatumGetIntervalP(transdatums1[1]));
deconstruct_array(transarray2,
INTERVALOID, sizeof(Interval), false, 'd',
&transdatums2, NULL, &ndatums2);
if (ndatums2 != 2)
elog(ERROR, "expected 2-element interval array");
sum2 = *(DatumGetIntervalP(transdatums2[0]));
N2 = *(DatumGetIntervalP(transdatums2[1]));
newsum = DatumGetIntervalP(DirectFunctionCall2(interval_pl,
IntervalPGetDatum(&sum1),
IntervalPGetDatum(&sum2)));
N1.time += N2.time;
transdatums1[0] = IntervalPGetDatum(newsum);
transdatums1[1] = IntervalPGetDatum(&N1);
result = construct_array(transdatums1, 2,
INTERVALOID, sizeof(Interval), false, 'd');
PG_RETURN_ARRAYTYPE_P(result);
}
Datum
interval_accum_inv(PG_FUNCTION_ARGS)
{
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
Interval *newval = PG_GETARG_INTERVAL_P(1);
Datum *transdatums;
int ndatums;
Interval sumX,
N;
Interval *newsum;
ArrayType *result;
deconstruct_array(transarray,
INTERVALOID, sizeof(Interval), false, 'd',
&transdatums, NULL, &ndatums);
if (ndatums != 2)
elog(ERROR, "expected 2-element interval array");
sumX = *(DatumGetIntervalP(transdatums[0]));
N = *(DatumGetIntervalP(transdatums[1]));
newsum = DatumGetIntervalP(DirectFunctionCall2(interval_mi,
IntervalPGetDatum(&sumX),
IntervalPGetDatum(newval)));
N.time -= 1;
transdatums[0] = IntervalPGetDatum(newsum);
transdatums[1] = IntervalPGetDatum(&N);
result = construct_array(transdatums, 2,
INTERVALOID, sizeof(Interval), false, 'd');
PG_RETURN_ARRAYTYPE_P(result);
}
Datum
interval_avg(PG_FUNCTION_ARGS)
{
ArrayType *transarray = PG_GETARG_ARRAYTYPE_P(0);
Datum *transdatums;
int ndatums;
Interval sumX,
N;
deconstruct_array(transarray,
INTERVALOID, sizeof(Interval), false, 'd',
&transdatums, NULL, &ndatums);
if (ndatums != 2)
elog(ERROR, "expected 2-element interval array");
sumX = *(DatumGetIntervalP(transdatums[0]));
N = *(DatumGetIntervalP(transdatums[1]));
/* SQL defines AVG of no values to be NULL */
if (N.time == 0)
PG_RETURN_NULL();
return DirectFunctionCall2(interval_div,
IntervalPGetDatum(&sumX),
Float8GetDatum((double) N.time));
}
/* timestamp_age()
* Calculate time difference while retaining year/month fields.
* Note that this does not result in an accurate absolute time span
* since year and month are out of context once the arithmetic
* is done.
*/
Datum
timestamp_age(PG_FUNCTION_ARGS)
{
Timestamp dt1 = PG_GETARG_TIMESTAMP(0);
Timestamp dt2 = PG_GETARG_TIMESTAMP(1);
Interval *result;
fsec_t fsec,
fsec1,
fsec2;
struct pg_tm tt,
*tm = &tt;
struct pg_tm tt1,
*tm1 = &tt1;
struct pg_tm tt2,
*tm2 = &tt2;
result = (Interval *) palloc(sizeof(Interval));
if (timestamp2tm(dt1, NULL, tm1, &fsec1, NULL, NULL) == 0 &&
timestamp2tm(dt2, NULL, tm2, &fsec2, NULL, NULL) == 0)
{
/* form the symbolic difference */
fsec = fsec1 - fsec2;
tm->tm_sec = tm1->tm_sec - tm2->tm_sec;
tm->tm_min = tm1->tm_min - tm2->tm_min;
tm->tm_hour = tm1->tm_hour - tm2->tm_hour;
tm->tm_mday = tm1->tm_mday - tm2->tm_mday;
tm->tm_mon = tm1->tm_mon - tm2->tm_mon;
tm->tm_year = tm1->tm_year - tm2->tm_year;
/* flip sign if necessary... */
if (dt1 < dt2)
{
fsec = -fsec;
tm->tm_sec = -tm->tm_sec;
tm->tm_min = -tm->tm_min;
tm->tm_hour = -tm->tm_hour;
tm->tm_mday = -tm->tm_mday;
tm->tm_mon = -tm->tm_mon;
tm->tm_year = -tm->tm_year;
}
/* propagate any negative fields into the next higher field */
while (fsec < 0)
{
fsec += USECS_PER_SEC;
tm->tm_sec--;
}
while (tm->tm_sec < 0)
{
tm->tm_sec += SECS_PER_MINUTE;
tm->tm_min--;
}
while (tm->tm_min < 0)
{
tm->tm_min += MINS_PER_HOUR;
tm->tm_hour--;
}
while (tm->tm_hour < 0)
{
tm->tm_hour += HOURS_PER_DAY;
tm->tm_mday--;
}
while (tm->tm_mday < 0)
{
if (dt1 < dt2)
{
tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1];
tm->tm_mon--;
}
else
{
tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1];
tm->tm_mon--;
}
}
while (tm->tm_mon < 0)
{
tm->tm_mon += MONTHS_PER_YEAR;
tm->tm_year--;
}
/* recover sign if necessary... */
if (dt1 < dt2)
{
fsec = -fsec;
tm->tm_sec = -tm->tm_sec;
tm->tm_min = -tm->tm_min;
tm->tm_hour = -tm->tm_hour;
tm->tm_mday = -tm->tm_mday;
tm->tm_mon = -tm->tm_mon;
tm->tm_year = -tm->tm_year;
}
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
}
else
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
PG_RETURN_INTERVAL_P(result);
}
/* timestamptz_age()
* Calculate time difference while retaining year/month fields.
* Note that this does not result in an accurate absolute time span
* since year and month are out of context once the arithmetic
* is done.
*/
Datum
timestamptz_age(PG_FUNCTION_ARGS)
{
TimestampTz dt1 = PG_GETARG_TIMESTAMPTZ(0);
TimestampTz dt2 = PG_GETARG_TIMESTAMPTZ(1);
Interval *result;
fsec_t fsec,
fsec1,
fsec2;
struct pg_tm tt,
*tm = &tt;
struct pg_tm tt1,
*tm1 = &tt1;
struct pg_tm tt2,
*tm2 = &tt2;
int tz1;
int tz2;
result = (Interval *) palloc(sizeof(Interval));
if (timestamp2tm(dt1, &tz1, tm1, &fsec1, NULL, NULL) == 0 &&
timestamp2tm(dt2, &tz2, tm2, &fsec2, NULL, NULL) == 0)
{
/* form the symbolic difference */
fsec = fsec1 - fsec2;
tm->tm_sec = tm1->tm_sec - tm2->tm_sec;
tm->tm_min = tm1->tm_min - tm2->tm_min;
tm->tm_hour = tm1->tm_hour - tm2->tm_hour;
tm->tm_mday = tm1->tm_mday - tm2->tm_mday;
tm->tm_mon = tm1->tm_mon - tm2->tm_mon;
tm->tm_year = tm1->tm_year - tm2->tm_year;
/* flip sign if necessary... */
if (dt1 < dt2)
{
fsec = -fsec;
tm->tm_sec = -tm->tm_sec;
tm->tm_min = -tm->tm_min;
tm->tm_hour = -tm->tm_hour;
tm->tm_mday = -tm->tm_mday;
tm->tm_mon = -tm->tm_mon;
tm->tm_year = -tm->tm_year;
}
/* propagate any negative fields into the next higher field */
while (fsec < 0)
{
fsec += USECS_PER_SEC;
tm->tm_sec--;
}
while (tm->tm_sec < 0)
{
tm->tm_sec += SECS_PER_MINUTE;
tm->tm_min--;
}
while (tm->tm_min < 0)
{
tm->tm_min += MINS_PER_HOUR;
tm->tm_hour--;
}
while (tm->tm_hour < 0)
{
tm->tm_hour += HOURS_PER_DAY;
tm->tm_mday--;
}
while (tm->tm_mday < 0)
{
if (dt1 < dt2)
{
tm->tm_mday += day_tab[isleap(tm1->tm_year)][tm1->tm_mon - 1];
tm->tm_mon--;
}
else
{
tm->tm_mday += day_tab[isleap(tm2->tm_year)][tm2->tm_mon - 1];
tm->tm_mon--;
}
}
while (tm->tm_mon < 0)
{
tm->tm_mon += MONTHS_PER_YEAR;
tm->tm_year--;
}
/*
* Note: we deliberately ignore any difference between tz1 and tz2.
*/
/* recover sign if necessary... */
if (dt1 < dt2)
{
fsec = -fsec;
tm->tm_sec = -tm->tm_sec;
tm->tm_min = -tm->tm_min;
tm->tm_hour = -tm->tm_hour;
tm->tm_mday = -tm->tm_mday;
tm->tm_mon = -tm->tm_mon;
tm->tm_year = -tm->tm_year;
}
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
}
else
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
PG_RETURN_INTERVAL_P(result);
}
/*----------------------------------------------------------
* Conversion operators.
*---------------------------------------------------------*/
/* timestamp_trunc()
* Truncate timestamp to specified units.
*/
Datum
timestamp_trunc(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_PP(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
Timestamp result;
int type,
val;
char *lowunits;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMP(timestamp);
lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
VARSIZE_ANY_EXHDR(units),
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNITS)
{
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
switch (val)
{
case DTK_WEEK:
{
int woy;
woy = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
/*
* If it is week 52/53 and the month is January, then the
* week must belong to the previous year. Also, some
* December dates belong to the next year.
*/
if (woy >= 52 && tm->tm_mon == 1)
--tm->tm_year;
if (woy <= 1 && tm->tm_mon == MONTHS_PER_YEAR)
++tm->tm_year;
isoweek2date(woy, &(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday));
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
fsec = 0;
break;
}
case DTK_MILLENNIUM:
/* see comments in timestamptz_trunc */
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 999) / 1000) * 1000 - 999;
else
tm->tm_year = -((999 - (tm->tm_year - 1)) / 1000) * 1000 + 1;
/* FALL THRU */
case DTK_CENTURY:
/* see comments in timestamptz_trunc */
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 99) / 100) * 100 - 99;
else
tm->tm_year = -((99 - (tm->tm_year - 1)) / 100) * 100 + 1;
/* FALL THRU */
case DTK_DECADE:
/* see comments in timestamptz_trunc */
if (val != DTK_MILLENNIUM && val != DTK_CENTURY)
{
if (tm->tm_year > 0)
tm->tm_year = (tm->tm_year / 10) * 10;
else
tm->tm_year = -((8 - (tm->tm_year - 1)) / 10) * 10;
}
/* FALL THRU */
case DTK_YEAR:
tm->tm_mon = 1;
/* FALL THRU */
case DTK_QUARTER:
tm->tm_mon = (3 * ((tm->tm_mon - 1) / 3)) + 1;
/* FALL THRU */
case DTK_MONTH:
tm->tm_mday = 1;
/* FALL THRU */
case DTK_DAY:
tm->tm_hour = 0;
/* FALL THRU */
case DTK_HOUR:
tm->tm_min = 0;
/* FALL THRU */
case DTK_MINUTE:
tm->tm_sec = 0;
/* FALL THRU */
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
fsec = (fsec / 1000) * 1000;
break;
case DTK_MICROSEC:
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp units \"%s\" not supported",
lowunits)));
result = 0;
}
if (tm2timestamp(tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp units \"%s\" not recognized",
lowunits)));
result = 0;
}
PG_RETURN_TIMESTAMP(result);
}
/*
* Common code for timestamptz_trunc() and timestamptz_trunc_zone().
*
* tzp identifies the zone to truncate with respect to. We assume
* infinite timestamps have already been rejected.
*/
static TimestampTz
timestamptz_trunc_internal(text *units, TimestampTz timestamp, pg_tz *tzp)
{
TimestampTz result;
int tz;
int type,
val;
bool redotz = false;
char *lowunits;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
VARSIZE_ANY_EXHDR(units),
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNITS)
{
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, tzp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
switch (val)
{
case DTK_WEEK:
{
int woy;
woy = date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
/*
* If it is week 52/53 and the month is January, then the
* week must belong to the previous year. Also, some
* December dates belong to the next year.
*/
if (woy >= 52 && tm->tm_mon == 1)
--tm->tm_year;
if (woy <= 1 && tm->tm_mon == MONTHS_PER_YEAR)
++tm->tm_year;
isoweek2date(woy, &(tm->tm_year), &(tm->tm_mon), &(tm->tm_mday));
tm->tm_hour = 0;
tm->tm_min = 0;
tm->tm_sec = 0;
fsec = 0;
redotz = true;
break;
}
/* one may consider DTK_THOUSAND and DTK_HUNDRED... */
case DTK_MILLENNIUM:
/*
* truncating to the millennium? what is this supposed to
* mean? let us put the first year of the millennium... i.e.
* -1000, 1, 1001, 2001...
*/
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 999) / 1000) * 1000 - 999;
else
tm->tm_year = -((999 - (tm->tm_year - 1)) / 1000) * 1000 + 1;
/* FALL THRU */
case DTK_CENTURY:
/* truncating to the century? as above: -100, 1, 101... */
if (tm->tm_year > 0)
tm->tm_year = ((tm->tm_year + 99) / 100) * 100 - 99;
else
tm->tm_year = -((99 - (tm->tm_year - 1)) / 100) * 100 + 1;
/* FALL THRU */
case DTK_DECADE:
/*
* truncating to the decade? first year of the decade. must
* not be applied if year was truncated before!
*/
if (val != DTK_MILLENNIUM && val != DTK_CENTURY)
{
if (tm->tm_year > 0)
tm->tm_year = (tm->tm_year / 10) * 10;
else
tm->tm_year = -((8 - (tm->tm_year - 1)) / 10) * 10;
}
/* FALL THRU */
case DTK_YEAR:
tm->tm_mon = 1;
/* FALL THRU */
case DTK_QUARTER:
tm->tm_mon = (3 * ((tm->tm_mon - 1) / 3)) + 1;
/* FALL THRU */
case DTK_MONTH:
tm->tm_mday = 1;
/* FALL THRU */
case DTK_DAY:
tm->tm_hour = 0;
redotz = true; /* for all cases >= DAY */
/* FALL THRU */
case DTK_HOUR:
tm->tm_min = 0;
/* FALL THRU */
case DTK_MINUTE:
tm->tm_sec = 0;
/* FALL THRU */
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
fsec = (fsec / 1000) * 1000;
break;
case DTK_MICROSEC:
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp with time zone units \"%s\" not "
"supported", lowunits)));
result = 0;
}
if (redotz)
tz = DetermineTimeZoneOffset(tm, tzp);
if (tm2timestamp(tm, fsec, &tz, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp with time zone units \"%s\" not recognized",
lowunits)));
result = 0;
}
return result;
}
/* timestamptz_trunc()
* Truncate timestamptz to specified units in session timezone.
*/
Datum
timestamptz_trunc(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_PP(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
TimestampTz result;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMPTZ(timestamp);
result = timestamptz_trunc_internal(units, timestamp, session_timezone);
PG_RETURN_TIMESTAMPTZ(result);
}
/* timestamptz_trunc_zone()
* Truncate timestamptz to specified units in specified timezone.
*/
Datum
timestamptz_trunc_zone(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_PP(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
text *zone = PG_GETARG_TEXT_PP(2);
TimestampTz result;
char tzname[TZ_STRLEN_MAX + 1];
char *lowzone;
int type,
val;
pg_tz *tzp;
/*
* timestamptz_zone() doesn't look up the zone for infinite inputs, so we
* don't do so here either.
*/
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMP(timestamp);
/*
* Look up the requested timezone (see notes in timestamptz_zone()).
*/
text_to_cstring_buffer(zone, tzname, sizeof(tzname));
/* DecodeTimezoneAbbrev requires lowercase input */
lowzone = downcase_truncate_identifier(tzname,
strlen(tzname),
false);
type = DecodeTimezoneAbbrev(0, lowzone, &val, &tzp);
if (type == TZ || type == DTZ)
{
/* fixed-offset abbreviation, get a pg_tz descriptor for that */
tzp = pg_tzset_offset(-val);
}
else if (type == DYNTZ)
{
/* dynamic-offset abbreviation, use its referenced timezone */
}
else
{
/* try it as a full zone name */
tzp = pg_tzset(tzname);
if (!tzp)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized", tzname)));
}
result = timestamptz_trunc_internal(units, timestamp, tzp);
PG_RETURN_TIMESTAMPTZ(result);
}
/* interval_trunc()
* Extract specified field from interval.
*/
Datum
interval_trunc(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_PP(0);
Interval *interval = PG_GETARG_INTERVAL_P(1);
Interval *result;
int type,
val;
char *lowunits;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
result = (Interval *) palloc(sizeof(Interval));
lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
VARSIZE_ANY_EXHDR(units),
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNITS)
{
if (interval2tm(*interval, tm, &fsec) == 0)
{
switch (val)
{
case DTK_MILLENNIUM:
/* caution: C division may have negative remainder */
tm->tm_year = (tm->tm_year / 1000) * 1000;
/* FALL THRU */
case DTK_CENTURY:
/* caution: C division may have negative remainder */
tm->tm_year = (tm->tm_year / 100) * 100;
/* FALL THRU */
case DTK_DECADE:
/* caution: C division may have negative remainder */
tm->tm_year = (tm->tm_year / 10) * 10;
/* FALL THRU */
case DTK_YEAR:
tm->tm_mon = 0;
/* FALL THRU */
case DTK_QUARTER:
tm->tm_mon = 3 * (tm->tm_mon / 3);
/* FALL THRU */
case DTK_MONTH:
tm->tm_mday = 0;
/* FALL THRU */
case DTK_DAY:
tm->tm_hour = 0;
/* FALL THRU */
case DTK_HOUR:
tm->tm_min = 0;
/* FALL THRU */
case DTK_MINUTE:
tm->tm_sec = 0;
/* FALL THRU */
case DTK_SECOND:
fsec = 0;
break;
case DTK_MILLISEC:
fsec = (fsec / 1000) * 1000;
break;
case DTK_MICROSEC:
break;
default:
if (val == DTK_WEEK)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("interval units \"%s\" not supported "
"because months usually have fractional weeks",
lowunits)));
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("interval units \"%s\" not supported",
lowunits)));
}
if (tm2interval(tm, fsec, result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("interval out of range")));
}
else
elog(ERROR, "could not convert interval to tm");
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval units \"%s\" not recognized",
lowunits)));
}
PG_RETURN_INTERVAL_P(result);
}
/* isoweek2j()
*
* Return the Julian day which corresponds to the first day (Monday) of the given ISO 8601 year and week.
* Julian days are used to convert between ISO week dates and Gregorian dates.
*/
int
isoweek2j(int year, int week)
{
int day0,
day4;
/* fourth day of current year */
day4 = date2j(year, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
return ((week - 1) * 7) + (day4 - day0);
}
/* isoweek2date()
* Convert ISO week of year number to date.
* The year field must be specified with the ISO year!
* karel 2000/08/07
*/
void
isoweek2date(int woy, int *year, int *mon, int *mday)
{
j2date(isoweek2j(*year, woy), year, mon, mday);
}
/* isoweekdate2date()
*
* Convert an ISO 8601 week date (ISO year, ISO week) into a Gregorian date.
* Gregorian day of week sent so weekday strings can be supplied.
* Populates year, mon, and mday with the correct Gregorian values.
* year must be passed in as the ISO year.
*/
void
isoweekdate2date(int isoweek, int wday, int *year, int *mon, int *mday)
{
int jday;
jday = isoweek2j(*year, isoweek);
/* convert Gregorian week start (Sunday=1) to ISO week start (Monday=1) */
if (wday > 1)
jday += wday - 2;
else
jday += 6;
j2date(jday, year, mon, mday);
}
/* date2isoweek()
*
* Returns ISO week number of year.
*/
int
date2isoweek(int year, int mon, int mday)
{
float8 result;
int day0,
day4,
dayn;
/* current day */
dayn = date2j(year, mon, mday);
/* fourth day of current year */
day4 = date2j(year, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
/*
* We need the first week containing a Thursday, otherwise this day falls
* into the previous year for purposes of counting weeks
*/
if (dayn < day4 - day0)
{
day4 = date2j(year - 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
}
result = (dayn - (day4 - day0)) / 7 + 1;
/*
* Sometimes the last few days in a year will fall into the first week of
* the next year, so check for this.
*/
if (result >= 52)
{
day4 = date2j(year + 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
if (dayn >= day4 - day0)
result = (dayn - (day4 - day0)) / 7 + 1;
}
return (int) result;
}
/* date2isoyear()
*
* Returns ISO 8601 year number.
* Note: zero or negative results follow the year-zero-exists convention.
*/
int
date2isoyear(int year, int mon, int mday)
{
float8 result;
int day0,
day4,
dayn;
/* current day */
dayn = date2j(year, mon, mday);
/* fourth day of current year */
day4 = date2j(year, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
/*
* We need the first week containing a Thursday, otherwise this day falls
* into the previous year for purposes of counting weeks
*/
if (dayn < day4 - day0)
{
day4 = date2j(year - 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
year--;
}
result = (dayn - (day4 - day0)) / 7 + 1;
/*
* Sometimes the last few days in a year will fall into the first week of
* the next year, so check for this.
*/
if (result >= 52)
{
day4 = date2j(year + 1, 1, 4);
/* day0 == offset to first day of week (Monday) */
day0 = j2day(day4 - 1);
if (dayn >= day4 - day0)
year++;
}
return year;
}
/* date2isoyearday()
*
* Returns the ISO 8601 day-of-year, given a Gregorian year, month and day.
* Possible return values are 1 through 371 (364 in non-leap years).
*/
int
date2isoyearday(int year, int mon, int mday)
{
return date2j(year, mon, mday) - isoweek2j(date2isoyear(year, mon, mday), 1) + 1;
}
/*
* NonFiniteTimestampTzPart
*
* Used by timestamp_part and timestamptz_part when extracting from infinite
* timestamp[tz]. Returns +/-Infinity if that is the appropriate result,
* otherwise returns zero (which should be taken as meaning to return NULL).
*
* Errors thrown here for invalid units should exactly match those that
* would be thrown in the calling functions, else there will be unexpected
* discrepancies between finite- and infinite-input cases.
*/
static float8
NonFiniteTimestampTzPart(int type, int unit, char *lowunits,
bool isNegative, bool isTz)
{
if ((type != UNITS) && (type != RESERV))
{
if (isTz)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp with time zone units \"%s\" not recognized",
lowunits)));
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp units \"%s\" not recognized",
lowunits)));
}
switch (unit)
{
/* Oscillating units */
case DTK_MICROSEC:
case DTK_MILLISEC:
case DTK_SECOND:
case DTK_MINUTE:
case DTK_HOUR:
case DTK_DAY:
case DTK_MONTH:
case DTK_QUARTER:
case DTK_WEEK:
case DTK_DOW:
case DTK_ISODOW:
case DTK_DOY:
case DTK_TZ:
case DTK_TZ_MINUTE:
case DTK_TZ_HOUR:
return 0.0;
/* Monotonically-increasing units */
case DTK_YEAR:
case DTK_DECADE:
case DTK_CENTURY:
case DTK_MILLENNIUM:
case DTK_JULIAN:
case DTK_ISOYEAR:
case DTK_EPOCH:
if (isNegative)
return -get_float8_infinity();
else
return get_float8_infinity();
default:
if (isTz)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp with time zone units \"%s\" not supported",
lowunits)));
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp units \"%s\" not supported",
lowunits)));
return 0.0; /* keep compiler quiet */
}
}
/* timestamp_part()
* Extract specified field from timestamp.
*/
Datum
timestamp_part(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_PP(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
float8 result;
Timestamp epoch;
int type,
val;
char *lowunits;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
VARSIZE_ANY_EXHDR(units),
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (TIMESTAMP_NOT_FINITE(timestamp))
{
result = NonFiniteTimestampTzPart(type, val, lowunits,
TIMESTAMP_IS_NOBEGIN(timestamp),
false);
if (result)
PG_RETURN_FLOAT8(result);
else
PG_RETURN_NULL();
}
if (type == UNITS)
{
if (timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
switch (val)
{
case DTK_MICROSEC:
result = tm->tm_sec * 1000000.0 + fsec;
break;
case DTK_MILLISEC:
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
break;
case DTK_SECOND:
result = tm->tm_sec + fsec / 1000000.0;
break;
case DTK_MINUTE:
result = tm->tm_min;
break;
case DTK_HOUR:
result = tm->tm_hour;
break;
case DTK_DAY:
result = tm->tm_mday;
break;
case DTK_MONTH:
result = tm->tm_mon;
break;
case DTK_QUARTER:
result = (tm->tm_mon - 1) / 3 + 1;
break;
case DTK_WEEK:
result = (float8) date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
break;
case DTK_YEAR:
if (tm->tm_year > 0)
result = tm->tm_year;
else
/* there is no year 0, just 1 BC and 1 AD */
result = tm->tm_year - 1;
break;
case DTK_DECADE:
/*
* what is a decade wrt dates? let us assume that decade 199
* is 1990 thru 1999... decade 0 starts on year 1 BC, and -1
* is 11 BC thru 2 BC...
*/
if (tm->tm_year >= 0)
result = tm->tm_year / 10;
else
result = -((8 - (tm->tm_year - 1)) / 10);
break;
case DTK_CENTURY:
/* ----
* centuries AD, c>0: year in [ (c-1)* 100 + 1 : c*100 ]
* centuries BC, c<0: year in [ c*100 : (c+1) * 100 - 1]
* there is no number 0 century.
* ----
*/
if (tm->tm_year > 0)
result = (tm->tm_year + 99) / 100;
else
/* caution: C division may have negative remainder */
result = -((99 - (tm->tm_year - 1)) / 100);
break;
case DTK_MILLENNIUM:
/* see comments above. */
if (tm->tm_year > 0)
result = (tm->tm_year + 999) / 1000;
else
result = -((999 - (tm->tm_year - 1)) / 1000);
break;
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
break;
case DTK_ISOYEAR:
result = date2isoyear(tm->tm_year, tm->tm_mon, tm->tm_mday);
/* Adjust BC years */
if (result <= 0)
result -= 1;
break;
case DTK_DOW:
case DTK_ISODOW:
result = j2day(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday));
if (val == DTK_ISODOW && result == 0)
result = 7;
break;
case DTK_DOY:
result = (date2j(tm->tm_year, tm->tm_mon, tm->tm_mday)
- date2j(tm->tm_year, 1, 1) + 1);
break;
case DTK_TZ:
case DTK_TZ_MINUTE:
case DTK_TZ_HOUR:
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp units \"%s\" not supported",
lowunits)));
result = 0;
}
}
else if (type == RESERV)
{
switch (val)
{
case DTK_EPOCH:
epoch = SetEpochTimestamp();
/* try to avoid precision loss in subtraction */
if (timestamp < (PG_INT64_MAX + epoch))
result = (timestamp - epoch) / 1000000.0;
else
result = ((float8) timestamp - epoch) / 1000000.0;
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp units \"%s\" not supported",
lowunits)));
result = 0;
}
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp units \"%s\" not recognized", lowunits)));
result = 0;
}
PG_RETURN_FLOAT8(result);
}
/* timestamptz_part()
* Extract specified field from timestamp with time zone.
*/
Datum
timestamptz_part(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_PP(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
float8 result;
Timestamp epoch;
int tz;
int type,
val;
char *lowunits;
double dummy;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
VARSIZE_ANY_EXHDR(units),
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (TIMESTAMP_NOT_FINITE(timestamp))
{
result = NonFiniteTimestampTzPart(type, val, lowunits,
TIMESTAMP_IS_NOBEGIN(timestamp),
true);
if (result)
PG_RETURN_FLOAT8(result);
else
PG_RETURN_NULL();
}
if (type == UNITS)
{
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
switch (val)
{
case DTK_TZ:
result = -tz;
break;
case DTK_TZ_MINUTE:
result = -tz;
result /= MINS_PER_HOUR;
FMODULO(result, dummy, (double) MINS_PER_HOUR);
break;
case DTK_TZ_HOUR:
dummy = -tz;
FMODULO(dummy, result, (double) SECS_PER_HOUR);
break;
case DTK_MICROSEC:
result = tm->tm_sec * 1000000.0 + fsec;
break;
case DTK_MILLISEC:
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
break;
case DTK_SECOND:
result = tm->tm_sec + fsec / 1000000.0;
break;
case DTK_MINUTE:
result = tm->tm_min;
break;
case DTK_HOUR:
result = tm->tm_hour;
break;
case DTK_DAY:
result = tm->tm_mday;
break;
case DTK_MONTH:
result = tm->tm_mon;
break;
case DTK_QUARTER:
result = (tm->tm_mon - 1) / 3 + 1;
break;
case DTK_WEEK:
result = (float8) date2isoweek(tm->tm_year, tm->tm_mon, tm->tm_mday);
break;
case DTK_YEAR:
if (tm->tm_year > 0)
result = tm->tm_year;
else
/* there is no year 0, just 1 BC and 1 AD */
result = tm->tm_year - 1;
break;
case DTK_DECADE:
/* see comments in timestamp_part */
if (tm->tm_year > 0)
result = tm->tm_year / 10;
else
result = -((8 - (tm->tm_year - 1)) / 10);
break;
case DTK_CENTURY:
/* see comments in timestamp_part */
if (tm->tm_year > 0)
result = (tm->tm_year + 99) / 100;
else
result = -((99 - (tm->tm_year - 1)) / 100);
break;
case DTK_MILLENNIUM:
/* see comments in timestamp_part */
if (tm->tm_year > 0)
result = (tm->tm_year + 999) / 1000;
else
result = -((999 - (tm->tm_year - 1)) / 1000);
break;
case DTK_JULIAN:
result = date2j(tm->tm_year, tm->tm_mon, tm->tm_mday);
result += ((((tm->tm_hour * MINS_PER_HOUR) + tm->tm_min) * SECS_PER_MINUTE) +
tm->tm_sec + (fsec / 1000000.0)) / (double) SECS_PER_DAY;
break;
case DTK_ISOYEAR:
result = date2isoyear(tm->tm_year, tm->tm_mon, tm->tm_mday);
/* Adjust BC years */
if (result <= 0)
result -= 1;
break;
case DTK_DOW:
case DTK_ISODOW:
result = j2day(date2j(tm->tm_year, tm->tm_mon, tm->tm_mday));
if (val == DTK_ISODOW && result == 0)
result = 7;
break;
case DTK_DOY:
result = (date2j(tm->tm_year, tm->tm_mon, tm->tm_mday)
- date2j(tm->tm_year, 1, 1) + 1);
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp with time zone units \"%s\" not supported",
lowunits)));
result = 0;
}
}
else if (type == RESERV)
{
switch (val)
{
case DTK_EPOCH:
epoch = SetEpochTimestamp();
/* try to avoid precision loss in subtraction */
if (timestamp < (PG_INT64_MAX + epoch))
result = (timestamp - epoch) / 1000000.0;
else
result = ((float8) timestamp - epoch) / 1000000.0;
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("timestamp with time zone units \"%s\" not supported",
lowunits)));
result = 0;
}
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("timestamp with time zone units \"%s\" not recognized",
lowunits)));
result = 0;
}
PG_RETURN_FLOAT8(result);
}
/* interval_part()
* Extract specified field from interval.
*/
Datum
interval_part(PG_FUNCTION_ARGS)
{
text *units = PG_GETARG_TEXT_PP(0);
Interval *interval = PG_GETARG_INTERVAL_P(1);
float8 result;
int type,
val;
char *lowunits;
fsec_t fsec;
struct pg_tm tt,
*tm = &tt;
lowunits = downcase_truncate_identifier(VARDATA_ANY(units),
VARSIZE_ANY_EXHDR(units),
false);
type = DecodeUnits(0, lowunits, &val);
if (type == UNKNOWN_FIELD)
type = DecodeSpecial(0, lowunits, &val);
if (type == UNITS)
{
if (interval2tm(*interval, tm, &fsec) == 0)
{
switch (val)
{
case DTK_MICROSEC:
result = tm->tm_sec * 1000000.0 + fsec;
break;
case DTK_MILLISEC:
result = tm->tm_sec * 1000.0 + fsec / 1000.0;
break;
case DTK_SECOND:
result = tm->tm_sec + fsec / 1000000.0;
break;
case DTK_MINUTE:
result = tm->tm_min;
break;
case DTK_HOUR:
result = tm->tm_hour;
break;
case DTK_DAY:
result = tm->tm_mday;
break;
case DTK_MONTH:
result = tm->tm_mon;
break;
case DTK_QUARTER:
result = (tm->tm_mon / 3) + 1;
break;
case DTK_YEAR:
result = tm->tm_year;
break;
case DTK_DECADE:
/* caution: C division may have negative remainder */
result = tm->tm_year / 10;
break;
case DTK_CENTURY:
/* caution: C division may have negative remainder */
result = tm->tm_year / 100;
break;
case DTK_MILLENNIUM:
/* caution: C division may have negative remainder */
result = tm->tm_year / 1000;
break;
default:
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("interval units \"%s\" not supported",
lowunits)));
result = 0;
}
}
else
{
elog(ERROR, "could not convert interval to tm");
result = 0;
}
}
else if (type == RESERV && val == DTK_EPOCH)
{
result = interval->time / 1000000.0;
result += ((double) DAYS_PER_YEAR * SECS_PER_DAY) * (interval->month / MONTHS_PER_YEAR);
result += ((double) DAYS_PER_MONTH * SECS_PER_DAY) * (interval->month % MONTHS_PER_YEAR);
result += ((double) SECS_PER_DAY) * interval->day;
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval units \"%s\" not recognized",
lowunits)));
result = 0;
}
PG_RETURN_FLOAT8(result);
}
/* timestamp_zone()
* Encode timestamp type with specified time zone.
* This function is just timestamp2timestamptz() except instead of
* shifting to the global timezone, we shift to the specified timezone.
* This is different from the other AT TIME ZONE cases because instead
* of shifting _to_ a new time zone, it sets the time to _be_ the
* specified timezone.
*/
Datum
timestamp_zone(PG_FUNCTION_ARGS)
{
text *zone = PG_GETARG_TEXT_PP(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
TimestampTz result;
int tz;
char tzname[TZ_STRLEN_MAX + 1];
char *lowzone;
int type,
val;
pg_tz *tzp;
struct pg_tm tm;
fsec_t fsec;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMPTZ(timestamp);
/*
* Look up the requested timezone. First we look in the timezone
* abbreviation table (to handle cases like "EST"), and if that fails, we
* look in the timezone database (to handle cases like
* "America/New_York"). (This matches the order in which timestamp input
* checks the cases; it's important because the timezone database unwisely
* uses a few zone names that are identical to offset abbreviations.)
*/
text_to_cstring_buffer(zone, tzname, sizeof(tzname));
/* DecodeTimezoneAbbrev requires lowercase input */
lowzone = downcase_truncate_identifier(tzname,
strlen(tzname),
false);
type = DecodeTimezoneAbbrev(0, lowzone, &val, &tzp);
if (type == TZ || type == DTZ)
{
/* fixed-offset abbreviation */
tz = val;
result = dt2local(timestamp, tz);
}
else if (type == DYNTZ)
{
/* dynamic-offset abbreviation, resolve using specified time */
if (timestamp2tm(timestamp, NULL, &tm, &fsec, NULL, tzp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
tz = -DetermineTimeZoneAbbrevOffset(&tm, tzname, tzp);
result = dt2local(timestamp, tz);
}
else
{
/* try it as a full zone name */
tzp = pg_tzset(tzname);
if (tzp)
{
/* Apply the timezone change */
if (timestamp2tm(timestamp, NULL, &tm, &fsec, NULL, tzp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
tz = DetermineTimeZoneOffset(&tm, tzp);
if (tm2timestamp(&tm, fsec, &tz, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized", tzname)));
result = 0; /* keep compiler quiet */
}
}
if (!IS_VALID_TIMESTAMP(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
PG_RETURN_TIMESTAMPTZ(result);
}
/* timestamp_izone()
* Encode timestamp type with specified time interval as time zone.
*/
Datum
timestamp_izone(PG_FUNCTION_ARGS)
{
Interval *zone = PG_GETARG_INTERVAL_P(0);
Timestamp timestamp = PG_GETARG_TIMESTAMP(1);
TimestampTz result;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMPTZ(timestamp);
if (zone->month != 0 || zone->day != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval time zone \"%s\" must not include months or days",
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
tz = zone->time / USECS_PER_SEC;
result = dt2local(timestamp, tz);
if (!IS_VALID_TIMESTAMP(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
PG_RETURN_TIMESTAMPTZ(result);
} /* timestamp_izone() */
/* TimestampTimestampTzRequiresRewrite()
*
* Returns false if the TimeZone GUC setting causes timestamp_timestamptz and
* timestamptz_timestamp to be no-ops, where the return value has the same
* bits as the argument. Since project convention is to assume a GUC changes
* no more often than STABLE functions change, the answer is valid that long.
*/
bool
TimestampTimestampTzRequiresRewrite(void)
{
long offset;
if (pg_get_timezone_offset(session_timezone, &offset) && offset == 0)
return false;
return true;
}
/* timestamp_timestamptz()
* Convert local timestamp to timestamp at GMT
*/
Datum
timestamp_timestamptz(PG_FUNCTION_ARGS)
{
Timestamp timestamp = PG_GETARG_TIMESTAMP(0);
PG_RETURN_TIMESTAMPTZ(timestamp2timestamptz(timestamp));
}
/*
* Convert timestamp to timestamp with time zone.
*
* On overflow error is thrown if 'overflow' is NULL. Otherwise, '*overflow'
* is set to -1 (+1) when result value exceed lower (upper) boundary and zero
* returned.
*/
TimestampTz
timestamp2timestamptz_opt_overflow(Timestamp timestamp, int *overflow)
{
TimestampTz result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
return timestamp;
if (!timestamp2tm(timestamp, NULL, tm, &fsec, NULL, NULL))
{
tz = DetermineTimeZoneOffset(tm, session_timezone);
result = dt2local(timestamp, -tz);
if (IS_VALID_TIMESTAMP(result))
{
return result;
}
else if (overflow)
{
if (result < MIN_TIMESTAMP)
*overflow = -1;
else
{
Assert(result >= END_TIMESTAMP);
*overflow = 1;
}
return (TimestampTz) 0;
}
}
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
return 0;
}
/*
* Single-argument version of timestamp2timestamptz_opt_overflow().
*/
static TimestampTz
timestamp2timestamptz(Timestamp timestamp)
{
return timestamp2timestamptz_opt_overflow(timestamp, NULL);
}
/* timestamptz_timestamp()
* Convert timestamp at GMT to local timestamp
*/
Datum
timestamptz_timestamp(PG_FUNCTION_ARGS)
{
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(0);
PG_RETURN_TIMESTAMP(timestamptz2timestamp(timestamp));
}
static Timestamp
timestamptz2timestamp(TimestampTz timestamp)
{
Timestamp result;
struct pg_tm tt,
*tm = &tt;
fsec_t fsec;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
result = timestamp;
else
{
if (timestamp2tm(timestamp, &tz, tm, &fsec, NULL, NULL) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
if (tm2timestamp(tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
return result;
}
/* timestamptz_zone()
* Evaluate timestamp with time zone type at the specified time zone.
* Returns a timestamp without time zone.
*/
Datum
timestamptz_zone(PG_FUNCTION_ARGS)
{
text *zone = PG_GETARG_TEXT_PP(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
Timestamp result;
int tz;
char tzname[TZ_STRLEN_MAX + 1];
char *lowzone;
int type,
val;
pg_tz *tzp;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMP(timestamp);
/*
* Look up the requested timezone. First we look in the timezone
* abbreviation table (to handle cases like "EST"), and if that fails, we
* look in the timezone database (to handle cases like
* "America/New_York"). (This matches the order in which timestamp input
* checks the cases; it's important because the timezone database unwisely
* uses a few zone names that are identical to offset abbreviations.)
*/
text_to_cstring_buffer(zone, tzname, sizeof(tzname));
/* DecodeTimezoneAbbrev requires lowercase input */
lowzone = downcase_truncate_identifier(tzname,
strlen(tzname),
false);
type = DecodeTimezoneAbbrev(0, lowzone, &val, &tzp);
if (type == TZ || type == DTZ)
{
/* fixed-offset abbreviation */
tz = -val;
result = dt2local(timestamp, tz);
}
else if (type == DYNTZ)
{
/* dynamic-offset abbreviation, resolve using specified time */
int isdst;
tz = DetermineTimeZoneAbbrevOffsetTS(timestamp, tzname, tzp, &isdst);
result = dt2local(timestamp, tz);
}
else
{
/* try it as a full zone name */
tzp = pg_tzset(tzname);
if (tzp)
{
/* Apply the timezone change */
struct pg_tm tm;
fsec_t fsec;
if (timestamp2tm(timestamp, &tz, &tm, &fsec, NULL, tzp) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
if (tm2timestamp(&tm, fsec, NULL, &result) != 0)
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
}
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("time zone \"%s\" not recognized", tzname)));
result = 0; /* keep compiler quiet */
}
}
if (!IS_VALID_TIMESTAMP(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
PG_RETURN_TIMESTAMP(result);
}
/* timestamptz_izone()
* Encode timestamp with time zone type with specified time interval as time zone.
* Returns a timestamp without time zone.
*/
Datum
timestamptz_izone(PG_FUNCTION_ARGS)
{
Interval *zone = PG_GETARG_INTERVAL_P(0);
TimestampTz timestamp = PG_GETARG_TIMESTAMPTZ(1);
Timestamp result;
int tz;
if (TIMESTAMP_NOT_FINITE(timestamp))
PG_RETURN_TIMESTAMP(timestamp);
if (zone->month != 0 || zone->day != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("interval time zone \"%s\" must not include months or days",
DatumGetCString(DirectFunctionCall1(interval_out,
PointerGetDatum(zone))))));
tz = -(zone->time / USECS_PER_SEC);
result = dt2local(timestamp, tz);
if (!IS_VALID_TIMESTAMP(result))
ereport(ERROR,
(errcode(ERRCODE_DATETIME_VALUE_OUT_OF_RANGE),
errmsg("timestamp out of range")));
PG_RETURN_TIMESTAMP(result);
}
/* generate_series_timestamp()
* Generate the set of timestamps from start to finish by step
*/
Datum
generate_series_timestamp(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
generate_series_timestamp_fctx *fctx;
Timestamp result;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
Timestamp start = PG_GETARG_TIMESTAMP(0);
Timestamp finish = PG_GETARG_TIMESTAMP(1);
Interval *step = PG_GETARG_INTERVAL_P(2);
MemoryContext oldcontext;
Interval interval_zero;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_timestamp_fctx *)
palloc(sizeof(generate_series_timestamp_fctx));
/*
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = *step;
/* Determine sign of the interval */
MemSet(&interval_zero, 0, sizeof(Interval));
fctx->step_sign = interval_cmp_internal(&fctx->step, &interval_zero);
if (fctx->step_sign == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("step size cannot equal zero")));
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for this iteration
*/
fctx = funcctx->user_fctx;
result = fctx->current;
if (fctx->step_sign > 0 ?
timestamp_cmp_internal(result, fctx->finish) <= 0 :
timestamp_cmp_internal(result, fctx->finish) >= 0)
{
/* increment current in preparation for next iteration */
fctx->current = DatumGetTimestamp(DirectFunctionCall2(timestamp_pl_interval,
TimestampGetDatum(fctx->current),
PointerGetDatum(&fctx->step)));
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, TimestampGetDatum(result));
}
else
{
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}
}
/* generate_series_timestamptz()
* Generate the set of timestamps from start to finish by step
*/
Datum
generate_series_timestamptz(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
generate_series_timestamptz_fctx *fctx;
TimestampTz result;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
TimestampTz start = PG_GETARG_TIMESTAMPTZ(0);
TimestampTz finish = PG_GETARG_TIMESTAMPTZ(1);
Interval *step = PG_GETARG_INTERVAL_P(2);
MemoryContext oldcontext;
Interval interval_zero;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_timestamptz_fctx *)
palloc(sizeof(generate_series_timestamptz_fctx));
/*
* Use fctx to keep state from call to call. Seed current with the
* original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = *step;
/* Determine sign of the interval */
MemSet(&interval_zero, 0, sizeof(Interval));
fctx->step_sign = interval_cmp_internal(&fctx->step, &interval_zero);
if (fctx->step_sign == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("step size cannot equal zero")));
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for this iteration
*/
fctx = funcctx->user_fctx;
result = fctx->current;
if (fctx->step_sign > 0 ?
timestamp_cmp_internal(result, fctx->finish) <= 0 :
timestamp_cmp_internal(result, fctx->finish) >= 0)
{
/* increment current in preparation for next iteration */
fctx->current = DatumGetTimestampTz(DirectFunctionCall2(timestamptz_pl_interval,
TimestampTzGetDatum(fctx->current),
PointerGetDatum(&fctx->step)));
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, TimestampTzGetDatum(result));
}
else
{
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}
}