postgresql/src/backend/commands/indexcmds.c

3479 lines
105 KiB
C

/*-------------------------------------------------------------------------
*
* indexcmds.c
* POSTGRES define and remove index code.
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/commands/indexcmds.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/amapi.h"
#include "access/heapam.h"
#include "access/htup_details.h"
#include "access/reloptions.h"
#include "access/sysattr.h"
#include "access/tableam.h"
#include "access/xact.h"
#include "catalog/catalog.h"
#include "catalog/index.h"
#include "catalog/indexing.h"
#include "catalog/pg_am.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_opfamily.h"
#include "catalog/pg_tablespace.h"
#include "catalog/pg_type.h"
#include "commands/comment.h"
#include "commands/dbcommands.h"
#include "commands/defrem.h"
#include "commands/event_trigger.h"
#include "commands/progress.h"
#include "commands/tablecmds.h"
#include "commands/tablespace.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/optimizer.h"
#include "parser/parse_coerce.h"
#include "parser/parse_func.h"
#include "parser/parse_oper.h"
#include "partitioning/partdesc.h"
#include "pgstat.h"
#include "rewrite/rewriteManip.h"
#include "storage/lmgr.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "storage/sinvaladt.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/partcache.h"
#include "utils/pg_rusage.h"
#include "utils/regproc.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"
/* non-export function prototypes */
static void CheckPredicate(Expr *predicate);
static void ComputeIndexAttrs(IndexInfo *indexInfo,
Oid *typeOidP,
Oid *collationOidP,
Oid *classOidP,
int16 *colOptionP,
List *attList,
List *exclusionOpNames,
Oid relId,
const char *accessMethodName, Oid accessMethodId,
bool amcanorder,
bool isconstraint);
static char *ChooseIndexName(const char *tabname, Oid namespaceId,
List *colnames, List *exclusionOpNames,
bool primary, bool isconstraint);
static char *ChooseIndexNameAddition(List *colnames);
static List *ChooseIndexColumnNames(List *indexElems);
static void RangeVarCallbackForReindexIndex(const RangeVar *relation,
Oid relId, Oid oldRelId, void *arg);
static bool ReindexRelationConcurrently(Oid relationOid, int options);
static void ReindexPartitionedIndex(Relation parentIdx);
static void update_relispartition(Oid relationId, bool newval);
/*
* callback argument type for RangeVarCallbackForReindexIndex()
*/
struct ReindexIndexCallbackState
{
bool concurrent; /* flag from statement */
Oid locked_table_oid; /* tracks previously locked table */
};
/*
* CheckIndexCompatible
* Determine whether an existing index definition is compatible with a
* prospective index definition, such that the existing index storage
* could become the storage of the new index, avoiding a rebuild.
*
* 'heapRelation': the relation the index would apply to.
* 'accessMethodName': name of the AM to use.
* 'attributeList': a list of IndexElem specifying columns and expressions
* to index on.
* 'exclusionOpNames': list of names of exclusion-constraint operators,
* or NIL if not an exclusion constraint.
*
* This is tailored to the needs of ALTER TABLE ALTER TYPE, which recreates
* any indexes that depended on a changing column from their pg_get_indexdef
* or pg_get_constraintdef definitions. We omit some of the sanity checks of
* DefineIndex. We assume that the old and new indexes have the same number
* of columns and that if one has an expression column or predicate, both do.
* Errors arising from the attribute list still apply.
*
* Most column type changes that can skip a table rewrite do not invalidate
* indexes. We acknowledge this when all operator classes, collations and
* exclusion operators match. Though we could further permit intra-opfamily
* changes for btree and hash indexes, that adds subtle complexity with no
* concrete benefit for core types. Note, that INCLUDE columns aren't
* checked by this function, for them it's enough that table rewrite is
* skipped.
*
* When a comparison or exclusion operator has a polymorphic input type, the
* actual input types must also match. This defends against the possibility
* that operators could vary behavior in response to get_fn_expr_argtype().
* At present, this hazard is theoretical: check_exclusion_constraint() and
* all core index access methods decline to set fn_expr for such calls.
*
* We do not yet implement a test to verify compatibility of expression
* columns or predicates, so assume any such index is incompatible.
*/
bool
CheckIndexCompatible(Oid oldId,
const char *accessMethodName,
List *attributeList,
List *exclusionOpNames)
{
bool isconstraint;
Oid *typeObjectId;
Oid *collationObjectId;
Oid *classObjectId;
Oid accessMethodId;
Oid relationId;
HeapTuple tuple;
Form_pg_index indexForm;
Form_pg_am accessMethodForm;
IndexAmRoutine *amRoutine;
bool amcanorder;
int16 *coloptions;
IndexInfo *indexInfo;
int numberOfAttributes;
int old_natts;
bool isnull;
bool ret = true;
oidvector *old_indclass;
oidvector *old_indcollation;
Relation irel;
int i;
Datum d;
/* Caller should already have the relation locked in some way. */
relationId = IndexGetRelation(oldId, false);
/*
* We can pretend isconstraint = false unconditionally. It only serves to
* decide the text of an error message that should never happen for us.
*/
isconstraint = false;
numberOfAttributes = list_length(attributeList);
Assert(numberOfAttributes > 0);
Assert(numberOfAttributes <= INDEX_MAX_KEYS);
/* look up the access method */
tuple = SearchSysCache1(AMNAME, PointerGetDatum(accessMethodName));
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("access method \"%s\" does not exist",
accessMethodName)));
accessMethodForm = (Form_pg_am) GETSTRUCT(tuple);
accessMethodId = accessMethodForm->oid;
amRoutine = GetIndexAmRoutine(accessMethodForm->amhandler);
ReleaseSysCache(tuple);
amcanorder = amRoutine->amcanorder;
/*
* Compute the operator classes, collations, and exclusion operators for
* the new index, so we can test whether it's compatible with the existing
* one. Note that ComputeIndexAttrs might fail here, but that's OK:
* DefineIndex would have called this function with the same arguments
* later on, and it would have failed then anyway. Our attributeList
* contains only key attributes, thus we're filling ii_NumIndexAttrs and
* ii_NumIndexKeyAttrs with same value.
*/
indexInfo = makeNode(IndexInfo);
indexInfo->ii_NumIndexAttrs = numberOfAttributes;
indexInfo->ii_NumIndexKeyAttrs = numberOfAttributes;
indexInfo->ii_Expressions = NIL;
indexInfo->ii_ExpressionsState = NIL;
indexInfo->ii_PredicateState = NULL;
indexInfo->ii_ExclusionOps = NULL;
indexInfo->ii_ExclusionProcs = NULL;
indexInfo->ii_ExclusionStrats = NULL;
indexInfo->ii_Am = accessMethodId;
indexInfo->ii_AmCache = NULL;
indexInfo->ii_Context = CurrentMemoryContext;
typeObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
collationObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
classObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
coloptions = (int16 *) palloc(numberOfAttributes * sizeof(int16));
ComputeIndexAttrs(indexInfo,
typeObjectId, collationObjectId, classObjectId,
coloptions, attributeList,
exclusionOpNames, relationId,
accessMethodName, accessMethodId,
amcanorder, isconstraint);
/* Get the soon-obsolete pg_index tuple. */
tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldId));
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for index %u", oldId);
indexForm = (Form_pg_index) GETSTRUCT(tuple);
/*
* We don't assess expressions or predicates; assume incompatibility.
* Also, if the index is invalid for any reason, treat it as incompatible.
*/
if (!(heap_attisnull(tuple, Anum_pg_index_indpred, NULL) &&
heap_attisnull(tuple, Anum_pg_index_indexprs, NULL) &&
indexForm->indisvalid))
{
ReleaseSysCache(tuple);
return false;
}
/* Any change in operator class or collation breaks compatibility. */
old_natts = indexForm->indnkeyatts;
Assert(old_natts == numberOfAttributes);
d = SysCacheGetAttr(INDEXRELID, tuple, Anum_pg_index_indcollation, &isnull);
Assert(!isnull);
old_indcollation = (oidvector *) DatumGetPointer(d);
d = SysCacheGetAttr(INDEXRELID, tuple, Anum_pg_index_indclass, &isnull);
Assert(!isnull);
old_indclass = (oidvector *) DatumGetPointer(d);
ret = (memcmp(old_indclass->values, classObjectId,
old_natts * sizeof(Oid)) == 0 &&
memcmp(old_indcollation->values, collationObjectId,
old_natts * sizeof(Oid)) == 0);
ReleaseSysCache(tuple);
if (!ret)
return false;
/* For polymorphic opcintype, column type changes break compatibility. */
irel = index_open(oldId, AccessShareLock); /* caller probably has a lock */
for (i = 0; i < old_natts; i++)
{
if (IsPolymorphicType(get_opclass_input_type(classObjectId[i])) &&
TupleDescAttr(irel->rd_att, i)->atttypid != typeObjectId[i])
{
ret = false;
break;
}
}
/* Any change in exclusion operator selections breaks compatibility. */
if (ret && indexInfo->ii_ExclusionOps != NULL)
{
Oid *old_operators,
*old_procs;
uint16 *old_strats;
RelationGetExclusionInfo(irel, &old_operators, &old_procs, &old_strats);
ret = memcmp(old_operators, indexInfo->ii_ExclusionOps,
old_natts * sizeof(Oid)) == 0;
/* Require an exact input type match for polymorphic operators. */
if (ret)
{
for (i = 0; i < old_natts && ret; i++)
{
Oid left,
right;
op_input_types(indexInfo->ii_ExclusionOps[i], &left, &right);
if ((IsPolymorphicType(left) || IsPolymorphicType(right)) &&
TupleDescAttr(irel->rd_att, i)->atttypid != typeObjectId[i])
{
ret = false;
break;
}
}
}
}
index_close(irel, NoLock);
return ret;
}
/*
* WaitForOlderSnapshots
*
* Wait for transactions that might have an older snapshot than the given xmin
* limit, because it might not contain tuples deleted just before it has
* been taken. Obtain a list of VXIDs of such transactions, and wait for them
* individually. This is used when building an index concurrently.
*
* We can exclude any running transactions that have xmin > the xmin given;
* their oldest snapshot must be newer than our xmin limit.
* We can also exclude any transactions that have xmin = zero, since they
* evidently have no live snapshot at all (and any one they might be in
* process of taking is certainly newer than ours). Transactions in other
* DBs can be ignored too, since they'll never even be able to see the
* index being worked on.
*
* We can also exclude autovacuum processes and processes running manual
* lazy VACUUMs, because they won't be fazed by missing index entries
* either. (Manual ANALYZEs, however, can't be excluded because they
* might be within transactions that are going to do arbitrary operations
* later.)
*
* Also, GetCurrentVirtualXIDs never reports our own vxid, so we need not
* check for that.
*
* If a process goes idle-in-transaction with xmin zero, we do not need to
* wait for it anymore, per the above argument. We do not have the
* infrastructure right now to stop waiting if that happens, but we can at
* least avoid the folly of waiting when it is idle at the time we would
* begin to wait. We do this by repeatedly rechecking the output of
* GetCurrentVirtualXIDs. If, during any iteration, a particular vxid
* doesn't show up in the output, we know we can forget about it.
*/
static void
WaitForOlderSnapshots(TransactionId limitXmin, bool progress)
{
int n_old_snapshots;
int i;
VirtualTransactionId *old_snapshots;
old_snapshots = GetCurrentVirtualXIDs(limitXmin, true, false,
PROC_IS_AUTOVACUUM | PROC_IN_VACUUM,
&n_old_snapshots);
if (progress)
pgstat_progress_update_param(PROGRESS_WAITFOR_TOTAL, n_old_snapshots);
for (i = 0; i < n_old_snapshots; i++)
{
if (!VirtualTransactionIdIsValid(old_snapshots[i]))
continue; /* found uninteresting in previous cycle */
if (i > 0)
{
/* see if anything's changed ... */
VirtualTransactionId *newer_snapshots;
int n_newer_snapshots;
int j;
int k;
newer_snapshots = GetCurrentVirtualXIDs(limitXmin,
true, false,
PROC_IS_AUTOVACUUM | PROC_IN_VACUUM,
&n_newer_snapshots);
for (j = i; j < n_old_snapshots; j++)
{
if (!VirtualTransactionIdIsValid(old_snapshots[j]))
continue; /* found uninteresting in previous cycle */
for (k = 0; k < n_newer_snapshots; k++)
{
if (VirtualTransactionIdEquals(old_snapshots[j],
newer_snapshots[k]))
break;
}
if (k >= n_newer_snapshots) /* not there anymore */
SetInvalidVirtualTransactionId(old_snapshots[j]);
}
pfree(newer_snapshots);
}
if (VirtualTransactionIdIsValid(old_snapshots[i]))
{
if (progress)
{
PGPROC *holder = BackendIdGetProc(old_snapshots[i].backendId);
pgstat_progress_update_param(PROGRESS_WAITFOR_CURRENT_PID,
holder->pid);
}
VirtualXactLock(old_snapshots[i], true);
}
if (progress)
pgstat_progress_update_param(PROGRESS_WAITFOR_DONE, i + 1);
}
}
/*
* DefineIndex
* Creates a new index.
*
* 'relationId': the OID of the heap relation on which the index is to be
* created
* 'stmt': IndexStmt describing the properties of the new index.
* 'indexRelationId': normally InvalidOid, but during bootstrap can be
* nonzero to specify a preselected OID for the index.
* 'parentIndexId': the OID of the parent index; InvalidOid if not the child
* of a partitioned index.
* 'parentConstraintId': the OID of the parent constraint; InvalidOid if not
* the child of a constraint (only used when recursing)
* 'is_alter_table': this is due to an ALTER rather than a CREATE operation.
* 'check_rights': check for CREATE rights in namespace and tablespace. (This
* should be true except when ALTER is deleting/recreating an index.)
* 'check_not_in_use': check for table not already in use in current session.
* This should be true unless caller is holding the table open, in which
* case the caller had better have checked it earlier.
* 'skip_build': make the catalog entries but don't create the index files
* 'quiet': suppress the NOTICE chatter ordinarily provided for constraints.
*
* Returns the object address of the created index.
*/
ObjectAddress
DefineIndex(Oid relationId,
IndexStmt *stmt,
Oid indexRelationId,
Oid parentIndexId,
Oid parentConstraintId,
bool is_alter_table,
bool check_rights,
bool check_not_in_use,
bool skip_build,
bool quiet)
{
char *indexRelationName;
char *accessMethodName;
Oid *typeObjectId;
Oid *collationObjectId;
Oid *classObjectId;
Oid accessMethodId;
Oid namespaceId;
Oid tablespaceId;
Oid createdConstraintId = InvalidOid;
List *indexColNames;
List *allIndexParams;
Relation rel;
HeapTuple tuple;
Form_pg_am accessMethodForm;
IndexAmRoutine *amRoutine;
bool amcanorder;
amoptions_function amoptions;
bool partitioned;
Datum reloptions;
int16 *coloptions;
IndexInfo *indexInfo;
bits16 flags;
bits16 constr_flags;
int numberOfAttributes;
int numberOfKeyAttributes;
TransactionId limitXmin;
ObjectAddress address;
LockRelId heaprelid;
LOCKTAG heaplocktag;
LOCKMODE lockmode;
Snapshot snapshot;
int save_nestlevel = -1;
int i;
/*
* Some callers need us to run with an empty default_tablespace; this is a
* necessary hack to be able to reproduce catalog state accurately when
* recreating indexes after table-rewriting ALTER TABLE.
*/
if (stmt->reset_default_tblspc)
{
save_nestlevel = NewGUCNestLevel();
(void) set_config_option("default_tablespace", "",
PGC_USERSET, PGC_S_SESSION,
GUC_ACTION_SAVE, true, 0, false);
}
/*
* Start progress report. If we're building a partition, this was already
* done.
*/
if (!OidIsValid(parentIndexId))
pgstat_progress_start_command(PROGRESS_COMMAND_CREATE_INDEX,
relationId);
/*
* No index OID to report yet
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_INDEX_OID,
InvalidOid);
/*
* count key attributes in index
*/
numberOfKeyAttributes = list_length(stmt->indexParams);
/*
* Calculate the new list of index columns including both key columns and
* INCLUDE columns. Later we can determine which of these are key
* columns, and which are just part of the INCLUDE list by checking the
* list position. A list item in a position less than ii_NumIndexKeyAttrs
* is part of the key columns, and anything equal to and over is part of
* the INCLUDE columns.
*/
allIndexParams = list_concat(list_copy(stmt->indexParams),
list_copy(stmt->indexIncludingParams));
numberOfAttributes = list_length(allIndexParams);
if (numberOfAttributes <= 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("must specify at least one column")));
if (numberOfAttributes > INDEX_MAX_KEYS)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_COLUMNS),
errmsg("cannot use more than %d columns in an index",
INDEX_MAX_KEYS)));
/*
* Only SELECT ... FOR UPDATE/SHARE are allowed while doing a standard
* index build; but for concurrent builds we allow INSERT/UPDATE/DELETE
* (but not VACUUM).
*
* NB: Caller is responsible for making sure that relationId refers to the
* relation on which the index should be built; except in bootstrap mode,
* this will typically require the caller to have already locked the
* relation. To avoid lock upgrade hazards, that lock should be at least
* as strong as the one we take here.
*
* NB: If the lock strength here ever changes, code that is run by
* parallel workers under the control of certain particular ambuild
* functions will need to be updated, too.
*/
lockmode = stmt->concurrent ? ShareUpdateExclusiveLock : ShareLock;
rel = table_open(relationId, lockmode);
namespaceId = RelationGetNamespace(rel);
/* Ensure that it makes sense to index this kind of relation */
switch (rel->rd_rel->relkind)
{
case RELKIND_RELATION:
case RELKIND_MATVIEW:
case RELKIND_PARTITIONED_TABLE:
/* OK */
break;
case RELKIND_FOREIGN_TABLE:
/*
* Custom error message for FOREIGN TABLE since the term is close
* to a regular table and can confuse the user.
*/
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot create index on foreign table \"%s\"",
RelationGetRelationName(rel))));
break;
default:
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table or materialized view",
RelationGetRelationName(rel))));
break;
}
/*
* Establish behavior for partitioned tables, and verify sanity of
* parameters.
*
* We do not build an actual index in this case; we only create a few
* catalog entries. The actual indexes are built by recursing for each
* partition.
*/
partitioned = rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE;
if (partitioned)
{
if (stmt->concurrent)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot create index on partitioned table \"%s\" concurrently",
RelationGetRelationName(rel))));
if (stmt->excludeOpNames)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot create exclusion constraints on partitioned table \"%s\"",
RelationGetRelationName(rel))));
}
/*
* Don't try to CREATE INDEX on temp tables of other backends.
*/
if (RELATION_IS_OTHER_TEMP(rel))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot create indexes on temporary tables of other sessions")));
/*
* Unless our caller vouches for having checked this already, insist that
* the table not be in use by our own session, either. Otherwise we might
* fail to make entries in the new index (for instance, if an INSERT or
* UPDATE is in progress and has already made its list of target indexes).
*/
if (check_not_in_use)
CheckTableNotInUse(rel, "CREATE INDEX");
/*
* Verify we (still) have CREATE rights in the rel's namespace.
* (Presumably we did when the rel was created, but maybe not anymore.)
* Skip check if caller doesn't want it. Also skip check if
* bootstrapping, since permissions machinery may not be working yet.
*/
if (check_rights && !IsBootstrapProcessingMode())
{
AclResult aclresult;
aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_SCHEMA,
get_namespace_name(namespaceId));
}
/*
* Select tablespace to use. If not specified, use default tablespace
* (which may in turn default to database's default).
*/
if (stmt->tableSpace)
{
tablespaceId = get_tablespace_oid(stmt->tableSpace, false);
if (partitioned && tablespaceId == MyDatabaseTableSpace)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot specify default tablespace for partitioned relations")));
}
else
{
tablespaceId = GetDefaultTablespace(rel->rd_rel->relpersistence,
partitioned);
/* note InvalidOid is OK in this case */
}
/* Check tablespace permissions */
if (check_rights &&
OidIsValid(tablespaceId) && tablespaceId != MyDatabaseTableSpace)
{
AclResult aclresult;
aclresult = pg_tablespace_aclcheck(tablespaceId, GetUserId(),
ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, OBJECT_TABLESPACE,
get_tablespace_name(tablespaceId));
}
/*
* Force shared indexes into the pg_global tablespace. This is a bit of a
* hack but seems simpler than marking them in the BKI commands. On the
* other hand, if it's not shared, don't allow it to be placed there.
*/
if (rel->rd_rel->relisshared)
tablespaceId = GLOBALTABLESPACE_OID;
else if (tablespaceId == GLOBALTABLESPACE_OID)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("only shared relations can be placed in pg_global tablespace")));
/*
* Choose the index column names.
*/
indexColNames = ChooseIndexColumnNames(allIndexParams);
/*
* Select name for index if caller didn't specify
*/
indexRelationName = stmt->idxname;
if (indexRelationName == NULL)
indexRelationName = ChooseIndexName(RelationGetRelationName(rel),
namespaceId,
indexColNames,
stmt->excludeOpNames,
stmt->primary,
stmt->isconstraint);
/*
* look up the access method, verify it can handle the requested features
*/
accessMethodName = stmt->accessMethod;
tuple = SearchSysCache1(AMNAME, PointerGetDatum(accessMethodName));
if (!HeapTupleIsValid(tuple))
{
/*
* Hack to provide more-or-less-transparent updating of old RTREE
* indexes to GiST: if RTREE is requested and not found, use GIST.
*/
if (strcmp(accessMethodName, "rtree") == 0)
{
ereport(NOTICE,
(errmsg("substituting access method \"gist\" for obsolete method \"rtree\"")));
accessMethodName = "gist";
tuple = SearchSysCache1(AMNAME, PointerGetDatum(accessMethodName));
}
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("access method \"%s\" does not exist",
accessMethodName)));
}
accessMethodForm = (Form_pg_am) GETSTRUCT(tuple);
accessMethodId = accessMethodForm->oid;
amRoutine = GetIndexAmRoutine(accessMethodForm->amhandler);
pgstat_progress_update_param(PROGRESS_CREATEIDX_ACCESS_METHOD_OID,
accessMethodId);
if (stmt->unique && !amRoutine->amcanunique)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support unique indexes",
accessMethodName)));
if (stmt->indexIncludingParams != NIL && !amRoutine->amcaninclude)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support included columns",
accessMethodName)));
if (numberOfAttributes > 1 && !amRoutine->amcanmulticol)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support multicolumn indexes",
accessMethodName)));
if (stmt->excludeOpNames && amRoutine->amgettuple == NULL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support exclusion constraints",
accessMethodName)));
amcanorder = amRoutine->amcanorder;
amoptions = amRoutine->amoptions;
pfree(amRoutine);
ReleaseSysCache(tuple);
/*
* Validate predicate, if given
*/
if (stmt->whereClause)
CheckPredicate((Expr *) stmt->whereClause);
/*
* Parse AM-specific options, convert to text array form, validate.
*/
reloptions = transformRelOptions((Datum) 0, stmt->options,
NULL, NULL, false, false);
(void) index_reloptions(amoptions, reloptions, true);
/*
* Prepare arguments for index_create, primarily an IndexInfo structure.
* Note that ii_Predicate must be in implicit-AND format.
*/
indexInfo = makeNode(IndexInfo);
indexInfo->ii_NumIndexAttrs = numberOfAttributes;
indexInfo->ii_NumIndexKeyAttrs = numberOfKeyAttributes;
indexInfo->ii_Expressions = NIL; /* for now */
indexInfo->ii_ExpressionsState = NIL;
indexInfo->ii_Predicate = make_ands_implicit((Expr *) stmt->whereClause);
indexInfo->ii_PredicateState = NULL;
indexInfo->ii_ExclusionOps = NULL;
indexInfo->ii_ExclusionProcs = NULL;
indexInfo->ii_ExclusionStrats = NULL;
indexInfo->ii_Unique = stmt->unique;
/* In a concurrent build, mark it not-ready-for-inserts */
indexInfo->ii_ReadyForInserts = !stmt->concurrent;
indexInfo->ii_Concurrent = stmt->concurrent;
indexInfo->ii_BrokenHotChain = false;
indexInfo->ii_ParallelWorkers = 0;
indexInfo->ii_Am = accessMethodId;
indexInfo->ii_AmCache = NULL;
indexInfo->ii_Context = CurrentMemoryContext;
typeObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
collationObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
classObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
coloptions = (int16 *) palloc(numberOfAttributes * sizeof(int16));
ComputeIndexAttrs(indexInfo,
typeObjectId, collationObjectId, classObjectId,
coloptions, allIndexParams,
stmt->excludeOpNames, relationId,
accessMethodName, accessMethodId,
amcanorder, stmt->isconstraint);
/*
* Extra checks when creating a PRIMARY KEY index.
*/
if (stmt->primary)
index_check_primary_key(rel, indexInfo, is_alter_table, stmt);
/*
* If this table is partitioned and we're creating a unique index or a
* primary key, make sure that the indexed columns are part of the
* partition key. Otherwise it would be possible to violate uniqueness by
* putting values that ought to be unique in different partitions.
*
* We could lift this limitation if we had global indexes, but those have
* their own problems, so this is a useful feature combination.
*/
if (partitioned && (stmt->unique || stmt->primary))
{
PartitionKey key = rel->rd_partkey;
int i;
/*
* A partitioned table can have unique indexes, as long as all the
* columns in the partition key appear in the unique key. A
* partition-local index can enforce global uniqueness iff the PK
* value completely determines the partition that a row is in.
*
* Thus, verify that all the columns in the partition key appear in
* the unique key definition.
*/
for (i = 0; i < key->partnatts; i++)
{
bool found = false;
int j;
const char *constraint_type;
if (stmt->primary)
constraint_type = "PRIMARY KEY";
else if (stmt->unique)
constraint_type = "UNIQUE";
else if (stmt->excludeOpNames != NIL)
constraint_type = "EXCLUDE";
else
{
elog(ERROR, "unknown constraint type");
constraint_type = NULL; /* keep compiler quiet */
}
/*
* It may be possible to support UNIQUE constraints when partition
* keys are expressions, but is it worth it? Give up for now.
*/
if (key->partattrs[i] == 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("unsupported %s constraint with partition key definition",
constraint_type),
errdetail("%s constraints cannot be used when partition keys include expressions.",
constraint_type)));
for (j = 0; j < indexInfo->ii_NumIndexKeyAttrs; j++)
{
if (key->partattrs[i] == indexInfo->ii_IndexAttrNumbers[j])
{
found = true;
break;
}
}
if (!found)
{
Form_pg_attribute att;
att = TupleDescAttr(RelationGetDescr(rel), key->partattrs[i] - 1);
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("insufficient columns in %s constraint definition",
constraint_type),
errdetail("%s constraint on table \"%s\" lacks column \"%s\" which is part of the partition key.",
constraint_type, RelationGetRelationName(rel),
NameStr(att->attname))));
}
}
}
/*
* We disallow indexes on system columns. They would not necessarily get
* updated correctly, and they don't seem useful anyway.
*/
for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
{
AttrNumber attno = indexInfo->ii_IndexAttrNumbers[i];
if (attno < 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("index creation on system columns is not supported")));
}
/*
* Also check for system columns used in expressions or predicates.
*/
if (indexInfo->ii_Expressions || indexInfo->ii_Predicate)
{
Bitmapset *indexattrs = NULL;
pull_varattnos((Node *) indexInfo->ii_Expressions, 1, &indexattrs);
pull_varattnos((Node *) indexInfo->ii_Predicate, 1, &indexattrs);
for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
{
if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber,
indexattrs))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("index creation on system columns is not supported")));
}
}
/*
* Report index creation if appropriate (delay this till after most of the
* error checks)
*/
if (stmt->isconstraint && !quiet)
{
const char *constraint_type;
if (stmt->primary)
constraint_type = "PRIMARY KEY";
else if (stmt->unique)
constraint_type = "UNIQUE";
else if (stmt->excludeOpNames != NIL)
constraint_type = "EXCLUDE";
else
{
elog(ERROR, "unknown constraint type");
constraint_type = NULL; /* keep compiler quiet */
}
ereport(DEBUG1,
(errmsg("%s %s will create implicit index \"%s\" for table \"%s\"",
is_alter_table ? "ALTER TABLE / ADD" : "CREATE TABLE /",
constraint_type,
indexRelationName, RelationGetRelationName(rel))));
}
/*
* A valid stmt->oldNode implies that we already have a built form of the
* index. The caller should also decline any index build.
*/
Assert(!OidIsValid(stmt->oldNode) || (skip_build && !stmt->concurrent));
/*
* Make the catalog entries for the index, including constraints. This
* step also actually builds the index, except if caller requested not to
* or in concurrent mode, in which case it'll be done later, or doing a
* partitioned index (because those don't have storage).
*/
flags = constr_flags = 0;
if (stmt->isconstraint)
flags |= INDEX_CREATE_ADD_CONSTRAINT;
if (skip_build || stmt->concurrent || partitioned)
flags |= INDEX_CREATE_SKIP_BUILD;
if (stmt->if_not_exists)
flags |= INDEX_CREATE_IF_NOT_EXISTS;
if (stmt->concurrent)
flags |= INDEX_CREATE_CONCURRENT;
if (partitioned)
flags |= INDEX_CREATE_PARTITIONED;
if (stmt->primary)
flags |= INDEX_CREATE_IS_PRIMARY;
/*
* If the table is partitioned, and recursion was declined but partitions
* exist, mark the index as invalid.
*/
if (partitioned && stmt->relation && !stmt->relation->inh)
{
PartitionDesc pd = RelationGetPartitionDesc(rel);
if (pd->nparts != 0)
flags |= INDEX_CREATE_INVALID;
}
if (stmt->deferrable)
constr_flags |= INDEX_CONSTR_CREATE_DEFERRABLE;
if (stmt->initdeferred)
constr_flags |= INDEX_CONSTR_CREATE_INIT_DEFERRED;
indexRelationId =
index_create(rel, indexRelationName, indexRelationId, parentIndexId,
parentConstraintId,
stmt->oldNode, indexInfo, indexColNames,
accessMethodId, tablespaceId,
collationObjectId, classObjectId,
coloptions, reloptions,
flags, constr_flags,
allowSystemTableMods, !check_rights,
&createdConstraintId);
ObjectAddressSet(address, RelationRelationId, indexRelationId);
/*
* Revert to original default_tablespace. Must do this before any return
* from this function, but after index_create, so this is a good time.
*/
if (save_nestlevel >= 0)
AtEOXact_GUC(true, save_nestlevel);
if (!OidIsValid(indexRelationId))
{
table_close(rel, NoLock);
/* If this is the top-level index, we're done */
if (!OidIsValid(parentIndexId))
pgstat_progress_end_command();
return address;
}
/* Add any requested comment */
if (stmt->idxcomment != NULL)
CreateComments(indexRelationId, RelationRelationId, 0,
stmt->idxcomment);
if (partitioned)
{
/*
* Unless caller specified to skip this step (via ONLY), process each
* partition to make sure they all contain a corresponding index.
*
* If we're called internally (no stmt->relation), recurse always.
*/
if (!stmt->relation || stmt->relation->inh)
{
PartitionDesc partdesc = RelationGetPartitionDesc(rel);
int nparts = partdesc->nparts;
Oid *part_oids = palloc(sizeof(Oid) * nparts);
bool invalidate_parent = false;
TupleDesc parentDesc;
Oid *opfamOids;
pgstat_progress_update_param(PROGRESS_CREATEIDX_PARTITIONS_TOTAL,
nparts);
memcpy(part_oids, partdesc->oids, sizeof(Oid) * nparts);
parentDesc = CreateTupleDescCopy(RelationGetDescr(rel));
opfamOids = palloc(sizeof(Oid) * numberOfKeyAttributes);
for (i = 0; i < numberOfKeyAttributes; i++)
opfamOids[i] = get_opclass_family(classObjectId[i]);
table_close(rel, NoLock);
/*
* For each partition, scan all existing indexes; if one matches
* our index definition and is not already attached to some other
* parent index, attach it to the one we just created.
*
* If none matches, build a new index by calling ourselves
* recursively with the same options (except for the index name).
*/
for (i = 0; i < nparts; i++)
{
Oid childRelid = part_oids[i];
Relation childrel;
List *childidxs;
ListCell *cell;
AttrNumber *attmap;
bool found = false;
int maplen;
childrel = table_open(childRelid, lockmode);
childidxs = RelationGetIndexList(childrel);
attmap =
convert_tuples_by_name_map(RelationGetDescr(childrel),
parentDesc,
gettext_noop("could not convert row type"));
maplen = parentDesc->natts;
foreach(cell, childidxs)
{
Oid cldidxid = lfirst_oid(cell);
Relation cldidx;
IndexInfo *cldIdxInfo;
/* this index is already partition of another one */
if (has_superclass(cldidxid))
continue;
cldidx = index_open(cldidxid, lockmode);
cldIdxInfo = BuildIndexInfo(cldidx);
if (CompareIndexInfo(cldIdxInfo, indexInfo,
cldidx->rd_indcollation,
collationObjectId,
cldidx->rd_opfamily,
opfamOids,
attmap, maplen))
{
Oid cldConstrOid = InvalidOid;
/*
* Found a match.
*
* If this index is being created in the parent
* because of a constraint, then the child needs to
* have a constraint also, so look for one. If there
* is no such constraint, this index is no good, so
* keep looking.
*/
if (createdConstraintId != InvalidOid)
{
cldConstrOid =
get_relation_idx_constraint_oid(childRelid,
cldidxid);
if (cldConstrOid == InvalidOid)
{
index_close(cldidx, lockmode);
continue;
}
}
/* Attach index to parent and we're done. */
IndexSetParentIndex(cldidx, indexRelationId);
if (createdConstraintId != InvalidOid)
ConstraintSetParentConstraint(cldConstrOid,
createdConstraintId,
childRelid);
if (!cldidx->rd_index->indisvalid)
invalidate_parent = true;
found = true;
/* keep lock till commit */
index_close(cldidx, NoLock);
break;
}
index_close(cldidx, lockmode);
}
list_free(childidxs);
table_close(childrel, NoLock);
/*
* If no matching index was found, create our own.
*/
if (!found)
{
IndexStmt *childStmt = copyObject(stmt);
bool found_whole_row;
ListCell *lc;
/*
* We can't use the same index name for the child index,
* so clear idxname to let the recursive invocation choose
* a new name. Likewise, the existing target relation
* field is wrong, and if indexOid or oldNode are set,
* they mustn't be applied to the child either.
*/
childStmt->idxname = NULL;
childStmt->relation = NULL;
childStmt->indexOid = InvalidOid;
childStmt->oldNode = InvalidOid;
/*
* Adjust any Vars (both in expressions and in the index's
* WHERE clause) to match the partition's column numbering
* in case it's different from the parent's.
*/
foreach(lc, childStmt->indexParams)
{
IndexElem *ielem = lfirst(lc);
/*
* If the index parameter is an expression, we must
* translate it to contain child Vars.
*/
if (ielem->expr)
{
ielem->expr =
map_variable_attnos((Node *) ielem->expr,
1, 0, attmap, maplen,
InvalidOid,
&found_whole_row);
if (found_whole_row)
elog(ERROR, "cannot convert whole-row table reference");
}
}
childStmt->whereClause =
map_variable_attnos(stmt->whereClause, 1, 0,
attmap, maplen,
InvalidOid, &found_whole_row);
if (found_whole_row)
elog(ERROR, "cannot convert whole-row table reference");
DefineIndex(childRelid, childStmt,
InvalidOid, /* no predefined OID */
indexRelationId, /* this is our child */
createdConstraintId,
is_alter_table, check_rights, check_not_in_use,
skip_build, quiet);
}
pgstat_progress_update_param(PROGRESS_CREATEIDX_PARTITIONS_DONE,
i + 1);
pfree(attmap);
}
/*
* The pg_index row we inserted for this index was marked
* indisvalid=true. But if we attached an existing index that is
* invalid, this is incorrect, so update our row to invalid too.
*/
if (invalidate_parent)
{
Relation pg_index = table_open(IndexRelationId, RowExclusiveLock);
HeapTuple tup,
newtup;
tup = SearchSysCache1(INDEXRELID,
ObjectIdGetDatum(indexRelationId));
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for index %u",
indexRelationId);
newtup = heap_copytuple(tup);
((Form_pg_index) GETSTRUCT(newtup))->indisvalid = false;
CatalogTupleUpdate(pg_index, &tup->t_self, newtup);
ReleaseSysCache(tup);
table_close(pg_index, RowExclusiveLock);
heap_freetuple(newtup);
}
}
else
table_close(rel, NoLock);
/*
* Indexes on partitioned tables are not themselves built, so we're
* done here.
*/
if (!OidIsValid(parentIndexId))
pgstat_progress_end_command();
return address;
}
if (!stmt->concurrent)
{
/* Close the heap and we're done, in the non-concurrent case */
table_close(rel, NoLock);
/* If this is the top-level index, we're done. */
if (!OidIsValid(parentIndexId))
pgstat_progress_end_command();
return address;
}
/* save lockrelid and locktag for below, then close rel */
heaprelid = rel->rd_lockInfo.lockRelId;
SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
table_close(rel, NoLock);
/*
* For a concurrent build, it's important to make the catalog entries
* visible to other transactions before we start to build the index. That
* will prevent them from making incompatible HOT updates. The new index
* will be marked not indisready and not indisvalid, so that no one else
* tries to either insert into it or use it for queries.
*
* We must commit our current transaction so that the index becomes
* visible; then start another. Note that all the data structures we just
* built are lost in the commit. The only data we keep past here are the
* relation IDs.
*
* Before committing, get a session-level lock on the table, to ensure
* that neither it nor the index can be dropped before we finish. This
* cannot block, even if someone else is waiting for access, because we
* already have the same lock within our transaction.
*
* Note: we don't currently bother with a session lock on the index,
* because there are no operations that could change its state while we
* hold lock on the parent table. This might need to change later.
*/
LockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
PopActiveSnapshot();
CommitTransactionCommand();
StartTransactionCommand();
/*
* The index is now visible, so we can report the OID.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_INDEX_OID,
indexRelationId);
/*
* Phase 2 of concurrent index build (see comments for validate_index()
* for an overview of how this works)
*
* Now we must wait until no running transaction could have the table open
* with the old list of indexes. Use ShareLock to consider running
* transactions that hold locks that permit writing to the table. Note we
* do not need to worry about xacts that open the table for writing after
* this point; they will see the new index when they open it.
*
* Note: the reason we use actual lock acquisition here, rather than just
* checking the ProcArray and sleeping, is that deadlock is possible if
* one of the transactions in question is blocked trying to acquire an
* exclusive lock on our table. The lock code will detect deadlock and
* error out properly.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_1);
WaitForLockers(heaplocktag, ShareLock, true);
/*
* At this moment we are sure that there are no transactions with the
* table open for write that don't have this new index in their list of
* indexes. We have waited out all the existing transactions and any new
* transaction will have the new index in its list, but the index is still
* marked as "not-ready-for-inserts". The index is consulted while
* deciding HOT-safety though. This arrangement ensures that no new HOT
* chains can be created where the new tuple and the old tuple in the
* chain have different index keys.
*
* We now take a new snapshot, and build the index using all tuples that
* are visible in this snapshot. We can be sure that any HOT updates to
* these tuples will be compatible with the index, since any updates made
* by transactions that didn't know about the index are now committed or
* rolled back. Thus, each visible tuple is either the end of its
* HOT-chain or the extension of the chain is HOT-safe for this index.
*/
/* Set ActiveSnapshot since functions in the indexes may need it */
PushActiveSnapshot(GetTransactionSnapshot());
/* Perform concurrent build of index */
index_concurrently_build(relationId, indexRelationId);
/* we can do away with our snapshot */
PopActiveSnapshot();
/*
* Commit this transaction to make the indisready update visible.
*/
CommitTransactionCommand();
StartTransactionCommand();
/*
* Phase 3 of concurrent index build
*
* We once again wait until no transaction can have the table open with
* the index marked as read-only for updates.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_2);
WaitForLockers(heaplocktag, ShareLock, true);
/*
* Now take the "reference snapshot" that will be used by validate_index()
* to filter candidate tuples. Beware! There might still be snapshots in
* use that treat some transaction as in-progress that our reference
* snapshot treats as committed. If such a recently-committed transaction
* deleted tuples in the table, we will not include them in the index; yet
* those transactions which see the deleting one as still-in-progress will
* expect such tuples to be there once we mark the index as valid.
*
* We solve this by waiting for all endangered transactions to exit before
* we mark the index as valid.
*
* We also set ActiveSnapshot to this snap, since functions in indexes may
* need a snapshot.
*/
snapshot = RegisterSnapshot(GetTransactionSnapshot());
PushActiveSnapshot(snapshot);
/*
* Scan the index and the heap, insert any missing index entries.
*/
validate_index(relationId, indexRelationId, snapshot);
/*
* Drop the reference snapshot. We must do this before waiting out other
* snapshot holders, else we will deadlock against other processes also
* doing CREATE INDEX CONCURRENTLY, which would see our snapshot as one
* they must wait for. But first, save the snapshot's xmin to use as
* limitXmin for GetCurrentVirtualXIDs().
*/
limitXmin = snapshot->xmin;
PopActiveSnapshot();
UnregisterSnapshot(snapshot);
/*
* The snapshot subsystem could still contain registered snapshots that
* are holding back our process's advertised xmin; in particular, if
* default_transaction_isolation = serializable, there is a transaction
* snapshot that is still active. The CatalogSnapshot is likewise a
* hazard. To ensure no deadlocks, we must commit and start yet another
* transaction, and do our wait before any snapshot has been taken in it.
*/
CommitTransactionCommand();
StartTransactionCommand();
/* We should now definitely not be advertising any xmin. */
Assert(MyPgXact->xmin == InvalidTransactionId);
/*
* The index is now valid in the sense that it contains all currently
* interesting tuples. But since it might not contain tuples deleted just
* before the reference snap was taken, we have to wait out any
* transactions that might have older snapshots.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_3);
WaitForOlderSnapshots(limitXmin, true);
/*
* Index can now be marked valid -- update its pg_index entry
*/
index_set_state_flags(indexRelationId, INDEX_CREATE_SET_VALID);
/*
* The pg_index update will cause backends (including this one) to update
* relcache entries for the index itself, but we should also send a
* relcache inval on the parent table to force replanning of cached plans.
* Otherwise existing sessions might fail to use the new index where it
* would be useful. (Note that our earlier commits did not create reasons
* to replan; so relcache flush on the index itself was sufficient.)
*/
CacheInvalidateRelcacheByRelid(heaprelid.relId);
/*
* Last thing to do is release the session-level lock on the parent table.
*/
UnlockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
pgstat_progress_end_command();
return address;
}
/*
* CheckMutability
* Test whether given expression is mutable
*/
static bool
CheckMutability(Expr *expr)
{
/*
* First run the expression through the planner. This has a couple of
* important consequences. First, function default arguments will get
* inserted, which may affect volatility (consider "default now()").
* Second, inline-able functions will get inlined, which may allow us to
* conclude that the function is really less volatile than it's marked. As
* an example, polymorphic functions must be marked with the most volatile
* behavior that they have for any input type, but once we inline the
* function we may be able to conclude that it's not so volatile for the
* particular input type we're dealing with.
*
* We assume here that expression_planner() won't scribble on its input.
*/
expr = expression_planner(expr);
/* Now we can search for non-immutable functions */
return contain_mutable_functions((Node *) expr);
}
/*
* CheckPredicate
* Checks that the given partial-index predicate is valid.
*
* This used to also constrain the form of the predicate to forms that
* indxpath.c could do something with. However, that seems overly
* restrictive. One useful application of partial indexes is to apply
* a UNIQUE constraint across a subset of a table, and in that scenario
* any evaluable predicate will work. So accept any predicate here
* (except ones requiring a plan), and let indxpath.c fend for itself.
*/
static void
CheckPredicate(Expr *predicate)
{
/*
* transformExpr() should have already rejected subqueries, aggregates,
* and window functions, based on the EXPR_KIND_ for a predicate.
*/
/*
* A predicate using mutable functions is probably wrong, for the same
* reasons that we don't allow an index expression to use one.
*/
if (CheckMutability(predicate))
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("functions in index predicate must be marked IMMUTABLE")));
}
/*
* Compute per-index-column information, including indexed column numbers
* or index expressions, opclasses, and indoptions. Note, all output vectors
* should be allocated for all columns, including "including" ones.
*/
static void
ComputeIndexAttrs(IndexInfo *indexInfo,
Oid *typeOidP,
Oid *collationOidP,
Oid *classOidP,
int16 *colOptionP,
List *attList, /* list of IndexElem's */
List *exclusionOpNames,
Oid relId,
const char *accessMethodName,
Oid accessMethodId,
bool amcanorder,
bool isconstraint)
{
ListCell *nextExclOp;
ListCell *lc;
int attn;
int nkeycols = indexInfo->ii_NumIndexKeyAttrs;
/* Allocate space for exclusion operator info, if needed */
if (exclusionOpNames)
{
Assert(list_length(exclusionOpNames) == nkeycols);
indexInfo->ii_ExclusionOps = (Oid *) palloc(sizeof(Oid) * nkeycols);
indexInfo->ii_ExclusionProcs = (Oid *) palloc(sizeof(Oid) * nkeycols);
indexInfo->ii_ExclusionStrats = (uint16 *) palloc(sizeof(uint16) * nkeycols);
nextExclOp = list_head(exclusionOpNames);
}
else
nextExclOp = NULL;
/*
* process attributeList
*/
attn = 0;
foreach(lc, attList)
{
IndexElem *attribute = (IndexElem *) lfirst(lc);
Oid atttype;
Oid attcollation;
/*
* Process the column-or-expression to be indexed.
*/
if (attribute->name != NULL)
{
/* Simple index attribute */
HeapTuple atttuple;
Form_pg_attribute attform;
Assert(attribute->expr == NULL);
atttuple = SearchSysCacheAttName(relId, attribute->name);
if (!HeapTupleIsValid(atttuple))
{
/* difference in error message spellings is historical */
if (isconstraint)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" named in key does not exist",
attribute->name)));
else
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" does not exist",
attribute->name)));
}
attform = (Form_pg_attribute) GETSTRUCT(atttuple);
indexInfo->ii_IndexAttrNumbers[attn] = attform->attnum;
atttype = attform->atttypid;
attcollation = attform->attcollation;
ReleaseSysCache(atttuple);
}
else
{
/* Index expression */
Node *expr = attribute->expr;
Assert(expr != NULL);
if (attn >= nkeycols)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("expressions are not supported in included columns")));
atttype = exprType(expr);
attcollation = exprCollation(expr);
/*
* Strip any top-level COLLATE clause. This ensures that we treat
* "x COLLATE y" and "(x COLLATE y)" alike.
*/
while (IsA(expr, CollateExpr))
expr = (Node *) ((CollateExpr *) expr)->arg;
if (IsA(expr, Var) &&
((Var *) expr)->varattno != InvalidAttrNumber)
{
/*
* User wrote "(column)" or "(column COLLATE something)".
* Treat it like simple attribute anyway.
*/
indexInfo->ii_IndexAttrNumbers[attn] = ((Var *) expr)->varattno;
}
else
{
indexInfo->ii_IndexAttrNumbers[attn] = 0; /* marks expression */
indexInfo->ii_Expressions = lappend(indexInfo->ii_Expressions,
expr);
/*
* transformExpr() should have already rejected subqueries,
* aggregates, and window functions, based on the EXPR_KIND_
* for an index expression.
*/
/*
* An expression using mutable functions is probably wrong,
* since if you aren't going to get the same result for the
* same data every time, it's not clear what the index entries
* mean at all.
*/
if (CheckMutability((Expr *) expr))
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("functions in index expression must be marked IMMUTABLE")));
}
}
typeOidP[attn] = atttype;
/*
* Included columns have no collation, no opclass and no ordering
* options.
*/
if (attn >= nkeycols)
{
if (attribute->collation)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("including column does not support a collation")));
if (attribute->opclass)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("including column does not support an operator class")));
if (attribute->ordering != SORTBY_DEFAULT)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("including column does not support ASC/DESC options")));
if (attribute->nulls_ordering != SORTBY_NULLS_DEFAULT)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("including column does not support NULLS FIRST/LAST options")));
classOidP[attn] = InvalidOid;
colOptionP[attn] = 0;
collationOidP[attn] = InvalidOid;
attn++;
continue;
}
/*
* Apply collation override if any
*/
if (attribute->collation)
attcollation = get_collation_oid(attribute->collation, false);
/*
* Check we have a collation iff it's a collatable type. The only
* expected failures here are (1) COLLATE applied to a noncollatable
* type, or (2) index expression had an unresolved collation. But we
* might as well code this to be a complete consistency check.
*/
if (type_is_collatable(atttype))
{
if (!OidIsValid(attcollation))
ereport(ERROR,
(errcode(ERRCODE_INDETERMINATE_COLLATION),
errmsg("could not determine which collation to use for index expression"),
errhint("Use the COLLATE clause to set the collation explicitly.")));
}
else
{
if (OidIsValid(attcollation))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("collations are not supported by type %s",
format_type_be(atttype))));
}
collationOidP[attn] = attcollation;
/*
* Identify the opclass to use.
*/
classOidP[attn] = ResolveOpClass(attribute->opclass,
atttype,
accessMethodName,
accessMethodId);
/*
* Identify the exclusion operator, if any.
*/
if (nextExclOp)
{
List *opname = (List *) lfirst(nextExclOp);
Oid opid;
Oid opfamily;
int strat;
/*
* Find the operator --- it must accept the column datatype
* without runtime coercion (but binary compatibility is OK)
*/
opid = compatible_oper_opid(opname, atttype, atttype, false);
/*
* Only allow commutative operators to be used in exclusion
* constraints. If X conflicts with Y, but Y does not conflict
* with X, bad things will happen.
*/
if (get_commutator(opid) != opid)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("operator %s is not commutative",
format_operator(opid)),
errdetail("Only commutative operators can be used in exclusion constraints.")));
/*
* Operator must be a member of the right opfamily, too
*/
opfamily = get_opclass_family(classOidP[attn]);
strat = get_op_opfamily_strategy(opid, opfamily);
if (strat == 0)
{
HeapTuple opftuple;
Form_pg_opfamily opfform;
/*
* attribute->opclass might not explicitly name the opfamily,
* so fetch the name of the selected opfamily for use in the
* error message.
*/
opftuple = SearchSysCache1(OPFAMILYOID,
ObjectIdGetDatum(opfamily));
if (!HeapTupleIsValid(opftuple))
elog(ERROR, "cache lookup failed for opfamily %u",
opfamily);
opfform = (Form_pg_opfamily) GETSTRUCT(opftuple);
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("operator %s is not a member of operator family \"%s\"",
format_operator(opid),
NameStr(opfform->opfname)),
errdetail("The exclusion operator must be related to the index operator class for the constraint.")));
}
indexInfo->ii_ExclusionOps[attn] = opid;
indexInfo->ii_ExclusionProcs[attn] = get_opcode(opid);
indexInfo->ii_ExclusionStrats[attn] = strat;
nextExclOp = lnext(nextExclOp);
}
/*
* Set up the per-column options (indoption field). For now, this is
* zero for any un-ordered index, while ordered indexes have DESC and
* NULLS FIRST/LAST options.
*/
colOptionP[attn] = 0;
if (amcanorder)
{
/* default ordering is ASC */
if (attribute->ordering == SORTBY_DESC)
colOptionP[attn] |= INDOPTION_DESC;
/* default null ordering is LAST for ASC, FIRST for DESC */
if (attribute->nulls_ordering == SORTBY_NULLS_DEFAULT)
{
if (attribute->ordering == SORTBY_DESC)
colOptionP[attn] |= INDOPTION_NULLS_FIRST;
}
else if (attribute->nulls_ordering == SORTBY_NULLS_FIRST)
colOptionP[attn] |= INDOPTION_NULLS_FIRST;
}
else
{
/* index AM does not support ordering */
if (attribute->ordering != SORTBY_DEFAULT)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support ASC/DESC options",
accessMethodName)));
if (attribute->nulls_ordering != SORTBY_NULLS_DEFAULT)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support NULLS FIRST/LAST options",
accessMethodName)));
}
attn++;
}
}
/*
* Resolve possibly-defaulted operator class specification
*
* Note: This is used to resolve operator class specification in index and
* partition key definitions.
*/
Oid
ResolveOpClass(List *opclass, Oid attrType,
const char *accessMethodName, Oid accessMethodId)
{
char *schemaname;
char *opcname;
HeapTuple tuple;
Form_pg_opclass opform;
Oid opClassId,
opInputType;
/*
* Release 7.0 removed network_ops, timespan_ops, and datetime_ops, so we
* ignore those opclass names so the default *_ops is used. This can be
* removed in some later release. bjm 2000/02/07
*
* Release 7.1 removes lztext_ops, so suppress that too for a while. tgl
* 2000/07/30
*
* Release 7.2 renames timestamp_ops to timestamptz_ops, so suppress that
* too for awhile. I'm starting to think we need a better approach. tgl
* 2000/10/01
*
* Release 8.0 removes bigbox_ops (which was dead code for a long while
* anyway). tgl 2003/11/11
*/
if (list_length(opclass) == 1)
{
char *claname = strVal(linitial(opclass));
if (strcmp(claname, "network_ops") == 0 ||
strcmp(claname, "timespan_ops") == 0 ||
strcmp(claname, "datetime_ops") == 0 ||
strcmp(claname, "lztext_ops") == 0 ||
strcmp(claname, "timestamp_ops") == 0 ||
strcmp(claname, "bigbox_ops") == 0)
opclass = NIL;
}
if (opclass == NIL)
{
/* no operator class specified, so find the default */
opClassId = GetDefaultOpClass(attrType, accessMethodId);
if (!OidIsValid(opClassId))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("data type %s has no default operator class for access method \"%s\"",
format_type_be(attrType), accessMethodName),
errhint("You must specify an operator class for the index or define a default operator class for the data type.")));
return opClassId;
}
/*
* Specific opclass name given, so look up the opclass.
*/
/* deconstruct the name list */
DeconstructQualifiedName(opclass, &schemaname, &opcname);
if (schemaname)
{
/* Look in specific schema only */
Oid namespaceId;
namespaceId = LookupExplicitNamespace(schemaname, false);
tuple = SearchSysCache3(CLAAMNAMENSP,
ObjectIdGetDatum(accessMethodId),
PointerGetDatum(opcname),
ObjectIdGetDatum(namespaceId));
}
else
{
/* Unqualified opclass name, so search the search path */
opClassId = OpclassnameGetOpcid(accessMethodId, opcname);
if (!OidIsValid(opClassId))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("operator class \"%s\" does not exist for access method \"%s\"",
opcname, accessMethodName)));
tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(opClassId));
}
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("operator class \"%s\" does not exist for access method \"%s\"",
NameListToString(opclass), accessMethodName)));
/*
* Verify that the index operator class accepts this datatype. Note we
* will accept binary compatibility.
*/
opform = (Form_pg_opclass) GETSTRUCT(tuple);
opClassId = opform->oid;
opInputType = opform->opcintype;
if (!IsBinaryCoercible(attrType, opInputType))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("operator class \"%s\" does not accept data type %s",
NameListToString(opclass), format_type_be(attrType))));
ReleaseSysCache(tuple);
return opClassId;
}
/*
* GetDefaultOpClass
*
* Given the OIDs of a datatype and an access method, find the default
* operator class, if any. Returns InvalidOid if there is none.
*/
Oid
GetDefaultOpClass(Oid type_id, Oid am_id)
{
Oid result = InvalidOid;
int nexact = 0;
int ncompatible = 0;
int ncompatiblepreferred = 0;
Relation rel;
ScanKeyData skey[1];
SysScanDesc scan;
HeapTuple tup;
TYPCATEGORY tcategory;
/* If it's a domain, look at the base type instead */
type_id = getBaseType(type_id);
tcategory = TypeCategory(type_id);
/*
* We scan through all the opclasses available for the access method,
* looking for one that is marked default and matches the target type
* (either exactly or binary-compatibly, but prefer an exact match).
*
* We could find more than one binary-compatible match. If just one is
* for a preferred type, use that one; otherwise we fail, forcing the user
* to specify which one he wants. (The preferred-type special case is a
* kluge for varchar: it's binary-compatible to both text and bpchar, so
* we need a tiebreaker.) If we find more than one exact match, then
* someone put bogus entries in pg_opclass.
*/
rel = table_open(OperatorClassRelationId, AccessShareLock);
ScanKeyInit(&skey[0],
Anum_pg_opclass_opcmethod,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(am_id));
scan = systable_beginscan(rel, OpclassAmNameNspIndexId, true,
NULL, 1, skey);
while (HeapTupleIsValid(tup = systable_getnext(scan)))
{
Form_pg_opclass opclass = (Form_pg_opclass) GETSTRUCT(tup);
/* ignore altogether if not a default opclass */
if (!opclass->opcdefault)
continue;
if (opclass->opcintype == type_id)
{
nexact++;
result = opclass->oid;
}
else if (nexact == 0 &&
IsBinaryCoercible(type_id, opclass->opcintype))
{
if (IsPreferredType(tcategory, opclass->opcintype))
{
ncompatiblepreferred++;
result = opclass->oid;
}
else if (ncompatiblepreferred == 0)
{
ncompatible++;
result = opclass->oid;
}
}
}
systable_endscan(scan);
table_close(rel, AccessShareLock);
/* raise error if pg_opclass contains inconsistent data */
if (nexact > 1)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("there are multiple default operator classes for data type %s",
format_type_be(type_id))));
if (nexact == 1 ||
ncompatiblepreferred == 1 ||
(ncompatiblepreferred == 0 && ncompatible == 1))
return result;
return InvalidOid;
}
/*
* makeObjectName()
*
* Create a name for an implicitly created index, sequence, constraint,
* extended statistics, etc.
*
* The parameters are typically: the original table name, the original field
* name, and a "type" string (such as "seq" or "pkey"). The field name
* and/or type can be NULL if not relevant.
*
* The result is a palloc'd string.
*
* The basic result we want is "name1_name2_label", omitting "_name2" or
* "_label" when those parameters are NULL. However, we must generate
* a name with less than NAMEDATALEN characters! So, we truncate one or
* both names if necessary to make a short-enough string. The label part
* is never truncated (so it had better be reasonably short).
*
* The caller is responsible for checking uniqueness of the generated
* name and retrying as needed; retrying will be done by altering the
* "label" string (which is why we never truncate that part).
*/
char *
makeObjectName(const char *name1, const char *name2, const char *label)
{
char *name;
int overhead = 0; /* chars needed for label and underscores */
int availchars; /* chars available for name(s) */
int name1chars; /* chars allocated to name1 */
int name2chars; /* chars allocated to name2 */
int ndx;
name1chars = strlen(name1);
if (name2)
{
name2chars = strlen(name2);
overhead++; /* allow for separating underscore */
}
else
name2chars = 0;
if (label)
overhead += strlen(label) + 1;
availchars = NAMEDATALEN - 1 - overhead;
Assert(availchars > 0); /* else caller chose a bad label */
/*
* If we must truncate, preferentially truncate the longer name. This
* logic could be expressed without a loop, but it's simple and obvious as
* a loop.
*/
while (name1chars + name2chars > availchars)
{
if (name1chars > name2chars)
name1chars--;
else
name2chars--;
}
name1chars = pg_mbcliplen(name1, name1chars, name1chars);
if (name2)
name2chars = pg_mbcliplen(name2, name2chars, name2chars);
/* Now construct the string using the chosen lengths */
name = palloc(name1chars + name2chars + overhead + 1);
memcpy(name, name1, name1chars);
ndx = name1chars;
if (name2)
{
name[ndx++] = '_';
memcpy(name + ndx, name2, name2chars);
ndx += name2chars;
}
if (label)
{
name[ndx++] = '_';
strcpy(name + ndx, label);
}
else
name[ndx] = '\0';
return name;
}
/*
* Select a nonconflicting name for a new relation. This is ordinarily
* used to choose index names (which is why it's here) but it can also
* be used for sequences, or any autogenerated relation kind.
*
* name1, name2, and label are used the same way as for makeObjectName(),
* except that the label can't be NULL; digits will be appended to the label
* if needed to create a name that is unique within the specified namespace.
*
* If isconstraint is true, we also avoid choosing a name matching any
* existing constraint in the same namespace. (This is stricter than what
* Postgres itself requires, but the SQL standard says that constraint names
* should be unique within schemas, so we follow that for autogenerated
* constraint names.)
*
* Note: it is theoretically possible to get a collision anyway, if someone
* else chooses the same name concurrently. This is fairly unlikely to be
* a problem in practice, especially if one is holding an exclusive lock on
* the relation identified by name1. However, if choosing multiple names
* within a single command, you'd better create the new object and do
* CommandCounterIncrement before choosing the next one!
*
* Returns a palloc'd string.
*/
char *
ChooseRelationName(const char *name1, const char *name2,
const char *label, Oid namespaceid,
bool isconstraint)
{
int pass = 0;
char *relname = NULL;
char modlabel[NAMEDATALEN];
/* try the unmodified label first */
StrNCpy(modlabel, label, sizeof(modlabel));
for (;;)
{
relname = makeObjectName(name1, name2, modlabel);
if (!OidIsValid(get_relname_relid(relname, namespaceid)))
{
if (!isconstraint ||
!ConstraintNameExists(relname, namespaceid))
break;
}
/* found a conflict, so try a new name component */
pfree(relname);
snprintf(modlabel, sizeof(modlabel), "%s%d", label, ++pass);
}
return relname;
}
/*
* Select the name to be used for an index.
*
* The argument list is pretty ad-hoc :-(
*/
static char *
ChooseIndexName(const char *tabname, Oid namespaceId,
List *colnames, List *exclusionOpNames,
bool primary, bool isconstraint)
{
char *indexname;
if (primary)
{
/* the primary key's name does not depend on the specific column(s) */
indexname = ChooseRelationName(tabname,
NULL,
"pkey",
namespaceId,
true);
}
else if (exclusionOpNames != NIL)
{
indexname = ChooseRelationName(tabname,
ChooseIndexNameAddition(colnames),
"excl",
namespaceId,
true);
}
else if (isconstraint)
{
indexname = ChooseRelationName(tabname,
ChooseIndexNameAddition(colnames),
"key",
namespaceId,
true);
}
else
{
indexname = ChooseRelationName(tabname,
ChooseIndexNameAddition(colnames),
"idx",
namespaceId,
false);
}
return indexname;
}
/*
* Generate "name2" for a new index given the list of column names for it
* (as produced by ChooseIndexColumnNames). This will be passed to
* ChooseRelationName along with the parent table name and a suitable label.
*
* We know that less than NAMEDATALEN characters will actually be used,
* so we can truncate the result once we've generated that many.
*
* XXX See also ChooseForeignKeyConstraintNameAddition and
* ChooseExtendedStatisticNameAddition.
*/
static char *
ChooseIndexNameAddition(List *colnames)
{
char buf[NAMEDATALEN * 2];
int buflen = 0;
ListCell *lc;
buf[0] = '\0';
foreach(lc, colnames)
{
const char *name = (const char *) lfirst(lc);
if (buflen > 0)
buf[buflen++] = '_'; /* insert _ between names */
/*
* At this point we have buflen <= NAMEDATALEN. name should be less
* than NAMEDATALEN already, but use strlcpy for paranoia.
*/
strlcpy(buf + buflen, name, NAMEDATALEN);
buflen += strlen(buf + buflen);
if (buflen >= NAMEDATALEN)
break;
}
return pstrdup(buf);
}
/*
* Select the actual names to be used for the columns of an index, given the
* list of IndexElems for the columns. This is mostly about ensuring the
* names are unique so we don't get a conflicting-attribute-names error.
*
* Returns a List of plain strings (char *, not String nodes).
*/
static List *
ChooseIndexColumnNames(List *indexElems)
{
List *result = NIL;
ListCell *lc;
foreach(lc, indexElems)
{
IndexElem *ielem = (IndexElem *) lfirst(lc);
const char *origname;
const char *curname;
int i;
char buf[NAMEDATALEN];
/* Get the preliminary name from the IndexElem */
if (ielem->indexcolname)
origname = ielem->indexcolname; /* caller-specified name */
else if (ielem->name)
origname = ielem->name; /* simple column reference */
else
origname = "expr"; /* default name for expression */
/* If it conflicts with any previous column, tweak it */
curname = origname;
for (i = 1;; i++)
{
ListCell *lc2;
char nbuf[32];
int nlen;
foreach(lc2, result)
{
if (strcmp(curname, (char *) lfirst(lc2)) == 0)
break;
}
if (lc2 == NULL)
break; /* found nonconflicting name */
sprintf(nbuf, "%d", i);
/* Ensure generated names are shorter than NAMEDATALEN */
nlen = pg_mbcliplen(origname, strlen(origname),
NAMEDATALEN - 1 - strlen(nbuf));
memcpy(buf, origname, nlen);
strcpy(buf + nlen, nbuf);
curname = buf;
}
/* And attach to the result list */
result = lappend(result, pstrdup(curname));
}
return result;
}
/*
* ReindexIndex
* Recreate a specific index.
*/
void
ReindexIndex(RangeVar *indexRelation, int options, bool concurrent)
{
struct ReindexIndexCallbackState state;
Oid indOid;
Relation irel;
char persistence;
/*
* Find and lock index, and check permissions on table; use callback to
* obtain lock on table first, to avoid deadlock hazard. The lock level
* used here must match the index lock obtained in reindex_index().
*/
state.concurrent = concurrent;
state.locked_table_oid = InvalidOid;
indOid = RangeVarGetRelidExtended(indexRelation,
concurrent ? ShareUpdateExclusiveLock : AccessExclusiveLock,
0,
RangeVarCallbackForReindexIndex,
&state);
/*
* Obtain the current persistence of the existing index. We already hold
* lock on the index.
*/
irel = index_open(indOid, NoLock);
if (irel->rd_rel->relkind == RELKIND_PARTITIONED_INDEX)
{
ReindexPartitionedIndex(irel);
return;
}
persistence = irel->rd_rel->relpersistence;
index_close(irel, NoLock);
if (concurrent)
ReindexRelationConcurrently(indOid, options);
else
reindex_index(indOid, false, persistence, options);
}
/*
* Check permissions on table before acquiring relation lock; also lock
* the heap before the RangeVarGetRelidExtended takes the index lock, to avoid
* deadlocks.
*/
static void
RangeVarCallbackForReindexIndex(const RangeVar *relation,
Oid relId, Oid oldRelId, void *arg)
{
char relkind;
struct ReindexIndexCallbackState *state = arg;
LOCKMODE table_lockmode;
/*
* Lock level here should match table lock in reindex_index() for
* non-concurrent case and table locks used by index_concurrently_*() for
* concurrent case.
*/
table_lockmode = state->concurrent ? ShareUpdateExclusiveLock : ShareLock;
/*
* If we previously locked some other index's heap, and the name we're
* looking up no longer refers to that relation, release the now-useless
* lock.
*/
if (relId != oldRelId && OidIsValid(oldRelId))
{
UnlockRelationOid(state->locked_table_oid, table_lockmode);
state->locked_table_oid = InvalidOid;
}
/* If the relation does not exist, there's nothing more to do. */
if (!OidIsValid(relId))
return;
/*
* If the relation does exist, check whether it's an index. But note that
* the relation might have been dropped between the time we did the name
* lookup and now. In that case, there's nothing to do.
*/
relkind = get_rel_relkind(relId);
if (!relkind)
return;
if (relkind != RELKIND_INDEX &&
relkind != RELKIND_PARTITIONED_INDEX)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not an index", relation->relname)));
/* Check permissions */
if (!pg_class_ownercheck(relId, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_INDEX, relation->relname);
/* Lock heap before index to avoid deadlock. */
if (relId != oldRelId)
{
Oid table_oid = IndexGetRelation(relId, true);
/*
* If the OID isn't valid, it means the index was concurrently
* dropped, which is not a problem for us; just return normally.
*/
if (OidIsValid(table_oid))
{
LockRelationOid(table_oid, table_lockmode);
state->locked_table_oid = table_oid;
}
}
}
/*
* ReindexTable
* Recreate all indexes of a table (and of its toast table, if any)
*/
Oid
ReindexTable(RangeVar *relation, int options, bool concurrent)
{
Oid heapOid;
bool result;
/* The lock level used here should match reindex_relation(). */
heapOid = RangeVarGetRelidExtended(relation,
concurrent ? ShareUpdateExclusiveLock : ShareLock,
0,
RangeVarCallbackOwnsTable, NULL);
if (concurrent)
result = ReindexRelationConcurrently(heapOid, options);
else
result = reindex_relation(heapOid,
REINDEX_REL_PROCESS_TOAST |
REINDEX_REL_CHECK_CONSTRAINTS,
options);
if (!result)
ereport(NOTICE,
(errmsg("table \"%s\" has no indexes",
relation->relname)));
return heapOid;
}
/*
* ReindexMultipleTables
* Recreate indexes of tables selected by objectName/objectKind.
*
* To reduce the probability of deadlocks, each table is reindexed in a
* separate transaction, so we can release the lock on it right away.
* That means this must not be called within a user transaction block!
*/
void
ReindexMultipleTables(const char *objectName, ReindexObjectType objectKind,
int options, bool concurrent)
{
Oid objectOid;
Relation relationRelation;
TableScanDesc scan;
ScanKeyData scan_keys[1];
HeapTuple tuple;
MemoryContext private_context;
MemoryContext old;
List *relids = NIL;
ListCell *l;
int num_keys;
bool concurrent_warning = false;
AssertArg(objectName);
Assert(objectKind == REINDEX_OBJECT_SCHEMA ||
objectKind == REINDEX_OBJECT_SYSTEM ||
objectKind == REINDEX_OBJECT_DATABASE);
if (objectKind == REINDEX_OBJECT_SYSTEM && concurrent)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("concurrent reindex of system catalogs is not supported")));
/*
* Get OID of object to reindex, being the database currently being used
* by session for a database or for system catalogs, or the schema defined
* by caller. At the same time do permission checks that need different
* processing depending on the object type.
*/
if (objectKind == REINDEX_OBJECT_SCHEMA)
{
objectOid = get_namespace_oid(objectName, false);
if (!pg_namespace_ownercheck(objectOid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_SCHEMA,
objectName);
}
else
{
objectOid = MyDatabaseId;
if (strcmp(objectName, get_database_name(objectOid)) != 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("can only reindex the currently open database")));
if (!pg_database_ownercheck(objectOid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, OBJECT_DATABASE,
objectName);
}
/*
* Create a memory context that will survive forced transaction commits we
* do below. Since it is a child of PortalContext, it will go away
* eventually even if we suffer an error; there's no need for special
* abort cleanup logic.
*/
private_context = AllocSetContextCreate(PortalContext,
"ReindexMultipleTables",
ALLOCSET_SMALL_SIZES);
/*
* Define the search keys to find the objects to reindex. For a schema, we
* select target relations using relnamespace, something not necessary for
* a database-wide operation.
*/
if (objectKind == REINDEX_OBJECT_SCHEMA)
{
num_keys = 1;
ScanKeyInit(&scan_keys[0],
Anum_pg_class_relnamespace,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(objectOid));
}
else
num_keys = 0;
/*
* Scan pg_class to build a list of the relations we need to reindex.
*
* We only consider plain relations and materialized views here (toast
* rels will be processed indirectly by reindex_relation).
*/
relationRelation = table_open(RelationRelationId, AccessShareLock);
scan = table_beginscan_catalog(relationRelation, num_keys, scan_keys);
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
Form_pg_class classtuple = (Form_pg_class) GETSTRUCT(tuple);
Oid relid = classtuple->oid;
/*
* Only regular tables and matviews can have indexes, so ignore any
* other kind of relation.
*
* It is tempting to also consider partitioned tables here, but that
* has the problem that if the children are in the same schema, they
* would be processed twice. Maybe we could have a separate list of
* partitioned tables, and expand that afterwards into relids,
* ignoring any duplicates.
*/
if (classtuple->relkind != RELKIND_RELATION &&
classtuple->relkind != RELKIND_MATVIEW)
continue;
/* Skip temp tables of other backends; we can't reindex them at all */
if (classtuple->relpersistence == RELPERSISTENCE_TEMP &&
!isTempNamespace(classtuple->relnamespace))
continue;
/* Check user/system classification, and optionally skip */
if (objectKind == REINDEX_OBJECT_SYSTEM &&
!IsSystemClass(relid, classtuple))
continue;
/*
* The table can be reindexed if the user is superuser, the table
* owner, or the database/schema owner (but in the latter case, only
* if it's not a shared relation). pg_class_ownercheck includes the
* superuser case, and depending on objectKind we already know that
* the user has permission to run REINDEX on this database or schema
* per the permission checks at the beginning of this routine.
*/
if (classtuple->relisshared &&
!pg_class_ownercheck(relid, GetUserId()))
continue;
/*
* Skip system tables, since index_create() would reject indexing them
* concurrently (and it would likely fail if we tried).
*/
if (concurrent &&
IsCatalogRelationOid(relid))
{
if (!concurrent_warning)
ereport(WARNING,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("concurrent reindex is not supported for catalog relations, skipping all")));
concurrent_warning = true;
continue;
}
/* Save the list of relation OIDs in private context */
old = MemoryContextSwitchTo(private_context);
/*
* We always want to reindex pg_class first if it's selected to be
* reindexed. This ensures that if there is any corruption in
* pg_class' indexes, they will be fixed before we process any other
* tables. This is critical because reindexing itself will try to
* update pg_class.
*/
if (relid == RelationRelationId)
relids = lcons_oid(relid, relids);
else
relids = lappend_oid(relids, relid);
MemoryContextSwitchTo(old);
}
table_endscan(scan);
table_close(relationRelation, AccessShareLock);
/* Now reindex each rel in a separate transaction */
PopActiveSnapshot();
CommitTransactionCommand();
foreach(l, relids)
{
Oid relid = lfirst_oid(l);
bool result;
StartTransactionCommand();
/* functions in indexes may want a snapshot set */
PushActiveSnapshot(GetTransactionSnapshot());
if (concurrent)
{
result = ReindexRelationConcurrently(relid, options);
/* ReindexRelationConcurrently() does the verbose output */
}
else
{
result = reindex_relation(relid,
REINDEX_REL_PROCESS_TOAST |
REINDEX_REL_CHECK_CONSTRAINTS,
options);
if (result && (options & REINDEXOPT_VERBOSE))
ereport(INFO,
(errmsg("table \"%s.%s\" was reindexed",
get_namespace_name(get_rel_namespace(relid)),
get_rel_name(relid))));
PopActiveSnapshot();
}
CommitTransactionCommand();
}
StartTransactionCommand();
MemoryContextDelete(private_context);
}
/*
* ReindexRelationConcurrently - process REINDEX CONCURRENTLY for given
* relation OID
*
* The relation can be either an index or a table. If it is a table, all its
* valid indexes will be rebuilt, including its associated toast table
* indexes. If it is an index, this index itself will be rebuilt.
*
* The locks taken on parent tables and involved indexes are kept until the
* transaction is committed, at which point a session lock is taken on each
* relation. Both of these protect against concurrent schema changes.
*/
static bool
ReindexRelationConcurrently(Oid relationOid, int options)
{
List *heapRelationIds = NIL;
List *indexIds = NIL;
List *newIndexIds = NIL;
List *relationLocks = NIL;
List *lockTags = NIL;
ListCell *lc,
*lc2;
MemoryContext private_context;
MemoryContext oldcontext;
char relkind;
char *relationName = NULL;
char *relationNamespace = NULL;
PGRUsage ru0;
/*
* Create a memory context that will survive forced transaction commits we
* do below. Since it is a child of PortalContext, it will go away
* eventually even if we suffer an error; there's no need for special
* abort cleanup logic.
*/
private_context = AllocSetContextCreate(PortalContext,
"ReindexConcurrent",
ALLOCSET_SMALL_SIZES);
if (options & REINDEXOPT_VERBOSE)
{
/* Save data needed by REINDEX VERBOSE in private context */
oldcontext = MemoryContextSwitchTo(private_context);
relationName = get_rel_name(relationOid);
relationNamespace = get_namespace_name(get_rel_namespace(relationOid));
pg_rusage_init(&ru0);
MemoryContextSwitchTo(oldcontext);
}
relkind = get_rel_relkind(relationOid);
/*
* Extract the list of indexes that are going to be rebuilt based on the
* list of relation Oids given by caller.
*/
switch (relkind)
{
case RELKIND_RELATION:
case RELKIND_MATVIEW:
case RELKIND_TOASTVALUE:
{
/*
* In the case of a relation, find all its indexes including
* toast indexes.
*/
Relation heapRelation;
/* Save the list of relation OIDs in private context */
oldcontext = MemoryContextSwitchTo(private_context);
/* Track this relation for session locks */
heapRelationIds = lappend_oid(heapRelationIds, relationOid);
MemoryContextSwitchTo(oldcontext);
/* A system catalog cannot be reindexed concurrently */
if (IsCatalogRelationOid(relationOid))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex a system catalog concurrently")));
/* Open relation to get its indexes */
heapRelation = table_open(relationOid, ShareUpdateExclusiveLock);
/* Add all the valid indexes of relation to list */
foreach(lc, RelationGetIndexList(heapRelation))
{
Oid cellOid = lfirst_oid(lc);
Relation indexRelation = index_open(cellOid,
ShareUpdateExclusiveLock);
if (!indexRelation->rd_index->indisvalid)
ereport(WARNING,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex invalid index \"%s.%s\" concurrently, skipping",
get_namespace_name(get_rel_namespace(cellOid)),
get_rel_name(cellOid))));
else if (indexRelation->rd_index->indisexclusion)
ereport(WARNING,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex exclusion constraint index \"%s.%s\" concurrently, skipping",
get_namespace_name(get_rel_namespace(cellOid)),
get_rel_name(cellOid))));
else
{
/* Save the list of relation OIDs in private context */
oldcontext = MemoryContextSwitchTo(private_context);
indexIds = lappend_oid(indexIds, cellOid);
MemoryContextSwitchTo(oldcontext);
}
index_close(indexRelation, NoLock);
}
/* Also add the toast indexes */
if (OidIsValid(heapRelation->rd_rel->reltoastrelid))
{
Oid toastOid = heapRelation->rd_rel->reltoastrelid;
Relation toastRelation = table_open(toastOid,
ShareUpdateExclusiveLock);
/* Save the list of relation OIDs in private context */
oldcontext = MemoryContextSwitchTo(private_context);
/* Track this relation for session locks */
heapRelationIds = lappend_oid(heapRelationIds, toastOid);
MemoryContextSwitchTo(oldcontext);
foreach(lc2, RelationGetIndexList(toastRelation))
{
Oid cellOid = lfirst_oid(lc2);
Relation indexRelation = index_open(cellOid,
ShareUpdateExclusiveLock);
if (!indexRelation->rd_index->indisvalid)
ereport(WARNING,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg("cannot reindex invalid index \"%s.%s\" concurrently, skipping",
get_namespace_name(get_rel_namespace(cellOid)),
get_rel_name(cellOid))));
else
{
/*
* Save the list of relation OIDs in private
* context
*/
oldcontext = MemoryContextSwitchTo(private_context);
indexIds = lappend_oid(indexIds, cellOid);
MemoryContextSwitchTo(oldcontext);
}
index_close(indexRelation, NoLock);
}
table_close(toastRelation, NoLock);
}
table_close(heapRelation, NoLock);
break;
}
case RELKIND_INDEX:
{
Oid heapId = IndexGetRelation(relationOid, false);
/* A system catalog cannot be reindexed concurrently */
if (IsCatalogRelationOid(heapId))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex a system catalog concurrently")));
/* Save the list of relation OIDs in private context */
oldcontext = MemoryContextSwitchTo(private_context);
/* Track the heap relation of this index for session locks */
heapRelationIds = list_make1_oid(heapId);
/*
* Save the list of relation OIDs in private context. Note
* that invalid indexes are allowed here.
*/
indexIds = lappend_oid(indexIds, relationOid);
MemoryContextSwitchTo(oldcontext);
break;
}
case RELKIND_PARTITIONED_TABLE:
/* see reindex_relation() */
ereport(WARNING,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("REINDEX of partitioned tables is not yet implemented, skipping \"%s\"",
get_rel_name(relationOid))));
return false;
default:
/* Return error if type of relation is not supported */
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot reindex this type of relation concurrently")));
break;
}
/* Definitely no indexes, so leave */
if (indexIds == NIL)
{
PopActiveSnapshot();
return false;
}
Assert(heapRelationIds != NIL);
/*-----
* Now we have all the indexes we want to process in indexIds.
*
* The phases now are:
*
* 1. create new indexes in the catalog
* 2. build new indexes
* 3. let new indexes catch up with tuples inserted in the meantime
* 4. swap index names
* 5. mark old indexes as dead
* 6. drop old indexes
*
* We process each phase for all indexes before moving to the next phase,
* for efficiency.
*/
/*
* Phase 1 of REINDEX CONCURRENTLY
*
* Create a new index with the same properties as the old one, but it is
* only registered in catalogs and will be built later. Then get session
* locks on all involved tables. See analogous code in DefineIndex() for
* more detailed comments.
*/
foreach(lc, indexIds)
{
char *concurrentName;
Oid indexId = lfirst_oid(lc);
Oid newIndexId;
Relation indexRel;
Relation heapRel;
Relation newIndexRel;
LockRelId *lockrelid;
indexRel = index_open(indexId, ShareUpdateExclusiveLock);
heapRel = table_open(indexRel->rd_index->indrelid,
ShareUpdateExclusiveLock);
pgstat_progress_start_command(PROGRESS_COMMAND_CREATE_INDEX,
RelationGetRelid(heapRel));
pgstat_progress_update_param(PROGRESS_CREATEIDX_INDEX_OID,
indexId);
pgstat_progress_update_param(PROGRESS_CREATEIDX_ACCESS_METHOD_OID,
indexRel->rd_rel->relam);
/* Choose a temporary relation name for the new index */
concurrentName = ChooseRelationName(get_rel_name(indexId),
NULL,
"ccnew",
get_rel_namespace(indexRel->rd_index->indrelid),
false);
/* Create new index definition based on given index */
newIndexId = index_concurrently_create_copy(heapRel,
indexId,
concurrentName);
/* Now open the relation of the new index, a lock is also needed on it */
newIndexRel = index_open(indexId, ShareUpdateExclusiveLock);
/*
* Save the list of OIDs and locks in private context
*/
oldcontext = MemoryContextSwitchTo(private_context);
newIndexIds = lappend_oid(newIndexIds, newIndexId);
/*
* Save lockrelid to protect each relation from drop then close
* relations. The lockrelid on parent relation is not taken here to
* avoid multiple locks taken on the same relation, instead we rely on
* parentRelationIds built earlier.
*/
lockrelid = palloc(sizeof(*lockrelid));
*lockrelid = indexRel->rd_lockInfo.lockRelId;
relationLocks = lappend(relationLocks, lockrelid);
lockrelid = palloc(sizeof(*lockrelid));
*lockrelid = newIndexRel->rd_lockInfo.lockRelId;
relationLocks = lappend(relationLocks, lockrelid);
MemoryContextSwitchTo(oldcontext);
index_close(indexRel, NoLock);
index_close(newIndexRel, NoLock);
table_close(heapRel, NoLock);
}
/*
* Save the heap lock for following visibility checks with other backends
* might conflict with this session.
*/
foreach(lc, heapRelationIds)
{
Relation heapRelation = table_open(lfirst_oid(lc), ShareUpdateExclusiveLock);
LockRelId *lockrelid;
LOCKTAG *heaplocktag;
/* Save the list of locks in private context */
oldcontext = MemoryContextSwitchTo(private_context);
/* Add lockrelid of heap relation to the list of locked relations */
lockrelid = palloc(sizeof(*lockrelid));
*lockrelid = heapRelation->rd_lockInfo.lockRelId;
relationLocks = lappend(relationLocks, lockrelid);
heaplocktag = (LOCKTAG *) palloc(sizeof(LOCKTAG));
/* Save the LOCKTAG for this parent relation for the wait phase */
SET_LOCKTAG_RELATION(*heaplocktag, lockrelid->dbId, lockrelid->relId);
lockTags = lappend(lockTags, heaplocktag);
MemoryContextSwitchTo(oldcontext);
/* Close heap relation */
table_close(heapRelation, NoLock);
}
/* Get a session-level lock on each table. */
foreach(lc, relationLocks)
{
LockRelId *lockrelid = (LockRelId *) lfirst(lc);
LockRelationIdForSession(lockrelid, ShareUpdateExclusiveLock);
}
PopActiveSnapshot();
CommitTransactionCommand();
StartTransactionCommand();
/*
* Phase 2 of REINDEX CONCURRENTLY
*
* Build the new indexes in a separate transaction for each index to avoid
* having open transactions for an unnecessary long time. But before
* doing that, wait until no running transactions could have the table of
* the index open with the old list of indexes. See "phase 2" in
* DefineIndex() for more details.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_1);
WaitForLockersMultiple(lockTags, ShareLock, true);
CommitTransactionCommand();
forboth(lc, indexIds, lc2, newIndexIds)
{
Relation indexRel;
Oid oldIndexId = lfirst_oid(lc);
Oid newIndexId = lfirst_oid(lc2);
Oid heapId;
CHECK_FOR_INTERRUPTS();
/* Start new transaction for this index's concurrent build */
StartTransactionCommand();
/* Set ActiveSnapshot since functions in the indexes may need it */
PushActiveSnapshot(GetTransactionSnapshot());
/*
* Index relation has been closed by previous commit, so reopen it to
* get its information.
*/
indexRel = index_open(oldIndexId, ShareUpdateExclusiveLock);
heapId = indexRel->rd_index->indrelid;
index_close(indexRel, NoLock);
/* Perform concurrent build of new index */
index_concurrently_build(heapId, newIndexId);
PopActiveSnapshot();
CommitTransactionCommand();
}
StartTransactionCommand();
/*
* Phase 3 of REINDEX CONCURRENTLY
*
* During this phase the old indexes catch up with any new tuples that
* were created during the previous phase. See "phase 3" in DefineIndex()
* for more details.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_2);
WaitForLockersMultiple(lockTags, ShareLock, true);
CommitTransactionCommand();
foreach(lc, newIndexIds)
{
Oid newIndexId = lfirst_oid(lc);
Oid heapId;
TransactionId limitXmin;
Snapshot snapshot;
CHECK_FOR_INTERRUPTS();
StartTransactionCommand();
heapId = IndexGetRelation(newIndexId, false);
/*
* Take the "reference snapshot" that will be used by validate_index()
* to filter candidate tuples.
*/
snapshot = RegisterSnapshot(GetTransactionSnapshot());
PushActiveSnapshot(snapshot);
validate_index(heapId, newIndexId, snapshot);
/*
* We can now do away with our active snapshot, we still need to save
* the xmin limit to wait for older snapshots.
*/
limitXmin = snapshot->xmin;
PopActiveSnapshot();
UnregisterSnapshot(snapshot);
/*
* To ensure no deadlocks, we must commit and start yet another
* transaction, and do our wait before any snapshot has been taken in
* it.
*/
CommitTransactionCommand();
StartTransactionCommand();
/*
* The index is now valid in the sense that it contains all currently
* interesting tuples. But since it might not contain tuples deleted
* just before the reference snap was taken, we have to wait out any
* transactions that might have older snapshots.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_3);
WaitForOlderSnapshots(limitXmin, true);
CommitTransactionCommand();
}
/*
* Phase 4 of REINDEX CONCURRENTLY
*
* Now that the new indexes have been validated, swap each new index with
* its corresponding old index.
*
* We mark the new indexes as valid and the old indexes as not valid at
* the same time to make sure we only get constraint violations from the
* indexes with the correct names.
*/
StartTransactionCommand();
forboth(lc, indexIds, lc2, newIndexIds)
{
char *oldName;
Oid oldIndexId = lfirst_oid(lc);
Oid newIndexId = lfirst_oid(lc2);
Oid heapId;
CHECK_FOR_INTERRUPTS();
heapId = IndexGetRelation(oldIndexId, false);
/* Choose a relation name for old index */
oldName = ChooseRelationName(get_rel_name(oldIndexId),
NULL,
"ccold",
get_rel_namespace(heapId),
false);
/*
* Swap old index with the new one. This also marks the new one as
* valid and the old one as not valid.
*/
index_concurrently_swap(newIndexId, oldIndexId, oldName);
/*
* Invalidate the relcache for the table, so that after this commit
* all sessions will refresh any cached plans that might reference the
* index.
*/
CacheInvalidateRelcacheByRelid(heapId);
/*
* CCI here so that subsequent iterations see the oldName in the
* catalog and can choose a nonconflicting name for their oldName.
* Otherwise, this could lead to conflicts if a table has two indexes
* whose names are equal for the first NAMEDATALEN-minus-a-few
* characters.
*/
CommandCounterIncrement();
}
/* Commit this transaction and make index swaps visible */
CommitTransactionCommand();
StartTransactionCommand();
/*
* Phase 5 of REINDEX CONCURRENTLY
*
* Mark the old indexes as dead. First we must wait until no running
* transaction could be using the index for a query. See also
* index_drop() for more details.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_4);
WaitForLockersMultiple(lockTags, AccessExclusiveLock, true);
foreach(lc, indexIds)
{
Oid oldIndexId = lfirst_oid(lc);
Oid heapId;
CHECK_FOR_INTERRUPTS();
heapId = IndexGetRelation(oldIndexId, false);
index_concurrently_set_dead(heapId, oldIndexId);
}
/* Commit this transaction to make the updates visible. */
CommitTransactionCommand();
StartTransactionCommand();
/*
* Phase 6 of REINDEX CONCURRENTLY
*
* Drop the old indexes.
*/
pgstat_progress_update_param(PROGRESS_CREATEIDX_PHASE,
PROGRESS_CREATEIDX_PHASE_WAIT_4);
WaitForLockersMultiple(lockTags, AccessExclusiveLock, true);
PushActiveSnapshot(GetTransactionSnapshot());
{
ObjectAddresses *objects = new_object_addresses();
foreach(lc, indexIds)
{
Oid oldIndexId = lfirst_oid(lc);
ObjectAddress object;
object.classId = RelationRelationId;
object.objectId = oldIndexId;
object.objectSubId = 0;
add_exact_object_address(&object, objects);
}
/*
* Use PERFORM_DELETION_CONCURRENT_LOCK so that index_drop() uses the
* right lock level.
*/
performMultipleDeletions(objects, DROP_RESTRICT,
PERFORM_DELETION_CONCURRENT_LOCK | PERFORM_DELETION_INTERNAL);
}
PopActiveSnapshot();
CommitTransactionCommand();
/*
* Finally, release the session-level lock on the table.
*/
foreach(lc, relationLocks)
{
LockRelId *lockrelid = (LockRelId *) lfirst(lc);
UnlockRelationIdForSession(lockrelid, ShareUpdateExclusiveLock);
}
/* Start a new transaction to finish process properly */
StartTransactionCommand();
/* Log what we did */
if (options & REINDEXOPT_VERBOSE)
{
if (relkind == RELKIND_INDEX)
ereport(INFO,
(errmsg("index \"%s.%s\" was reindexed",
relationNamespace, relationName),
errdetail("%s.",
pg_rusage_show(&ru0))));
else
{
foreach(lc, newIndexIds)
{
Oid indOid = lfirst_oid(lc);
ereport(INFO,
(errmsg("index \"%s.%s\" was reindexed",
get_namespace_name(get_rel_namespace(indOid)),
get_rel_name(indOid))));
/* Don't show rusage here, since it's not per index. */
}
ereport(INFO,
(errmsg("table \"%s.%s\" was reindexed",
relationNamespace, relationName),
errdetail("%s.",
pg_rusage_show(&ru0))));
}
}
MemoryContextDelete(private_context);
pgstat_progress_end_command();
return true;
}
/*
* ReindexPartitionedIndex
* Reindex each child of the given partitioned index.
*
* Not yet implemented.
*/
static void
ReindexPartitionedIndex(Relation parentIdx)
{
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("REINDEX is not yet implemented for partitioned indexes")));
}
/*
* Insert or delete an appropriate pg_inherits tuple to make the given index
* be a partition of the indicated parent index.
*
* This also corrects the pg_depend information for the affected index.
*/
void
IndexSetParentIndex(Relation partitionIdx, Oid parentOid)
{
Relation pg_inherits;
ScanKeyData key[2];
SysScanDesc scan;
Oid partRelid = RelationGetRelid(partitionIdx);
HeapTuple tuple;
bool fix_dependencies;
/* Make sure this is an index */
Assert(partitionIdx->rd_rel->relkind == RELKIND_INDEX ||
partitionIdx->rd_rel->relkind == RELKIND_PARTITIONED_INDEX);
/*
* Scan pg_inherits for rows linking our index to some parent.
*/
pg_inherits = relation_open(InheritsRelationId, RowExclusiveLock);
ScanKeyInit(&key[0],
Anum_pg_inherits_inhrelid,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(partRelid));
ScanKeyInit(&key[1],
Anum_pg_inherits_inhseqno,
BTEqualStrategyNumber, F_INT4EQ,
Int32GetDatum(1));
scan = systable_beginscan(pg_inherits, InheritsRelidSeqnoIndexId, true,
NULL, 2, key);
tuple = systable_getnext(scan);
if (!HeapTupleIsValid(tuple))
{
if (parentOid == InvalidOid)
{
/*
* No pg_inherits row, and no parent wanted: nothing to do in this
* case.
*/
fix_dependencies = false;
}
else
{
Datum values[Natts_pg_inherits];
bool isnull[Natts_pg_inherits];
/*
* No pg_inherits row exists, and we want a parent for this index,
* so insert it.
*/
values[Anum_pg_inherits_inhrelid - 1] = ObjectIdGetDatum(partRelid);
values[Anum_pg_inherits_inhparent - 1] =
ObjectIdGetDatum(parentOid);
values[Anum_pg_inherits_inhseqno - 1] = Int32GetDatum(1);
memset(isnull, false, sizeof(isnull));
tuple = heap_form_tuple(RelationGetDescr(pg_inherits),
values, isnull);
CatalogTupleInsert(pg_inherits, tuple);
fix_dependencies = true;
}
}
else
{
Form_pg_inherits inhForm = (Form_pg_inherits) GETSTRUCT(tuple);
if (parentOid == InvalidOid)
{
/*
* There exists a pg_inherits row, which we want to clear; do so.
*/
CatalogTupleDelete(pg_inherits, &tuple->t_self);
fix_dependencies = true;
}
else
{
/*
* A pg_inherits row exists. If it's the same we want, then we're
* good; if it differs, that amounts to a corrupt catalog and
* should not happen.
*/
if (inhForm->inhparent != parentOid)
{
/* unexpected: we should not get called in this case */
elog(ERROR, "bogus pg_inherit row: inhrelid %u inhparent %u",
inhForm->inhrelid, inhForm->inhparent);
}
/* already in the right state */
fix_dependencies = false;
}
}
/* done with pg_inherits */
systable_endscan(scan);
relation_close(pg_inherits, RowExclusiveLock);
/* set relhassubclass if an index partition has been added to the parent */
if (OidIsValid(parentOid))
SetRelationHasSubclass(parentOid, true);
/* set relispartition correctly on the partition */
update_relispartition(partRelid, OidIsValid(parentOid));
if (fix_dependencies)
{
/*
* Insert/delete pg_depend rows. If setting a parent, add PARTITION
* dependencies on the parent index and the table; if removing a
* parent, delete PARTITION dependencies.
*/
if (OidIsValid(parentOid))
{
ObjectAddress partIdx;
ObjectAddress parentIdx;
ObjectAddress partitionTbl;
ObjectAddressSet(partIdx, RelationRelationId, partRelid);
ObjectAddressSet(parentIdx, RelationRelationId, parentOid);
ObjectAddressSet(partitionTbl, RelationRelationId,
partitionIdx->rd_index->indrelid);
recordDependencyOn(&partIdx, &parentIdx,
DEPENDENCY_PARTITION_PRI);
recordDependencyOn(&partIdx, &partitionTbl,
DEPENDENCY_PARTITION_SEC);
}
else
{
deleteDependencyRecordsForClass(RelationRelationId, partRelid,
RelationRelationId,
DEPENDENCY_PARTITION_PRI);
deleteDependencyRecordsForClass(RelationRelationId, partRelid,
RelationRelationId,
DEPENDENCY_PARTITION_SEC);
}
/* make our updates visible */
CommandCounterIncrement();
}
}
/*
* Subroutine of IndexSetParentIndex to update the relispartition flag of the
* given index to the given value.
*/
static void
update_relispartition(Oid relationId, bool newval)
{
HeapTuple tup;
Relation classRel;
classRel = table_open(RelationRelationId, RowExclusiveLock);
tup = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relationId));
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for relation %u", relationId);
Assert(((Form_pg_class) GETSTRUCT(tup))->relispartition != newval);
((Form_pg_class) GETSTRUCT(tup))->relispartition = newval;
CatalogTupleUpdate(classRel, &tup->t_self, tup);
heap_freetuple(tup);
table_close(classRel, RowExclusiveLock);
}