postgresql/src/interfaces/libpq/fe-secure-gssapi.c

735 lines
21 KiB
C

/*-------------------------------------------------------------------------
*
* fe-secure-gssapi.c
* The front-end (client) encryption support for GSSAPI
*
* Portions Copyright (c) 2016-2020, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/interfaces/libpq/fe-secure-gssapi.c
*
*-------------------------------------------------------------------------
*/
#include "postgres_fe.h"
#include "fe-gssapi-common.h"
#include "libpq-fe.h"
#include "libpq-int.h"
#include "port/pg_bswap.h"
/*
* Require encryption support, as well as mutual authentication and
* tamperproofing measures.
*/
#define GSS_REQUIRED_FLAGS GSS_C_MUTUAL_FLAG | GSS_C_REPLAY_FLAG | \
GSS_C_SEQUENCE_FLAG | GSS_C_CONF_FLAG | GSS_C_INTEG_FLAG
/*
* Handle the encryption/decryption of data using GSSAPI.
*
* In the encrypted data stream on the wire, we break up the data
* into packets where each packet starts with a uint32-size length
* word (in network byte order), then encrypted data of that length
* immediately following. Decryption yields the same data stream
* that would appear when not using encryption.
*
* Encrypted data typically ends up being larger than the same data
* unencrypted, so we use fixed-size buffers for handling the
* encryption/decryption which are larger than PQComm's buffer will
* typically be to minimize the times where we have to make multiple
* packets (and therefore multiple recv/send calls for a single
* read/write call to us).
*
* NOTE: The client and server have to agree on the max packet size,
* because we have to pass an entire packet to GSSAPI at a time and we
* don't want the other side to send arbitrarily huge packets as we
* would have to allocate memory for them to then pass them to GSSAPI.
*
* Therefore, these two #define's are effectively part of the protocol
* spec and can't ever be changed.
*/
#define PQ_GSS_SEND_BUFFER_SIZE 16384
#define PQ_GSS_RECV_BUFFER_SIZE 16384
/*
* We need these state variables per-connection. To allow the functions
* in this file to look mostly like those in be-secure-gssapi.c, set up
* these macros.
*/
#define PqGSSSendBuffer (conn->gss_SendBuffer)
#define PqGSSSendLength (conn->gss_SendLength)
#define PqGSSSendNext (conn->gss_SendNext)
#define PqGSSSendConsumed (conn->gss_SendConsumed)
#define PqGSSRecvBuffer (conn->gss_RecvBuffer)
#define PqGSSRecvLength (conn->gss_RecvLength)
#define PqGSSResultBuffer (conn->gss_ResultBuffer)
#define PqGSSResultLength (conn->gss_ResultLength)
#define PqGSSResultNext (conn->gss_ResultNext)
#define PqGSSMaxPktSize (conn->gss_MaxPktSize)
/*
* Attempt to write len bytes of data from ptr to a GSSAPI-encrypted connection.
*
* The connection must be already set up for GSSAPI encryption (i.e., GSSAPI
* transport negotiation is complete).
*
* On success, returns the number of data bytes consumed (possibly less than
* len). On failure, returns -1 with errno set appropriately. If the errno
* indicates a non-retryable error, a message is put into conn->errorMessage.
* For retryable errors, caller should call again (passing the same data)
* once the socket is ready.
*/
ssize_t
pg_GSS_write(PGconn *conn, const void *ptr, size_t len)
{
OM_uint32 major,
minor;
gss_buffer_desc input,
output = GSS_C_EMPTY_BUFFER;
ssize_t ret = -1;
size_t bytes_sent = 0;
size_t bytes_to_encrypt;
size_t bytes_encrypted;
gss_ctx_id_t gctx = conn->gctx;
/*
* When we get a failure, we must not tell the caller we have successfully
* transmitted everything, else it won't retry. Hence a "success"
* (positive) return value must only count source bytes corresponding to
* fully-transmitted encrypted packets. The amount of source data
* corresponding to the current partly-transmitted packet is remembered in
* PqGSSSendConsumed. On a retry, the caller *must* be sending that data
* again, so if it offers a len less than that, something is wrong.
*/
if (len < PqGSSSendConsumed)
{
printfPQExpBuffer(&conn->errorMessage,
"GSSAPI caller failed to retransmit all data needing to be retried\n");
errno = EINVAL;
return -1;
}
/* Discount whatever source data we already encrypted. */
bytes_to_encrypt = len - PqGSSSendConsumed;
bytes_encrypted = PqGSSSendConsumed;
/*
* Loop through encrypting data and sending it out until it's all done or
* pqsecure_raw_write() complains (which would likely mean that the socket
* is non-blocking and the requested send() would block, or there was some
* kind of actual error).
*/
while (bytes_to_encrypt || PqGSSSendLength)
{
int conf_state = 0;
uint32 netlen;
/*
* Check if we have data in the encrypted output buffer that needs to
* be sent (possibly left over from a previous call), and if so, try
* to send it. If we aren't able to, return that fact back up to the
* caller.
*/
if (PqGSSSendLength)
{
ssize_t ret;
ssize_t amount = PqGSSSendLength - PqGSSSendNext;
ret = pqsecure_raw_write(conn, PqGSSSendBuffer + PqGSSSendNext, amount);
if (ret <= 0)
{
/*
* Report any previously-sent data; if there was none, reflect
* the pqsecure_raw_write result up to our caller. When there
* was some, we're effectively assuming that any interesting
* failure condition will recur on the next try.
*/
if (bytes_sent)
return bytes_sent;
return ret;
}
/*
* Check if this was a partial write, and if so, move forward that
* far in our buffer and try again.
*/
if (ret != amount)
{
PqGSSSendNext += ret;
continue;
}
/* We've successfully sent whatever data was in that packet. */
bytes_sent += PqGSSSendConsumed;
/* All encrypted data was sent, our buffer is empty now. */
PqGSSSendLength = PqGSSSendNext = PqGSSSendConsumed = 0;
}
/*
* Check if there are any bytes left to encrypt. If not, we're done.
*/
if (!bytes_to_encrypt)
break;
/*
* Check how much we are being asked to send, if it's too much, then
* we will have to loop and possibly be called multiple times to get
* through all the data.
*/
if (bytes_to_encrypt > PqGSSMaxPktSize)
input.length = PqGSSMaxPktSize;
else
input.length = bytes_to_encrypt;
input.value = (char *) ptr + bytes_encrypted;
output.value = NULL;
output.length = 0;
/*
* Create the next encrypted packet. Any failure here is considered a
* hard failure, so we return -1 even if bytes_sent > 0.
*/
major = gss_wrap(&minor, gctx, 1, GSS_C_QOP_DEFAULT,
&input, &conf_state, &output);
if (major != GSS_S_COMPLETE)
{
pg_GSS_error(libpq_gettext("GSSAPI wrap error"), conn, major, minor);
errno = EIO; /* for lack of a better idea */
goto cleanup;
}
if (conf_state == 0)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("outgoing GSSAPI message would not use confidentiality\n"));
errno = EIO; /* for lack of a better idea */
goto cleanup;
}
if (output.length > PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32))
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("client tried to send oversize GSSAPI packet (%zu > %zu)\n"),
(size_t) output.length,
PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32));
errno = EIO; /* for lack of a better idea */
goto cleanup;
}
bytes_encrypted += input.length;
bytes_to_encrypt -= input.length;
PqGSSSendConsumed += input.length;
/* 4 network-order bytes of length, then payload */
netlen = pg_hton32(output.length);
memcpy(PqGSSSendBuffer + PqGSSSendLength, &netlen, sizeof(uint32));
PqGSSSendLength += sizeof(uint32);
memcpy(PqGSSSendBuffer + PqGSSSendLength, output.value, output.length);
PqGSSSendLength += output.length;
/* Release buffer storage allocated by GSSAPI */
gss_release_buffer(&minor, &output);
}
/* If we get here, our counters should all match up. */
Assert(bytes_sent == len);
Assert(bytes_sent == bytes_encrypted);
ret = bytes_sent;
cleanup:
/* Release GSSAPI buffer storage, if we didn't already */
if (output.value != NULL)
gss_release_buffer(&minor, &output);
return ret;
}
/*
* Read up to len bytes of data into ptr from a GSSAPI-encrypted connection.
*
* The connection must be already set up for GSSAPI encryption (i.e., GSSAPI
* transport negotiation is complete).
*
* Returns the number of data bytes read, or on failure, returns -1
* with errno set appropriately. If the errno indicates a non-retryable
* error, a message is put into conn->errorMessage. For retryable errors,
* caller should call again once the socket is ready.
*/
ssize_t
pg_GSS_read(PGconn *conn, void *ptr, size_t len)
{
OM_uint32 major,
minor;
gss_buffer_desc input = GSS_C_EMPTY_BUFFER,
output = GSS_C_EMPTY_BUFFER;
ssize_t ret;
size_t bytes_returned = 0;
gss_ctx_id_t gctx = conn->gctx;
/*
* The plan here is to read one incoming encrypted packet into
* PqGSSRecvBuffer, decrypt it into PqGSSResultBuffer, and then dole out
* data from there to the caller. When we exhaust the current input
* packet, read another.
*/
while (bytes_returned < len)
{
int conf_state = 0;
/* Check if we have data in our buffer that we can return immediately */
if (PqGSSResultNext < PqGSSResultLength)
{
size_t bytes_in_buffer = PqGSSResultLength - PqGSSResultNext;
size_t bytes_to_copy = Min(bytes_in_buffer, len - bytes_returned);
/*
* Copy the data from our result buffer into the caller's buffer,
* at the point where we last left off filling their buffer.
*/
memcpy((char *) ptr + bytes_returned, PqGSSResultBuffer + PqGSSResultNext, bytes_to_copy);
PqGSSResultNext += bytes_to_copy;
bytes_returned += bytes_to_copy;
/*
* At this point, we've either filled the caller's buffer or
* emptied our result buffer. Either way, return to caller. In
* the second case, we could try to read another encrypted packet,
* but the odds are good that there isn't one available. (If this
* isn't true, we chose too small a max packet size.) In any
* case, there's no harm letting the caller process the data we've
* already returned.
*/
break;
}
/* Result buffer is empty, so reset buffer pointers */
PqGSSResultLength = PqGSSResultNext = 0;
/*
* Because we chose above to return immediately as soon as we emit
* some data, bytes_returned must be zero at this point. Therefore
* the failure exits below can just return -1 without worrying about
* whether we already emitted some data.
*/
Assert(bytes_returned == 0);
/*
* At this point, our result buffer is empty with more bytes being
* requested to be read. We are now ready to load the next packet and
* decrypt it (entirely) into our result buffer.
*/
/* Collect the length if we haven't already */
if (PqGSSRecvLength < sizeof(uint32))
{
ret = pqsecure_raw_read(conn, PqGSSRecvBuffer + PqGSSRecvLength,
sizeof(uint32) - PqGSSRecvLength);
/* If ret <= 0, pqsecure_raw_read already set the correct errno */
if (ret <= 0)
return ret;
PqGSSRecvLength += ret;
/* If we still haven't got the length, return to the caller */
if (PqGSSRecvLength < sizeof(uint32))
{
errno = EWOULDBLOCK;
return -1;
}
}
/* Decode the packet length and check for overlength packet */
input.length = pg_ntoh32(*(uint32 *) PqGSSRecvBuffer);
if (input.length > PQ_GSS_RECV_BUFFER_SIZE - sizeof(uint32))
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("oversize GSSAPI packet sent by the server (%zu > %zu)\n"),
(size_t) input.length,
PQ_GSS_RECV_BUFFER_SIZE - sizeof(uint32));
errno = EIO; /* for lack of a better idea */
return -1;
}
/*
* Read as much of the packet as we are able to on this call into
* wherever we left off from the last time we were called.
*/
ret = pqsecure_raw_read(conn, PqGSSRecvBuffer + PqGSSRecvLength,
input.length - (PqGSSRecvLength - sizeof(uint32)));
/* If ret <= 0, pqsecure_raw_read already set the correct errno */
if (ret <= 0)
return ret;
PqGSSRecvLength += ret;
/* If we don't yet have the whole packet, return to the caller */
if (PqGSSRecvLength - sizeof(uint32) < input.length)
{
errno = EWOULDBLOCK;
return -1;
}
/*
* We now have the full packet and we can perform the decryption and
* refill our result buffer, then loop back up to pass data back to
* the caller. Note that error exits below here must take care of
* releasing the gss output buffer.
*/
output.value = NULL;
output.length = 0;
input.value = PqGSSRecvBuffer + sizeof(uint32);
major = gss_unwrap(&minor, gctx, &input, &output, &conf_state, NULL);
if (major != GSS_S_COMPLETE)
{
pg_GSS_error(libpq_gettext("GSSAPI unwrap error"), conn,
major, minor);
ret = -1;
errno = EIO; /* for lack of a better idea */
goto cleanup;
}
if (conf_state == 0)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("incoming GSSAPI message did not use confidentiality\n"));
ret = -1;
errno = EIO; /* for lack of a better idea */
goto cleanup;
}
memcpy(PqGSSResultBuffer, output.value, output.length);
PqGSSResultLength = output.length;
/* Our receive buffer is now empty, reset it */
PqGSSRecvLength = 0;
/* Release buffer storage allocated by GSSAPI */
gss_release_buffer(&minor, &output);
}
ret = bytes_returned;
cleanup:
/* Release GSSAPI buffer storage, if we didn't already */
if (output.value != NULL)
gss_release_buffer(&minor, &output);
return ret;
}
/*
* Simple wrapper for reading from pqsecure_raw_read.
*
* This takes the same arguments as pqsecure_raw_read, plus an output parameter
* to return the number of bytes read. This handles if blocking would occur and
* if we detect EOF on the connection.
*/
static PostgresPollingStatusType
gss_read(PGconn *conn, void *recv_buffer, size_t length, ssize_t *ret)
{
*ret = pqsecure_raw_read(conn, recv_buffer, length);
if (*ret < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINTR)
return PGRES_POLLING_READING;
else
return PGRES_POLLING_FAILED;
}
/* Check for EOF */
if (*ret == 0)
{
int result = pqReadReady(conn);
if (result < 0)
return PGRES_POLLING_FAILED;
if (!result)
return PGRES_POLLING_READING;
*ret = pqsecure_raw_read(conn, recv_buffer, length);
if (*ret < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINTR)
return PGRES_POLLING_READING;
else
return PGRES_POLLING_FAILED;
}
if (*ret == 0)
return PGRES_POLLING_FAILED;
}
return PGRES_POLLING_OK;
}
/*
* Negotiate GSSAPI transport for a connection. When complete, returns
* PGRES_POLLING_OK. Will return PGRES_POLLING_READING or
* PGRES_POLLING_WRITING as appropriate whenever it would block, and
* PGRES_POLLING_FAILED if transport could not be negotiated.
*/
PostgresPollingStatusType
pqsecure_open_gss(PGconn *conn)
{
ssize_t ret;
OM_uint32 major,
minor;
uint32 netlen;
PostgresPollingStatusType result;
gss_buffer_desc input = GSS_C_EMPTY_BUFFER,
output = GSS_C_EMPTY_BUFFER;
/*
* If first time through for this connection, allocate buffers and
* initialize state variables. By malloc'ing the buffers separately, we
* ensure that they are sufficiently aligned for the length-word accesses
* that we do in some places in this file.
*/
if (PqGSSSendBuffer == NULL)
{
PqGSSSendBuffer = malloc(PQ_GSS_SEND_BUFFER_SIZE);
PqGSSRecvBuffer = malloc(PQ_GSS_RECV_BUFFER_SIZE);
PqGSSResultBuffer = malloc(PQ_GSS_RECV_BUFFER_SIZE);
if (!PqGSSSendBuffer || !PqGSSRecvBuffer || !PqGSSResultBuffer)
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("out of memory\n"));
return PGRES_POLLING_FAILED;
}
PqGSSSendLength = PqGSSSendNext = PqGSSSendConsumed = 0;
PqGSSRecvLength = PqGSSResultLength = PqGSSResultNext = 0;
}
/*
* Check if we have anything to send from a prior call and if so, send it.
*/
if (PqGSSSendLength)
{
ssize_t amount = PqGSSSendLength - PqGSSSendNext;
ret = pqsecure_raw_write(conn, PqGSSSendBuffer + PqGSSSendNext, amount);
if (ret < 0)
{
if (errno == EAGAIN || errno == EWOULDBLOCK || errno == EINTR)
return PGRES_POLLING_WRITING;
else
return PGRES_POLLING_FAILED;
}
if (ret < amount)
{
PqGSSSendNext += ret;
return PGRES_POLLING_WRITING;
}
PqGSSSendLength = PqGSSSendNext = 0;
}
/*
* Client sends first, and sending creates a context, therefore this will
* be false the first time through, and then when we get called again we
* will check for incoming data.
*/
if (conn->gctx)
{
/* Process any incoming data we might have */
/* See if we are still trying to get the length */
if (PqGSSRecvLength < sizeof(uint32))
{
/* Attempt to get the length first */
result = gss_read(conn, PqGSSRecvBuffer + PqGSSRecvLength, sizeof(uint32) - PqGSSRecvLength, &ret);
if (result != PGRES_POLLING_OK)
return result;
PqGSSRecvLength += ret;
if (PqGSSRecvLength < sizeof(uint32))
return PGRES_POLLING_READING;
}
/*
* Check if we got an error packet
*
* This is safe to do because we shouldn't ever get a packet over 8192
* and therefore the actual length bytes, being that they are in
* network byte order, for any real packet will start with two zero
* bytes.
*/
if (PqGSSRecvBuffer[0] == 'E')
{
/*
* For an error packet during startup, we don't get a length, so
* simply read as much as we can fit into our buffer (as a string,
* so leave a spot at the end for a NULL byte too) and report that
* back to the caller.
*/
result = gss_read(conn, PqGSSRecvBuffer + PqGSSRecvLength, PQ_GSS_RECV_BUFFER_SIZE - PqGSSRecvLength - 1, &ret);
if (result != PGRES_POLLING_OK)
return result;
PqGSSRecvLength += ret;
printfPQExpBuffer(&conn->errorMessage, "%s\n", PqGSSRecvBuffer + 1);
return PGRES_POLLING_FAILED;
}
/*
* We should have the whole length at this point, so pull it out and
* then read whatever we have left of the packet
*/
/* Get the length and check for over-length packet */
input.length = pg_ntoh32(*(uint32 *) PqGSSRecvBuffer);
if (input.length > PQ_GSS_RECV_BUFFER_SIZE - sizeof(uint32))
{
printfPQExpBuffer(&conn->errorMessage,
libpq_gettext("oversize GSSAPI packet sent by the server (%zu > %zu)\n"),
(size_t) input.length,
PQ_GSS_RECV_BUFFER_SIZE - sizeof(uint32));
return PGRES_POLLING_FAILED;
}
/*
* Read as much of the packet as we are able to on this call into
* wherever we left off from the last time we were called.
*/
result = gss_read(conn, PqGSSRecvBuffer + PqGSSRecvLength,
input.length - (PqGSSRecvLength - sizeof(uint32)), &ret);
if (result != PGRES_POLLING_OK)
return result;
PqGSSRecvLength += ret;
/*
* If we got less than the rest of the packet then we need to return
* and be called again.
*/
if (PqGSSRecvLength - sizeof(uint32) < input.length)
return PGRES_POLLING_READING;
input.value = PqGSSRecvBuffer + sizeof(uint32);
}
/* Load the service name (no-op if already done */
ret = pg_GSS_load_servicename(conn);
if (ret != STATUS_OK)
return PGRES_POLLING_FAILED;
/*
* Call GSS init context, either with an empty input, or with a complete
* packet from the server.
*/
major = gss_init_sec_context(&minor, conn->gcred, &conn->gctx,
conn->gtarg_nam, GSS_C_NO_OID,
GSS_REQUIRED_FLAGS, 0, 0, &input, NULL,
&output, NULL, NULL);
/* GSS Init Sec Context uses the whole packet, so clear it */
PqGSSRecvLength = 0;
if (GSS_ERROR(major))
{
pg_GSS_error(libpq_gettext("could not initiate GSSAPI security context"),
conn, major, minor);
return PGRES_POLLING_FAILED;
}
if (output.length == 0)
{
/*
* We're done - hooray! Kind of gross, but we need to disable SSL
* here so that we don't accidentally tunnel one over the other.
*/
#ifdef USE_SSL
conn->allow_ssl_try = false;
#endif
/* Clean up */
gss_release_cred(&minor, &conn->gcred);
conn->gcred = GSS_C_NO_CREDENTIAL;
conn->gssenc = true;
gss_release_buffer(&minor, &output);
/*
* Determine the max packet size which will fit in our buffer, after
* accounting for the length. pg_GSS_write will need this.
*/
major = gss_wrap_size_limit(&minor, conn->gctx, 1, GSS_C_QOP_DEFAULT,
PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32),
&PqGSSMaxPktSize);
if (GSS_ERROR(major))
{
pg_GSS_error(libpq_gettext("GSSAPI size check error"), conn,
major, minor);
return PGRES_POLLING_FAILED;
}
return PGRES_POLLING_OK;
}
/* Must have output.length > 0 */
if (output.length > PQ_GSS_SEND_BUFFER_SIZE - sizeof(uint32))
{
pg_GSS_error(libpq_gettext("GSSAPI context establishment error"),
conn, major, minor);
gss_release_buffer(&minor, &output);
return PGRES_POLLING_FAILED;
}
/* Queue the token for writing */
netlen = pg_hton32(output.length);
memcpy(PqGSSSendBuffer, (char *) &netlen, sizeof(uint32));
PqGSSSendLength += sizeof(uint32);
memcpy(PqGSSSendBuffer + PqGSSSendLength, output.value, output.length);
PqGSSSendLength += output.length;
/* We don't bother with PqGSSSendConsumed here */
/* Release buffer storage allocated by GSSAPI */
gss_release_buffer(&minor, &output);
/* Ask to be called again to write data */
return PGRES_POLLING_WRITING;
}
/*
* GSSAPI Information functions.
*/
/*
* Return the GSSAPI Context itself.
*/
void *
PQgetgssctx(PGconn *conn)
{
if (!conn)
return NULL;
return conn->gctx;
}
/*
* Return true if GSSAPI encryption is in use.
*/
int
PQgssEncInUse(PGconn *conn)
{
if (!conn || !conn->gctx)
return 0;
return conn->gssenc;
}