postgresql/contrib/tsm_system_time/tsm_system_time.c

356 lines
9.7 KiB
C

/*-------------------------------------------------------------------------
*
* tsm_system_time.c
* support routines for SYSTEM_TIME tablesample method
*
* The desire here is to produce a random sample with as many rows as possible
* in no more than the specified amount of time. We use a block-sampling
* approach. To ensure that the whole relation will be visited if necessary,
* we start at a randomly chosen block and then advance with a stride that
* is randomly chosen but is relatively prime to the relation's nblocks.
*
* Because of the time dependence, this method is necessarily unrepeatable.
* However, we do what we can to reduce surprising behavior by selecting
* the sampling pattern just once per query, much as in tsm_system_rows.
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* contrib/tsm_system_time/tsm_system_time.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "access/relscan.h"
#include "access/tsmapi.h"
#include "catalog/pg_type.h"
#include "miscadmin.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "utils/sampling.h"
#include "utils/spccache.h"
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(tsm_system_time_handler);
/* Private state */
typedef struct
{
uint32 seed; /* random seed */
double millis; /* time limit for sampling */
instr_time start_time; /* scan start time */
OffsetNumber lt; /* last tuple returned from current block */
BlockNumber doneblocks; /* number of already-scanned blocks */
BlockNumber lb; /* last block visited */
/* these three values are not changed during a rescan: */
BlockNumber nblocks; /* number of blocks in relation */
BlockNumber firstblock; /* first block to sample from */
BlockNumber step; /* step size, or 0 if not set yet */
} SystemTimeSamplerData;
static void system_time_samplescangetsamplesize(PlannerInfo *root,
RelOptInfo *baserel,
List *paramexprs,
BlockNumber *pages,
double *tuples);
static void system_time_initsamplescan(SampleScanState *node,
int eflags);
static void system_time_beginsamplescan(SampleScanState *node,
Datum *params,
int nparams,
uint32 seed);
static BlockNumber system_time_nextsampleblock(SampleScanState *node);
static OffsetNumber system_time_nextsampletuple(SampleScanState *node,
BlockNumber blockno,
OffsetNumber maxoffset);
static uint32 random_relative_prime(uint32 n, SamplerRandomState randstate);
/*
* Create a TsmRoutine descriptor for the SYSTEM_TIME method.
*/
Datum
tsm_system_time_handler(PG_FUNCTION_ARGS)
{
TsmRoutine *tsm = makeNode(TsmRoutine);
tsm->parameterTypes = list_make1_oid(FLOAT8OID);
/* See notes at head of file */
tsm->repeatable_across_queries = false;
tsm->repeatable_across_scans = false;
tsm->SampleScanGetSampleSize = system_time_samplescangetsamplesize;
tsm->InitSampleScan = system_time_initsamplescan;
tsm->BeginSampleScan = system_time_beginsamplescan;
tsm->NextSampleBlock = system_time_nextsampleblock;
tsm->NextSampleTuple = system_time_nextsampletuple;
tsm->EndSampleScan = NULL;
PG_RETURN_POINTER(tsm);
}
/*
* Sample size estimation.
*/
static void
system_time_samplescangetsamplesize(PlannerInfo *root,
RelOptInfo *baserel,
List *paramexprs,
BlockNumber *pages,
double *tuples)
{
Node *limitnode;
double millis;
double spc_random_page_cost;
double npages;
double ntuples;
/* Try to extract an estimate for the limit time spec */
limitnode = (Node *) linitial(paramexprs);
limitnode = estimate_expression_value(root, limitnode);
if (IsA(limitnode, Const) &&
!((Const *) limitnode)->constisnull)
{
millis = DatumGetFloat8(((Const *) limitnode)->constvalue);
if (millis < 0 || isnan(millis))
{
/* Default millis if the value is bogus */
millis = 1000;
}
}
else
{
/* Default millis if we didn't obtain a non-null Const */
millis = 1000;
}
/* Get the planner's idea of cost per page read */
get_tablespace_page_costs(baserel->reltablespace,
&spc_random_page_cost,
NULL);
/*
* Estimate the number of pages we can read by assuming that the cost
* figure is expressed in milliseconds. This is completely, unmistakably
* bogus, but we have to do something to produce an estimate and there's
* no better answer.
*/
if (spc_random_page_cost > 0)
npages = millis / spc_random_page_cost;
else
npages = millis; /* even more bogus, but whatcha gonna do? */
/* Clamp to sane value */
npages = clamp_row_est(Min((double) baserel->pages, npages));
if (baserel->tuples > 0 && baserel->pages > 0)
{
/* Estimate number of tuples returned based on tuple density */
double density = baserel->tuples / (double) baserel->pages;
ntuples = npages * density;
}
else
{
/* For lack of data, assume one tuple per page */
ntuples = npages;
}
/* Clamp to the estimated relation size */
ntuples = clamp_row_est(Min(baserel->tuples, ntuples));
*pages = npages;
*tuples = ntuples;
}
/*
* Initialize during executor setup.
*/
static void
system_time_initsamplescan(SampleScanState *node, int eflags)
{
node->tsm_state = palloc0(sizeof(SystemTimeSamplerData));
/* Note the above leaves tsm_state->step equal to zero */
}
/*
* Examine parameters and prepare for a sample scan.
*/
static void
system_time_beginsamplescan(SampleScanState *node,
Datum *params,
int nparams,
uint32 seed)
{
SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state;
double millis = DatumGetFloat8(params[0]);
if (millis < 0 || isnan(millis))
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT),
errmsg("sample collection time must not be negative")));
sampler->seed = seed;
sampler->millis = millis;
sampler->lt = InvalidOffsetNumber;
sampler->doneblocks = 0;
/* start_time, lb will be initialized during first NextSampleBlock call */
/* we intentionally do not change nblocks/firstblock/step here */
}
/*
* Select next block to sample.
*
* Uses linear probing algorithm for picking next block.
*/
static BlockNumber
system_time_nextsampleblock(SampleScanState *node)
{
SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state;
HeapScanDesc scan = node->ss.ss_currentScanDesc;
instr_time cur_time;
/* First call within scan? */
if (sampler->doneblocks == 0)
{
/* First scan within query? */
if (sampler->step == 0)
{
/* Initialize now that we have scan descriptor */
SamplerRandomState randstate;
/* If relation is empty, there's nothing to scan */
if (scan->rs_nblocks == 0)
return InvalidBlockNumber;
/* We only need an RNG during this setup step */
sampler_random_init_state(sampler->seed, randstate);
/* Compute nblocks/firstblock/step only once per query */
sampler->nblocks = scan->rs_nblocks;
/* Choose random starting block within the relation */
/* (Actually this is the predecessor of the first block visited) */
sampler->firstblock = sampler_random_fract(randstate) *
sampler->nblocks;
/* Find relative prime as step size for linear probing */
sampler->step = random_relative_prime(sampler->nblocks, randstate);
}
/* Reinitialize lb and start_time */
sampler->lb = sampler->firstblock;
INSTR_TIME_SET_CURRENT(sampler->start_time);
}
/* If we've read all blocks in relation, we're done */
if (++sampler->doneblocks > sampler->nblocks)
return InvalidBlockNumber;
/* If we've used up all the allotted time, we're done */
INSTR_TIME_SET_CURRENT(cur_time);
INSTR_TIME_SUBTRACT(cur_time, sampler->start_time);
if (INSTR_TIME_GET_MILLISEC(cur_time) >= sampler->millis)
return InvalidBlockNumber;
/*
* It's probably impossible for scan->rs_nblocks to decrease between scans
* within a query; but just in case, loop until we select a block number
* less than scan->rs_nblocks. We don't care if scan->rs_nblocks has
* increased since the first scan.
*/
do
{
/* Advance lb, using uint64 arithmetic to forestall overflow */
sampler->lb = ((uint64) sampler->lb + sampler->step) % sampler->nblocks;
} while (sampler->lb >= scan->rs_nblocks);
return sampler->lb;
}
/*
* Select next sampled tuple in current block.
*
* In block sampling, we just want to sample all the tuples in each selected
* block.
*
* When we reach end of the block, return InvalidOffsetNumber which tells
* SampleScan to go to next block.
*/
static OffsetNumber
system_time_nextsampletuple(SampleScanState *node,
BlockNumber blockno,
OffsetNumber maxoffset)
{
SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state;
OffsetNumber tupoffset = sampler->lt;
/* Advance to next possible offset on page */
if (tupoffset == InvalidOffsetNumber)
tupoffset = FirstOffsetNumber;
else
tupoffset++;
/* Done? */
if (tupoffset > maxoffset)
tupoffset = InvalidOffsetNumber;
sampler->lt = tupoffset;
return tupoffset;
}
/*
* Compute greatest common divisor of two uint32's.
*/
static uint32
gcd(uint32 a, uint32 b)
{
uint32 c;
while (a != 0)
{
c = a;
a = b % a;
b = c;
}
return b;
}
/*
* Pick a random value less than and relatively prime to n, if possible
* (else return 1).
*/
static uint32
random_relative_prime(uint32 n, SamplerRandomState randstate)
{
uint32 r;
/* Safety check to avoid infinite loop or zero result for small n. */
if (n <= 1)
return 1;
/*
* This should only take 2 or 3 iterations as the probability of 2 numbers
* being relatively prime is ~61%; but just in case, we'll include a
* CHECK_FOR_INTERRUPTS in the loop.
*/
do
{
CHECK_FOR_INTERRUPTS();
r = (uint32) (sampler_random_fract(randstate) * n);
} while (r == 0 || gcd(r, n) > 1);
return r;
}