postgresql/src/backend/libpq/auth-scram.c

1416 lines
42 KiB
C

/*-------------------------------------------------------------------------
*
* auth-scram.c
* Server-side implementation of the SASL SCRAM-SHA-256 mechanism.
*
* See the following RFCs for more details:
* - RFC 5802: https://tools.ietf.org/html/rfc5802
* - RFC 5803: https://tools.ietf.org/html/rfc5803
* - RFC 7677: https://tools.ietf.org/html/rfc7677
*
* Here are some differences:
*
* - Username from the authentication exchange is not used. The client
* should send an empty string as the username.
*
* - If the password isn't valid UTF-8, or contains characters prohibited
* by the SASLprep profile, we skip the SASLprep pre-processing and use
* the raw bytes in calculating the hash.
*
* - If channel binding is used, the channel binding type is always
* "tls-server-end-point". The spec says the default is "tls-unique"
* (RFC 5802, section 6.1. Default Channel Binding), but there are some
* problems with that. Firstly, not all SSL libraries provide an API to
* get the TLS Finished message, required to use "tls-unique". Secondly,
* "tls-unique" is not specified for TLS v1.3, and as of this writing,
* it's not clear if there will be a replacement. We could support both
* "tls-server-end-point" and "tls-unique", but for our use case,
* "tls-unique" doesn't really have any advantages. The main advantage
* of "tls-unique" would be that it works even if the server doesn't
* have a certificate, but PostgreSQL requires a server certificate
* whenever SSL is used, anyway.
*
*
* The password stored in pg_authid consists of the iteration count, salt,
* StoredKey and ServerKey.
*
* SASLprep usage
* --------------
*
* One notable difference to the SCRAM specification is that while the
* specification dictates that the password is in UTF-8, and prohibits
* certain characters, we are more lenient. If the password isn't a valid
* UTF-8 string, or contains prohibited characters, the raw bytes are used
* to calculate the hash instead, without SASLprep processing. This is
* because PostgreSQL supports other encodings too, and the encoding being
* used during authentication is undefined (client_encoding isn't set until
* after authentication). In effect, we try to interpret the password as
* UTF-8 and apply SASLprep processing, but if it looks invalid, we assume
* that it's in some other encoding.
*
* In the worst case, we misinterpret a password that's in a different
* encoding as being Unicode, because it happens to consists entirely of
* valid UTF-8 bytes, and we apply Unicode normalization to it. As long
* as we do that consistently, that will not lead to failed logins.
* Fortunately, the UTF-8 byte sequences that are ignored by SASLprep
* don't correspond to any commonly used characters in any of the other
* supported encodings, so it should not lead to any significant loss in
* entropy, even if the normalization is incorrectly applied to a
* non-UTF-8 password.
*
* Error handling
* --------------
*
* Don't reveal user information to an unauthenticated client. We don't
* want an attacker to be able to probe whether a particular username is
* valid. In SCRAM, the server has to read the salt and iteration count
* from the user's stored secret, and send it to the client. To avoid
* revealing whether a user exists, when the client tries to authenticate
* with a username that doesn't exist, or doesn't have a valid SCRAM
* secret in pg_authid, we create a fake salt and iteration count
* on-the-fly, and proceed with the authentication with that. In the end,
* we'll reject the attempt, as if an incorrect password was given. When
* we are performing a "mock" authentication, the 'doomed' flag in
* scram_state is set.
*
* In the error messages, avoid printing strings from the client, unless
* you check that they are pure ASCII. We don't want an unauthenticated
* attacker to be able to spam the logs with characters that are not valid
* to the encoding being used, whatever that is. We cannot avoid that in
* general, after logging in, but let's do what we can here.
*
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/backend/libpq/auth-scram.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <unistd.h>
#include "access/xlog.h"
#include "catalog/pg_authid.h"
#include "catalog/pg_control.h"
#include "common/base64.h"
#include "common/saslprep.h"
#include "common/scram-common.h"
#include "common/sha2.h"
#include "libpq/auth.h"
#include "libpq/crypt.h"
#include "libpq/scram.h"
#include "miscadmin.h"
#include "utils/builtins.h"
#include "utils/timestamp.h"
/*
* Status data for a SCRAM authentication exchange. This should be kept
* internal to this file.
*/
typedef enum
{
SCRAM_AUTH_INIT,
SCRAM_AUTH_SALT_SENT,
SCRAM_AUTH_FINISHED
} scram_state_enum;
typedef struct
{
scram_state_enum state;
const char *username; /* username from startup packet */
Port *port;
bool channel_binding_in_use;
int iterations;
char *salt; /* base64-encoded */
uint8 StoredKey[SCRAM_KEY_LEN];
uint8 ServerKey[SCRAM_KEY_LEN];
/* Fields of the first message from client */
char cbind_flag;
char *client_first_message_bare;
char *client_username;
char *client_nonce;
/* Fields from the last message from client */
char *client_final_message_without_proof;
char *client_final_nonce;
char ClientProof[SCRAM_KEY_LEN];
/* Fields generated in the server */
char *server_first_message;
char *server_nonce;
/*
* If something goes wrong during the authentication, or we are performing
* a "mock" authentication (see comments at top of file), the 'doomed'
* flag is set. A reason for the failure, for the server log, is put in
* 'logdetail'.
*/
bool doomed;
char *logdetail;
} scram_state;
static void read_client_first_message(scram_state *state, const char *input);
static void read_client_final_message(scram_state *state, const char *input);
static char *build_server_first_message(scram_state *state);
static char *build_server_final_message(scram_state *state);
static bool verify_client_proof(scram_state *state);
static bool verify_final_nonce(scram_state *state);
static void mock_scram_secret(const char *username, int *iterations,
char **salt, uint8 *stored_key, uint8 *server_key);
static bool is_scram_printable(char *p);
static char *sanitize_char(char c);
static char *sanitize_str(const char *s);
static char *scram_mock_salt(const char *username);
/*
* pg_be_scram_get_mechanisms
*
* Get a list of SASL mechanisms that this module supports.
*
* For the convenience of building the FE/BE packet that lists the
* mechanisms, the names are appended to the given StringInfo buffer,
* separated by '\0' bytes.
*/
void
pg_be_scram_get_mechanisms(Port *port, StringInfo buf)
{
/*
* Advertise the mechanisms in decreasing order of importance. So the
* channel-binding variants go first, if they are supported. Channel
* binding is only supported with SSL, and only if the SSL implementation
* has a function to get the certificate's hash.
*/
#ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH
if (port->ssl_in_use)
{
appendStringInfoString(buf, SCRAM_SHA_256_PLUS_NAME);
appendStringInfoChar(buf, '\0');
}
#endif
appendStringInfoString(buf, SCRAM_SHA_256_NAME);
appendStringInfoChar(buf, '\0');
}
/*
* pg_be_scram_init
*
* Initialize a new SCRAM authentication exchange status tracker. This
* needs to be called before doing any exchange. It will be filled later
* after the beginning of the exchange with authentication information.
*
* 'selected_mech' identifies the SASL mechanism that the client selected.
* It should be one of the mechanisms that we support, as returned by
* pg_be_scram_get_mechanisms().
*
* 'shadow_pass' is the role's stored secret, from pg_authid.rolpassword.
* The username was provided by the client in the startup message, and is
* available in port->user_name. If 'shadow_pass' is NULL, we still perform
* an authentication exchange, but it will fail, as if an incorrect password
* was given.
*/
void *
pg_be_scram_init(Port *port,
const char *selected_mech,
const char *shadow_pass)
{
scram_state *state;
bool got_secret;
state = (scram_state *) palloc0(sizeof(scram_state));
state->port = port;
state->state = SCRAM_AUTH_INIT;
/*
* Parse the selected mechanism.
*
* Note that if we don't support channel binding, either because the SSL
* implementation doesn't support it or we're not using SSL at all, we
* would not have advertised the PLUS variant in the first place. If the
* client nevertheless tries to select it, it's a protocol violation like
* selecting any other SASL mechanism we don't support.
*/
#ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH
if (strcmp(selected_mech, SCRAM_SHA_256_PLUS_NAME) == 0 && port->ssl_in_use)
state->channel_binding_in_use = true;
else
#endif
if (strcmp(selected_mech, SCRAM_SHA_256_NAME) == 0)
state->channel_binding_in_use = false;
else
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("client selected an invalid SASL authentication mechanism")));
/*
* Parse the stored secret.
*/
if (shadow_pass)
{
int password_type = get_password_type(shadow_pass);
if (password_type == PASSWORD_TYPE_SCRAM_SHA_256)
{
if (parse_scram_secret(shadow_pass, &state->iterations, &state->salt,
state->StoredKey, state->ServerKey))
got_secret = true;
else
{
/*
* The password looked like a SCRAM secret, but could not be
* parsed.
*/
ereport(LOG,
(errmsg("invalid SCRAM secret for user \"%s\"",
state->port->user_name)));
got_secret = false;
}
}
else
{
/*
* The user doesn't have SCRAM secret. (You cannot do SCRAM
* authentication with an MD5 hash.)
*/
state->logdetail = psprintf(_("User \"%s\" does not have a valid SCRAM secret."),
state->port->user_name);
got_secret = false;
}
}
else
{
/*
* The caller requested us to perform a dummy authentication. This is
* considered normal, since the caller requested it, so don't set log
* detail.
*/
got_secret = false;
}
/*
* If the user did not have a valid SCRAM secret, we still go through
* the motions with a mock one, and fail as if the client supplied an
* incorrect password. This is to avoid revealing information to an
* attacker.
*/
if (!got_secret)
{
mock_scram_secret(state->port->user_name, &state->iterations,
&state->salt, state->StoredKey, state->ServerKey);
state->doomed = true;
}
return state;
}
/*
* Continue a SCRAM authentication exchange.
*
* 'input' is the SCRAM payload sent by the client. On the first call,
* 'input' contains the "Initial Client Response" that the client sent as
* part of the SASLInitialResponse message, or NULL if no Initial Client
* Response was given. (The SASL specification distinguishes between an
* empty response and non-existing one.) On subsequent calls, 'input'
* cannot be NULL. For convenience in this function, the caller must
* ensure that there is a null terminator at input[inputlen].
*
* The next message to send to client is saved in 'output', for a length
* of 'outputlen'. In the case of an error, optionally store a palloc'd
* string at *logdetail that will be sent to the postmaster log (but not
* the client).
*/
int
pg_be_scram_exchange(void *opaq, const char *input, int inputlen,
char **output, int *outputlen, char **logdetail)
{
scram_state *state = (scram_state *) opaq;
int result;
*output = NULL;
/*
* If the client didn't include an "Initial Client Response" in the
* SASLInitialResponse message, send an empty challenge, to which the
* client will respond with the same data that usually comes in the
* Initial Client Response.
*/
if (input == NULL)
{
Assert(state->state == SCRAM_AUTH_INIT);
*output = pstrdup("");
*outputlen = 0;
return SASL_EXCHANGE_CONTINUE;
}
/*
* Check that the input length agrees with the string length of the input.
* We can ignore inputlen after this.
*/
if (inputlen == 0)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("The message is empty.")));
if (inputlen != strlen(input))
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Message length does not match input length.")));
switch (state->state)
{
case SCRAM_AUTH_INIT:
/*
* Initialization phase. Receive the first message from client
* and be sure that it parsed correctly. Then send the challenge
* to the client.
*/
read_client_first_message(state, input);
/* prepare message to send challenge */
*output = build_server_first_message(state);
state->state = SCRAM_AUTH_SALT_SENT;
result = SASL_EXCHANGE_CONTINUE;
break;
case SCRAM_AUTH_SALT_SENT:
/*
* Final phase for the server. Receive the response to the
* challenge previously sent, verify, and let the client know that
* everything went well (or not).
*/
read_client_final_message(state, input);
if (!verify_final_nonce(state))
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("invalid SCRAM response"),
errdetail("Nonce does not match.")));
/*
* Now check the final nonce and the client proof.
*
* If we performed a "mock" authentication that we knew would fail
* from the get go, this is where we fail.
*
* The SCRAM specification includes an error code,
* "invalid-proof", for authentication failure, but it also allows
* erroring out in an application-specific way. We choose to do
* the latter, so that the error message for invalid password is
* the same for all authentication methods. The caller will call
* ereport(), when we return SASL_EXCHANGE_FAILURE with no output.
*
* NB: the order of these checks is intentional. We calculate the
* client proof even in a mock authentication, even though it's
* bound to fail, to thwart timing attacks to determine if a role
* with the given name exists or not.
*/
if (!verify_client_proof(state) || state->doomed)
{
result = SASL_EXCHANGE_FAILURE;
break;
}
/* Build final message for client */
*output = build_server_final_message(state);
/* Success! */
result = SASL_EXCHANGE_SUCCESS;
state->state = SCRAM_AUTH_FINISHED;
break;
default:
elog(ERROR, "invalid SCRAM exchange state");
result = SASL_EXCHANGE_FAILURE;
}
if (result == SASL_EXCHANGE_FAILURE && state->logdetail && logdetail)
*logdetail = state->logdetail;
if (*output)
*outputlen = strlen(*output);
return result;
}
/*
* Construct a SCRAM secret, for storing in pg_authid.rolpassword.
*
* The result is palloc'd, so caller is responsible for freeing it.
*/
char *
pg_be_scram_build_secret(const char *password)
{
char *prep_password;
pg_saslprep_rc rc;
char saltbuf[SCRAM_DEFAULT_SALT_LEN];
char *result;
/*
* Normalize the password with SASLprep. If that doesn't work, because
* the password isn't valid UTF-8 or contains prohibited characters, just
* proceed with the original password. (See comments at top of file.)
*/
rc = pg_saslprep(password, &prep_password);
if (rc == SASLPREP_SUCCESS)
password = (const char *) prep_password;
/* Generate random salt */
if (!pg_strong_random(saltbuf, SCRAM_DEFAULT_SALT_LEN))
ereport(ERROR,
(errcode(ERRCODE_INTERNAL_ERROR),
errmsg("could not generate random salt")));
result = scram_build_secret(saltbuf, SCRAM_DEFAULT_SALT_LEN,
SCRAM_DEFAULT_ITERATIONS, password);
if (prep_password)
pfree(prep_password);
return result;
}
/*
* Verify a plaintext password against a SCRAM secret. This is used when
* performing plaintext password authentication for a user that has a SCRAM
* secret stored in pg_authid.
*/
bool
scram_verify_plain_password(const char *username, const char *password,
const char *secret)
{
char *encoded_salt;
char *salt;
int saltlen;
int iterations;
uint8 salted_password[SCRAM_KEY_LEN];
uint8 stored_key[SCRAM_KEY_LEN];
uint8 server_key[SCRAM_KEY_LEN];
uint8 computed_key[SCRAM_KEY_LEN];
char *prep_password;
pg_saslprep_rc rc;
if (!parse_scram_secret(secret, &iterations, &encoded_salt,
stored_key, server_key))
{
/*
* The password looked like a SCRAM secret, but could not be parsed.
*/
ereport(LOG,
(errmsg("invalid SCRAM secret for user \"%s\"", username)));
return false;
}
saltlen = pg_b64_dec_len(strlen(encoded_salt));
salt = palloc(saltlen);
saltlen = pg_b64_decode(encoded_salt, strlen(encoded_salt), salt,
saltlen);
if (saltlen < 0)
{
ereport(LOG,
(errmsg("invalid SCRAM secret for user \"%s\"", username)));
return false;
}
/* Normalize the password */
rc = pg_saslprep(password, &prep_password);
if (rc == SASLPREP_SUCCESS)
password = prep_password;
/* Compute Server Key based on the user-supplied plaintext password */
scram_SaltedPassword(password, salt, saltlen, iterations, salted_password);
scram_ServerKey(salted_password, computed_key);
if (prep_password)
pfree(prep_password);
/*
* Compare the secret's Server Key with the one computed from the
* user-supplied password.
*/
return memcmp(computed_key, server_key, SCRAM_KEY_LEN) == 0;
}
/*
* Parse and validate format of given SCRAM secret.
*
* On success, the iteration count, salt, stored key, and server key are
* extracted from the secret, and returned to the caller. For 'stored_key'
* and 'server_key', the caller must pass pre-allocated buffers of size
* SCRAM_KEY_LEN. Salt is returned as a base64-encoded, null-terminated
* string. The buffer for the salt is palloc'd by this function.
*
* Returns true if the SCRAM secret has been parsed, and false otherwise.
*/
bool
parse_scram_secret(const char *secret, int *iterations, char **salt,
uint8 *stored_key, uint8 *server_key)
{
char *v;
char *p;
char *scheme_str;
char *salt_str;
char *iterations_str;
char *storedkey_str;
char *serverkey_str;
int decoded_len;
char *decoded_salt_buf;
char *decoded_stored_buf;
char *decoded_server_buf;
/*
* The secret is of form:
*
* SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>
*/
v = pstrdup(secret);
if ((scheme_str = strtok(v, "$")) == NULL)
goto invalid_secret;
if ((iterations_str = strtok(NULL, ":")) == NULL)
goto invalid_secret;
if ((salt_str = strtok(NULL, "$")) == NULL)
goto invalid_secret;
if ((storedkey_str = strtok(NULL, ":")) == NULL)
goto invalid_secret;
if ((serverkey_str = strtok(NULL, "")) == NULL)
goto invalid_secret;
/* Parse the fields */
if (strcmp(scheme_str, "SCRAM-SHA-256") != 0)
goto invalid_secret;
errno = 0;
*iterations = strtol(iterations_str, &p, 10);
if (*p || errno != 0)
goto invalid_secret;
/*
* Verify that the salt is in Base64-encoded format, by decoding it,
* although we return the encoded version to the caller.
*/
decoded_len = pg_b64_dec_len(strlen(salt_str));
decoded_salt_buf = palloc(decoded_len);
decoded_len = pg_b64_decode(salt_str, strlen(salt_str),
decoded_salt_buf, decoded_len);
if (decoded_len < 0)
goto invalid_secret;
*salt = pstrdup(salt_str);
/*
* Decode StoredKey and ServerKey.
*/
decoded_len = pg_b64_dec_len(strlen(storedkey_str));
decoded_stored_buf = palloc(decoded_len);
decoded_len = pg_b64_decode(storedkey_str, strlen(storedkey_str),
decoded_stored_buf, decoded_len);
if (decoded_len != SCRAM_KEY_LEN)
goto invalid_secret;
memcpy(stored_key, decoded_stored_buf, SCRAM_KEY_LEN);
decoded_len = pg_b64_dec_len(strlen(serverkey_str));
decoded_server_buf = palloc(decoded_len);
decoded_len = pg_b64_decode(serverkey_str, strlen(serverkey_str),
decoded_server_buf, decoded_len);
if (decoded_len != SCRAM_KEY_LEN)
goto invalid_secret;
memcpy(server_key, decoded_server_buf, SCRAM_KEY_LEN);
return true;
invalid_secret:
*salt = NULL;
return false;
}
/*
* Generate plausible SCRAM secret parameters for mock authentication.
*
* In a normal authentication, these are extracted from the secret
* stored in the server. This function generates values that look
* realistic, for when there is no stored secret.
*
* Like in parse_scram_secret(), for 'stored_key' and 'server_key', the
* caller must pass pre-allocated buffers of size SCRAM_KEY_LEN, and
* the buffer for the salt is palloc'd by this function.
*/
static void
mock_scram_secret(const char *username, int *iterations, char **salt,
uint8 *stored_key, uint8 *server_key)
{
char *raw_salt;
char *encoded_salt;
int encoded_len;
/* Generate deterministic salt */
raw_salt = scram_mock_salt(username);
encoded_len = pg_b64_enc_len(SCRAM_DEFAULT_SALT_LEN);
/* don't forget the zero-terminator */
encoded_salt = (char *) palloc(encoded_len + 1);
encoded_len = pg_b64_encode(raw_salt, SCRAM_DEFAULT_SALT_LEN, encoded_salt,
encoded_len);
/*
* Note that we cannot reveal any information to an attacker here so the
* error message needs to remain generic. This should never fail anyway
* as the salt generated for mock authentication uses the cluster's nonce
* value.
*/
if (encoded_len < 0)
elog(ERROR, "could not encode salt");
encoded_salt[encoded_len] = '\0';
*salt = encoded_salt;
*iterations = SCRAM_DEFAULT_ITERATIONS;
/* StoredKey and ServerKey are not used in a doomed authentication */
memset(stored_key, 0, SCRAM_KEY_LEN);
memset(server_key, 0, SCRAM_KEY_LEN);
}
/*
* Read the value in a given SCRAM exchange message for given attribute.
*/
static char *
read_attr_value(char **input, char attr)
{
char *begin = *input;
char *end;
if (*begin != attr)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Expected attribute \"%c\" but found \"%s\".",
attr, sanitize_char(*begin))));
begin++;
if (*begin != '=')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Expected character \"=\" for attribute \"%c\".", attr)));
begin++;
end = begin;
while (*end && *end != ',')
end++;
if (*end)
{
*end = '\0';
*input = end + 1;
}
else
*input = end;
return begin;
}
static bool
is_scram_printable(char *p)
{
/*------
* Printable characters, as defined by SCRAM spec: (RFC 5802)
*
* printable = %x21-2B / %x2D-7E
* ;; Printable ASCII except ",".
* ;; Note that any "printable" is also
* ;; a valid "value".
*------
*/
for (; *p; p++)
{
if (*p < 0x21 || *p > 0x7E || *p == 0x2C /* comma */ )
return false;
}
return true;
}
/*
* Convert an arbitrary byte to printable form. For error messages.
*
* If it's a printable ASCII character, print it as a single character.
* otherwise, print it in hex.
*
* The returned pointer points to a static buffer.
*/
static char *
sanitize_char(char c)
{
static char buf[5];
if (c >= 0x21 && c <= 0x7E)
snprintf(buf, sizeof(buf), "'%c'", c);
else
snprintf(buf, sizeof(buf), "0x%02x", (unsigned char) c);
return buf;
}
/*
* Convert an arbitrary string to printable form, for error messages.
*
* Anything that's not a printable ASCII character is replaced with
* '?', and the string is truncated at 30 characters.
*
* The returned pointer points to a static buffer.
*/
static char *
sanitize_str(const char *s)
{
static char buf[30 + 1];
int i;
for (i = 0; i < sizeof(buf) - 1; i++)
{
char c = s[i];
if (c == '\0')
break;
if (c >= 0x21 && c <= 0x7E)
buf[i] = c;
else
buf[i] = '?';
}
buf[i] = '\0';
return buf;
}
/*
* Read the next attribute and value in a SCRAM exchange message.
*
* The attribute character is set in *attr_p, the attribute value is the
* return value.
*/
static char *
read_any_attr(char **input, char *attr_p)
{
char *begin = *input;
char *end;
char attr = *begin;
if (attr == '\0')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Attribute expected, but found end of string.")));
/*------
* attr-val = ALPHA "=" value
* ;; Generic syntax of any attribute sent
* ;; by server or client
*------
*/
if (!((attr >= 'A' && attr <= 'Z') ||
(attr >= 'a' && attr <= 'z')))
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Attribute expected, but found invalid character \"%s\".",
sanitize_char(attr))));
if (attr_p)
*attr_p = attr;
begin++;
if (*begin != '=')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Expected character \"=\" for attribute \"%c\".", attr)));
begin++;
end = begin;
while (*end && *end != ',')
end++;
if (*end)
{
*end = '\0';
*input = end + 1;
}
else
*input = end;
return begin;
}
/*
* Read and parse the first message from client in the context of a SCRAM
* authentication exchange message.
*
* At this stage, any errors will be reported directly with ereport(ERROR).
*/
static void
read_client_first_message(scram_state *state, const char *input)
{
char *p = pstrdup(input);
char *channel_binding_type;
/*------
* The syntax for the client-first-message is: (RFC 5802)
*
* saslname = 1*(value-safe-char / "=2C" / "=3D")
* ;; Conforms to <value>.
*
* authzid = "a=" saslname
* ;; Protocol specific.
*
* cb-name = 1*(ALPHA / DIGIT / "." / "-")
* ;; See RFC 5056, Section 7.
* ;; E.g., "tls-server-end-point" or
* ;; "tls-unique".
*
* gs2-cbind-flag = ("p=" cb-name) / "n" / "y"
* ;; "n" -> client doesn't support channel binding.
* ;; "y" -> client does support channel binding
* ;; but thinks the server does not.
* ;; "p" -> client requires channel binding.
* ;; The selected channel binding follows "p=".
*
* gs2-header = gs2-cbind-flag "," [ authzid ] ","
* ;; GS2 header for SCRAM
* ;; (the actual GS2 header includes an optional
* ;; flag to indicate that the GSS mechanism is not
* ;; "standard", but since SCRAM is "standard", we
* ;; don't include that flag).
*
* username = "n=" saslname
* ;; Usernames are prepared using SASLprep.
*
* reserved-mext = "m=" 1*(value-char)
* ;; Reserved for signaling mandatory extensions.
* ;; The exact syntax will be defined in
* ;; the future.
*
* nonce = "r=" c-nonce [s-nonce]
* ;; Second part provided by server.
*
* c-nonce = printable
*
* client-first-message-bare =
* [reserved-mext ","]
* username "," nonce ["," extensions]
*
* client-first-message =
* gs2-header client-first-message-bare
*
* For example:
* n,,n=user,r=fyko+d2lbbFgONRv9qkxdawL
*
* The "n,," in the beginning means that the client doesn't support
* channel binding, and no authzid is given. "n=user" is the username.
* However, in PostgreSQL the username is sent in the startup packet, and
* the username in the SCRAM exchange is ignored. libpq always sends it
* as an empty string. The last part, "r=fyko+d2lbbFgONRv9qkxdawL" is
* the client nonce.
*------
*/
/*
* Read gs2-cbind-flag. (For details see also RFC 5802 Section 6 "Channel
* Binding".)
*/
state->cbind_flag = *p;
switch (*p)
{
case 'n':
/*
* The client does not support channel binding or has simply
* decided to not use it. In that case just let it go.
*/
if (state->channel_binding_in_use)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("The client selected SCRAM-SHA-256-PLUS, but the SCRAM message does not include channel binding data.")));
p++;
if (*p != ',')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Comma expected, but found character \"%s\".",
sanitize_char(*p))));
p++;
break;
case 'y':
/*
* The client supports channel binding and thinks that the server
* does not. In this case, the server must fail authentication if
* it supports channel binding.
*/
if (state->channel_binding_in_use)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("The client selected SCRAM-SHA-256-PLUS, but the SCRAM message does not include channel binding data.")));
#ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH
if (state->port->ssl_in_use)
ereport(ERROR,
(errcode(ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION),
errmsg("SCRAM channel binding negotiation error"),
errdetail("The client supports SCRAM channel binding but thinks the server does not. "
"However, this server does support channel binding.")));
#endif
p++;
if (*p != ',')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Comma expected, but found character \"%s\".",
sanitize_char(*p))));
p++;
break;
case 'p':
/*
* The client requires channel binding. Channel binding type
* follows, e.g., "p=tls-server-end-point".
*/
if (!state->channel_binding_in_use)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("The client selected SCRAM-SHA-256 without channel binding, but the SCRAM message includes channel binding data.")));
channel_binding_type = read_attr_value(&p, 'p');
/*
* The only channel binding type we support is
* tls-server-end-point.
*/
if (strcmp(channel_binding_type, "tls-server-end-point") != 0)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
(errmsg("unsupported SCRAM channel-binding type \"%s\"",
sanitize_str(channel_binding_type)))));
break;
default:
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Unexpected channel-binding flag \"%s\".",
sanitize_char(*p))));
}
/*
* Forbid optional authzid (authorization identity). We don't support it.
*/
if (*p == 'a')
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("client uses authorization identity, but it is not supported")));
if (*p != ',')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Unexpected attribute \"%s\" in client-first-message.",
sanitize_char(*p))));
p++;
state->client_first_message_bare = pstrdup(p);
/*
* Any mandatory extensions would go here. We don't support any.
*
* RFC 5802 specifies error code "e=extensions-not-supported" for this,
* but it can only be sent in the server-final message. We prefer to fail
* immediately (which the RFC also allows).
*/
if (*p == 'm')
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("client requires an unsupported SCRAM extension")));
/*
* Read username. Note: this is ignored. We use the username from the
* startup message instead, still it is kept around if provided as it
* proves to be useful for debugging purposes.
*/
state->client_username = read_attr_value(&p, 'n');
/* read nonce and check that it is made of only printable characters */
state->client_nonce = read_attr_value(&p, 'r');
if (!is_scram_printable(state->client_nonce))
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("non-printable characters in SCRAM nonce")));
/*
* There can be any number of optional extensions after this. We don't
* support any extensions, so ignore them.
*/
while (*p != '\0')
read_any_attr(&p, NULL);
/* success! */
}
/*
* Verify the final nonce contained in the last message received from
* client in an exchange.
*/
static bool
verify_final_nonce(scram_state *state)
{
int client_nonce_len = strlen(state->client_nonce);
int server_nonce_len = strlen(state->server_nonce);
int final_nonce_len = strlen(state->client_final_nonce);
if (final_nonce_len != client_nonce_len + server_nonce_len)
return false;
if (memcmp(state->client_final_nonce, state->client_nonce, client_nonce_len) != 0)
return false;
if (memcmp(state->client_final_nonce + client_nonce_len, state->server_nonce, server_nonce_len) != 0)
return false;
return true;
}
/*
* Verify the client proof contained in the last message received from
* client in an exchange.
*/
static bool
verify_client_proof(scram_state *state)
{
uint8 ClientSignature[SCRAM_KEY_LEN];
uint8 ClientKey[SCRAM_KEY_LEN];
uint8 client_StoredKey[SCRAM_KEY_LEN];
scram_HMAC_ctx ctx;
int i;
/* calculate ClientSignature */
scram_HMAC_init(&ctx, state->StoredKey, SCRAM_KEY_LEN);
scram_HMAC_update(&ctx,
state->client_first_message_bare,
strlen(state->client_first_message_bare));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->server_first_message,
strlen(state->server_first_message));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->client_final_message_without_proof,
strlen(state->client_final_message_without_proof));
scram_HMAC_final(ClientSignature, &ctx);
/* Extract the ClientKey that the client calculated from the proof */
for (i = 0; i < SCRAM_KEY_LEN; i++)
ClientKey[i] = state->ClientProof[i] ^ ClientSignature[i];
/* Hash it one more time, and compare with StoredKey */
scram_H(ClientKey, SCRAM_KEY_LEN, client_StoredKey);
if (memcmp(client_StoredKey, state->StoredKey, SCRAM_KEY_LEN) != 0)
return false;
return true;
}
/*
* Build the first server-side message sent to the client in a SCRAM
* communication exchange.
*/
static char *
build_server_first_message(scram_state *state)
{
/*------
* The syntax for the server-first-message is: (RFC 5802)
*
* server-first-message =
* [reserved-mext ","] nonce "," salt ","
* iteration-count ["," extensions]
*
* nonce = "r=" c-nonce [s-nonce]
* ;; Second part provided by server.
*
* c-nonce = printable
*
* s-nonce = printable
*
* salt = "s=" base64
*
* iteration-count = "i=" posit-number
* ;; A positive number.
*
* Example:
*
* r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,s=QSXCR+Q6sek8bf92,i=4096
*------
*/
/*
* Per the spec, the nonce may consist of any printable ASCII characters.
* For convenience, however, we don't use the whole range available,
* rather, we generate some random bytes, and base64 encode them.
*/
char raw_nonce[SCRAM_RAW_NONCE_LEN];
int encoded_len;
if (!pg_strong_random(raw_nonce, SCRAM_RAW_NONCE_LEN))
ereport(ERROR,
(errcode(ERRCODE_INTERNAL_ERROR),
errmsg("could not generate random nonce")));
encoded_len = pg_b64_enc_len(SCRAM_RAW_NONCE_LEN);
/* don't forget the zero-terminator */
state->server_nonce = palloc(encoded_len + 1);
encoded_len = pg_b64_encode(raw_nonce, SCRAM_RAW_NONCE_LEN,
state->server_nonce, encoded_len);
if (encoded_len < 0)
ereport(ERROR,
(errcode(ERRCODE_INTERNAL_ERROR),
errmsg("could not encode random nonce")));
state->server_nonce[encoded_len] = '\0';
state->server_first_message =
psprintf("r=%s%s,s=%s,i=%u",
state->client_nonce, state->server_nonce,
state->salt, state->iterations);
return pstrdup(state->server_first_message);
}
/*
* Read and parse the final message received from client.
*/
static void
read_client_final_message(scram_state *state, const char *input)
{
char attr;
char *channel_binding;
char *value;
char *begin,
*proof;
char *p;
char *client_proof;
int client_proof_len;
begin = p = pstrdup(input);
/*------
* The syntax for the server-first-message is: (RFC 5802)
*
* gs2-header = gs2-cbind-flag "," [ authzid ] ","
* ;; GS2 header for SCRAM
* ;; (the actual GS2 header includes an optional
* ;; flag to indicate that the GSS mechanism is not
* ;; "standard", but since SCRAM is "standard", we
* ;; don't include that flag).
*
* cbind-input = gs2-header [ cbind-data ]
* ;; cbind-data MUST be present for
* ;; gs2-cbind-flag of "p" and MUST be absent
* ;; for "y" or "n".
*
* channel-binding = "c=" base64
* ;; base64 encoding of cbind-input.
*
* proof = "p=" base64
*
* client-final-message-without-proof =
* channel-binding "," nonce [","
* extensions]
*
* client-final-message =
* client-final-message-without-proof "," proof
*------
*/
/*
* Read channel binding. This repeats the channel-binding flags and is
* then followed by the actual binding data depending on the type.
*/
channel_binding = read_attr_value(&p, 'c');
if (state->channel_binding_in_use)
{
#ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH
const char *cbind_data = NULL;
size_t cbind_data_len = 0;
size_t cbind_header_len;
char *cbind_input;
size_t cbind_input_len;
char *b64_message;
int b64_message_len;
Assert(state->cbind_flag == 'p');
/* Fetch hash data of server's SSL certificate */
cbind_data = be_tls_get_certificate_hash(state->port,
&cbind_data_len);
/* should not happen */
if (cbind_data == NULL || cbind_data_len == 0)
elog(ERROR, "could not get server certificate hash");
cbind_header_len = strlen("p=tls-server-end-point,,"); /* p=type,, */
cbind_input_len = cbind_header_len + cbind_data_len;
cbind_input = palloc(cbind_input_len);
snprintf(cbind_input, cbind_input_len, "p=tls-server-end-point,,");
memcpy(cbind_input + cbind_header_len, cbind_data, cbind_data_len);
b64_message_len = pg_b64_enc_len(cbind_input_len);
/* don't forget the zero-terminator */
b64_message = palloc(b64_message_len + 1);
b64_message_len = pg_b64_encode(cbind_input, cbind_input_len,
b64_message, b64_message_len);
if (b64_message_len < 0)
elog(ERROR, "could not encode channel binding data");
b64_message[b64_message_len] = '\0';
/*
* Compare the value sent by the client with the value expected by the
* server.
*/
if (strcmp(channel_binding, b64_message) != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION),
(errmsg("SCRAM channel binding check failed"))));
#else
/* shouldn't happen, because we checked this earlier already */
elog(ERROR, "channel binding not supported by this build");
#endif
}
else
{
/*
* If we are not using channel binding, the binding data is expected
* to always be "biws", which is "n,," base64-encoded, or "eSws",
* which is "y,,". We also have to check whether the flag is the same
* one that the client originally sent.
*/
if (!(strcmp(channel_binding, "biws") == 0 && state->cbind_flag == 'n') &&
!(strcmp(channel_binding, "eSws") == 0 && state->cbind_flag == 'y'))
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
(errmsg("unexpected SCRAM channel-binding attribute in client-final-message"))));
}
state->client_final_nonce = read_attr_value(&p, 'r');
/* ignore optional extensions, read until we find "p" attribute */
do
{
proof = p - 1;
value = read_any_attr(&p, &attr);
} while (attr != 'p');
client_proof_len = pg_b64_dec_len(strlen(value));
client_proof = palloc(client_proof_len);
if (pg_b64_decode(value, strlen(value), client_proof,
client_proof_len) != SCRAM_KEY_LEN)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Malformed proof in client-final-message.")));
memcpy(state->ClientProof, client_proof, SCRAM_KEY_LEN);
pfree(client_proof);
if (*p != '\0')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Garbage found at the end of client-final-message.")));
state->client_final_message_without_proof = palloc(proof - begin + 1);
memcpy(state->client_final_message_without_proof, input, proof - begin);
state->client_final_message_without_proof[proof - begin] = '\0';
}
/*
* Build the final server-side message of an exchange.
*/
static char *
build_server_final_message(scram_state *state)
{
uint8 ServerSignature[SCRAM_KEY_LEN];
char *server_signature_base64;
int siglen;
scram_HMAC_ctx ctx;
/* calculate ServerSignature */
scram_HMAC_init(&ctx, state->ServerKey, SCRAM_KEY_LEN);
scram_HMAC_update(&ctx,
state->client_first_message_bare,
strlen(state->client_first_message_bare));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->server_first_message,
strlen(state->server_first_message));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->client_final_message_without_proof,
strlen(state->client_final_message_without_proof));
scram_HMAC_final(ServerSignature, &ctx);
siglen = pg_b64_enc_len(SCRAM_KEY_LEN);
/* don't forget the zero-terminator */
server_signature_base64 = palloc(siglen + 1);
siglen = pg_b64_encode((const char *) ServerSignature,
SCRAM_KEY_LEN, server_signature_base64,
siglen);
if (siglen < 0)
elog(ERROR, "could not encode server signature");
server_signature_base64[siglen] = '\0';
/*------
* The syntax for the server-final-message is: (RFC 5802)
*
* verifier = "v=" base64
* ;; base-64 encoded ServerSignature.
*
* server-final-message = (server-error / verifier)
* ["," extensions]
*
*------
*/
return psprintf("v=%s", server_signature_base64);
}
/*
* Deterministically generate salt for mock authentication, using a SHA256
* hash based on the username and a cluster-level secret key. Returns a
* pointer to a static buffer of size SCRAM_DEFAULT_SALT_LEN.
*/
static char *
scram_mock_salt(const char *username)
{
pg_sha256_ctx ctx;
static uint8 sha_digest[PG_SHA256_DIGEST_LENGTH];
char *mock_auth_nonce = GetMockAuthenticationNonce();
/*
* Generate salt using a SHA256 hash of the username and the cluster's
* mock authentication nonce. (This works as long as the salt length is
* not larger the SHA256 digest length. If the salt is smaller, the caller
* will just ignore the extra data.)
*/
StaticAssertStmt(PG_SHA256_DIGEST_LENGTH >= SCRAM_DEFAULT_SALT_LEN,
"salt length greater than SHA256 digest length");
pg_sha256_init(&ctx);
pg_sha256_update(&ctx, (uint8 *) username, strlen(username));
pg_sha256_update(&ctx, (uint8 *) mock_auth_nonce, MOCK_AUTH_NONCE_LEN);
pg_sha256_final(&ctx, sha_digest);
return (char *) sha_digest;
}