postgresql/src/backend/partitioning/partdesc.c

381 lines
11 KiB
C

/*-------------------------------------------------------------------------
*
* partdesc.c
* Support routines for manipulating partition descriptors
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/partitioning/partdesc.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/htup_details.h"
#include "access/table.h"
#include "catalog/indexing.h"
#include "catalog/partition.h"
#include "catalog/pg_inherits.h"
#include "partitioning/partbounds.h"
#include "partitioning/partdesc.h"
#include "storage/bufmgr.h"
#include "storage/sinval.h"
#include "utils/builtins.h"
#include "utils/inval.h"
#include "utils/fmgroids.h"
#include "utils/hsearch.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/rel.h"
#include "utils/partcache.h"
#include "utils/syscache.h"
typedef struct PartitionDirectoryData
{
MemoryContext pdir_mcxt;
HTAB *pdir_hash;
} PartitionDirectoryData;
typedef struct PartitionDirectoryEntry
{
Oid reloid;
Relation rel;
PartitionDesc pd;
} PartitionDirectoryEntry;
/*
* RelationBuildPartitionDesc
* Form rel's partition descriptor, and store in relcache entry
*
* Note: the descriptor won't be flushed from the cache by
* RelationClearRelation() unless it's changed because of
* addition or removal of a partition. Hence, code holding a lock
* that's sufficient to prevent that can assume that rd_partdesc
* won't change underneath it.
*/
void
RelationBuildPartitionDesc(Relation rel)
{
PartitionDesc partdesc;
PartitionBoundInfo boundinfo = NULL;
List *inhoids;
PartitionBoundSpec **boundspecs = NULL;
Oid *oids = NULL;
ListCell *cell;
int i,
nparts;
PartitionKey key = RelationGetPartitionKey(rel);
MemoryContext oldcxt;
int *mapping;
/*
* Get partition oids from pg_inherits. This uses a single snapshot to
* fetch the list of children, so while more children may be getting added
* concurrently, whatever this function returns will be accurate as of
* some well-defined point in time.
*/
inhoids = find_inheritance_children(RelationGetRelid(rel), NoLock);
nparts = list_length(inhoids);
/* Allocate arrays for OIDs and boundspecs. */
if (nparts > 0)
{
oids = palloc(nparts * sizeof(Oid));
boundspecs = palloc(nparts * sizeof(PartitionBoundSpec *));
}
/* Collect bound spec nodes for each partition. */
i = 0;
foreach(cell, inhoids)
{
Oid inhrelid = lfirst_oid(cell);
HeapTuple tuple;
PartitionBoundSpec *boundspec = NULL;
/* Try fetching the tuple from the catcache, for speed. */
tuple = SearchSysCache1(RELOID, inhrelid);
if (HeapTupleIsValid(tuple))
{
Datum datum;
bool isnull;
datum = SysCacheGetAttr(RELOID, tuple,
Anum_pg_class_relpartbound,
&isnull);
if (!isnull)
boundspec = stringToNode(TextDatumGetCString(datum));
ReleaseSysCache(tuple);
}
/*
* The system cache may be out of date; if so, we may find no pg_class
* tuple or an old one where relpartbound is NULL. In that case, try
* the table directly. We can't just AcceptInvalidationMessages() and
* retry the system cache lookup because it's possible that a
* concurrent ATTACH PARTITION operation has removed itself to the
* ProcArray but yet added invalidation messages to the shared queue;
* InvalidateSystemCaches() would work, but seems excessive.
*
* Note that this algorithm assumes that PartitionBoundSpec we manage
* to fetch is the right one -- so this is only good enough for
* concurrent ATTACH PARTITION, not concurrent DETACH PARTITION or
* some hypothetical operation that changes the partition bounds.
*/
if (boundspec == NULL)
{
Relation pg_class;
SysScanDesc scan;
ScanKeyData key[1];
Datum datum;
bool isnull;
pg_class = table_open(RelationRelationId, AccessShareLock);
ScanKeyInit(&key[0],
Anum_pg_class_oid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(inhrelid));
scan = systable_beginscan(pg_class, ClassOidIndexId, true,
NULL, 1, key);
tuple = systable_getnext(scan);
datum = heap_getattr(tuple, Anum_pg_class_relpartbound,
RelationGetDescr(pg_class), &isnull);
if (!isnull)
boundspec = stringToNode(TextDatumGetCString(datum));
systable_endscan(scan);
table_close(pg_class, AccessShareLock);
}
/* Sanity checks. */
if (!boundspec)
elog(ERROR, "missing relpartbound for relation %u", inhrelid);
if (!IsA(boundspec, PartitionBoundSpec))
elog(ERROR, "invalid relpartbound for relation %u", inhrelid);
/*
* If the PartitionBoundSpec says this is the default partition, its
* OID should match pg_partitioned_table.partdefid; if not, the
* catalog is corrupt.
*/
if (boundspec->is_default)
{
Oid partdefid;
partdefid = get_default_partition_oid(RelationGetRelid(rel));
if (partdefid != inhrelid)
elog(ERROR, "expected partdefid %u, but got %u",
inhrelid, partdefid);
}
/* Save results. */
oids[i] = inhrelid;
boundspecs[i] = boundspec;
++i;
}
/* Assert we aren't about to leak any old data structure */
Assert(rel->rd_pdcxt == NULL);
Assert(rel->rd_partdesc == NULL);
/*
* Now build the actual relcache partition descriptor. Note that the
* order of operations here is fairly critical. If we fail partway
* through this code, we won't have leaked memory because the rd_pdcxt is
* attached to the relcache entry immediately, so it'll be freed whenever
* the entry is rebuilt or destroyed. However, we don't assign to
* rd_partdesc until the cached data structure is fully complete and
* valid, so that no other code might try to use it.
*/
rel->rd_pdcxt = AllocSetContextCreate(CacheMemoryContext,
"partition descriptor",
ALLOCSET_SMALL_SIZES);
MemoryContextCopyAndSetIdentifier(rel->rd_pdcxt,
RelationGetRelationName(rel));
partdesc = (PartitionDescData *)
MemoryContextAllocZero(rel->rd_pdcxt, sizeof(PartitionDescData));
partdesc->nparts = nparts;
/* If there are no partitions, the rest of the partdesc can stay zero */
if (nparts > 0)
{
/* Create PartitionBoundInfo, using the caller's context. */
boundinfo = partition_bounds_create(boundspecs, nparts, key, &mapping);
/* Now copy all info into relcache's partdesc. */
oldcxt = MemoryContextSwitchTo(rel->rd_pdcxt);
partdesc->boundinfo = partition_bounds_copy(boundinfo, key);
partdesc->oids = (Oid *) palloc(nparts * sizeof(Oid));
partdesc->is_leaf = (bool *) palloc(nparts * sizeof(bool));
MemoryContextSwitchTo(oldcxt);
/*
* Assign OIDs from the original array into mapped indexes of the
* result array. The order of OIDs in the former is defined by the
* catalog scan that retrieved them, whereas that in the latter is
* defined by canonicalized representation of the partition bounds.
*
* Also record leaf-ness of each partition. For this we use
* get_rel_relkind() which may leak memory, so be sure to run it in
* the caller's context.
*/
for (i = 0; i < nparts; i++)
{
int index = mapping[i];
partdesc->oids[index] = oids[i];
partdesc->is_leaf[index] =
(get_rel_relkind(oids[i]) != RELKIND_PARTITIONED_TABLE);
}
}
rel->rd_partdesc = partdesc;
}
/*
* CreatePartitionDirectory
* Create a new partition directory object.
*/
PartitionDirectory
CreatePartitionDirectory(MemoryContext mcxt)
{
MemoryContext oldcontext = MemoryContextSwitchTo(mcxt);
PartitionDirectory pdir;
HASHCTL ctl;
MemSet(&ctl, 0, sizeof(HASHCTL));
ctl.keysize = sizeof(Oid);
ctl.entrysize = sizeof(PartitionDirectoryEntry);
ctl.hcxt = mcxt;
pdir = palloc(sizeof(PartitionDirectoryData));
pdir->pdir_mcxt = mcxt;
pdir->pdir_hash = hash_create("partition directory", 256, &ctl,
HASH_ELEM | HASH_BLOBS | HASH_CONTEXT);
MemoryContextSwitchTo(oldcontext);
return pdir;
}
/*
* PartitionDirectoryLookup
* Look up the partition descriptor for a relation in the directory.
*
* The purpose of this function is to ensure that we get the same
* PartitionDesc for each relation every time we look it up. In the
* face of current DDL, different PartitionDescs may be constructed with
* different views of the catalog state, but any single particular OID
* will always get the same PartitionDesc for as long as the same
* PartitionDirectory is used.
*/
PartitionDesc
PartitionDirectoryLookup(PartitionDirectory pdir, Relation rel)
{
PartitionDirectoryEntry *pde;
Oid relid = RelationGetRelid(rel);
bool found;
pde = hash_search(pdir->pdir_hash, &relid, HASH_ENTER, &found);
if (!found)
{
/*
* We must keep a reference count on the relation so that the
* PartitionDesc to which we are pointing can't get destroyed.
*/
RelationIncrementReferenceCount(rel);
pde->rel = rel;
pde->pd = RelationGetPartitionDesc(rel);
Assert(pde->pd != NULL);
}
return pde->pd;
}
/*
* DestroyPartitionDirectory
* Destroy a partition directory.
*
* Release the reference counts we're holding.
*/
void
DestroyPartitionDirectory(PartitionDirectory pdir)
{
HASH_SEQ_STATUS status;
PartitionDirectoryEntry *pde;
hash_seq_init(&status, pdir->pdir_hash);
while ((pde = hash_seq_search(&status)) != NULL)
RelationDecrementReferenceCount(pde->rel);
}
/*
* equalPartitionDescs
* Compare two partition descriptors for logical equality
*/
bool
equalPartitionDescs(PartitionKey key, PartitionDesc partdesc1,
PartitionDesc partdesc2)
{
int i;
if (partdesc1 != NULL)
{
if (partdesc2 == NULL)
return false;
if (partdesc1->nparts != partdesc2->nparts)
return false;
Assert(key != NULL || partdesc1->nparts == 0);
/*
* Same oids? If the partitioning structure did not change, that is,
* no partitions were added or removed to the relation, the oids array
* should still match element-by-element.
*/
for (i = 0; i < partdesc1->nparts; i++)
{
if (partdesc1->oids[i] != partdesc2->oids[i])
return false;
}
/*
* Now compare partition bound collections. The logic to iterate over
* the collections is private to partition.c.
*/
if (partdesc1->boundinfo != NULL)
{
if (partdesc2->boundinfo == NULL)
return false;
if (!partition_bounds_equal(key->partnatts, key->parttyplen,
key->parttypbyval,
partdesc1->boundinfo,
partdesc2->boundinfo))
return false;
}
else if (partdesc2->boundinfo != NULL)
return false;
}
else if (partdesc2 != NULL)
return false;
return true;
}
/*
* get_default_oid_from_partdesc
*
* Given a partition descriptor, return the OID of the default partition, if
* one exists; else, return InvalidOid.
*/
Oid
get_default_oid_from_partdesc(PartitionDesc partdesc)
{
if (partdesc && partdesc->boundinfo &&
partition_bound_has_default(partdesc->boundinfo))
return partdesc->oids[partdesc->boundinfo->default_index];
return InvalidOid;
}