postgresql/src/include/access/hash.h

464 lines
18 KiB
C

/*-------------------------------------------------------------------------
*
* hash.h
* header file for postgres hash access method implementation
*
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/access/hash.h
*
* NOTES
* modeled after Margo Seltzer's hash implementation for unix.
*
*-------------------------------------------------------------------------
*/
#ifndef HASH_H
#define HASH_H
#include "access/amapi.h"
#include "access/itup.h"
#include "access/sdir.h"
#include "fmgr.h"
#include "lib/stringinfo.h"
#include "storage/bufmgr.h"
#include "storage/lockdefs.h"
#include "utils/hashutils.h"
#include "utils/hsearch.h"
#include "utils/relcache.h"
/*
* Mapping from hash bucket number to physical block number of bucket's
* starting page. Beware of multiple evaluations of argument!
*/
typedef uint32 Bucket;
#define InvalidBucket ((Bucket) 0xFFFFFFFF)
#define BUCKET_TO_BLKNO(metap,B) \
((BlockNumber) ((B) + ((B) ? (metap)->hashm_spares[_hash_spareindex((B)+1)-1] : 0)) + 1)
/*
* Special space for hash index pages.
*
* hasho_flag's LH_PAGE_TYPE bits tell us which type of page we're looking at.
* Additional bits in the flag word are used for more transient purposes.
*
* To test a page's type, do (hasho_flag & LH_PAGE_TYPE) == LH_xxx_PAGE.
* However, we ensure that each used page type has a distinct bit so that
* we can OR together page types for uses such as the allowable-page-types
* argument of _hash_checkpage().
*/
#define LH_UNUSED_PAGE (0)
#define LH_OVERFLOW_PAGE (1 << 0)
#define LH_BUCKET_PAGE (1 << 1)
#define LH_BITMAP_PAGE (1 << 2)
#define LH_META_PAGE (1 << 3)
#define LH_BUCKET_BEING_POPULATED (1 << 4)
#define LH_BUCKET_BEING_SPLIT (1 << 5)
#define LH_BUCKET_NEEDS_SPLIT_CLEANUP (1 << 6)
#define LH_PAGE_HAS_DEAD_TUPLES (1 << 7)
#define LH_PAGE_TYPE \
(LH_OVERFLOW_PAGE | LH_BUCKET_PAGE | LH_BITMAP_PAGE | LH_META_PAGE)
/*
* In an overflow page, hasho_prevblkno stores the block number of the previous
* page in the bucket chain; in a bucket page, hasho_prevblkno stores the
* hashm_maxbucket value as of the last time the bucket was last split, or
* else as of the time the bucket was created. The latter convention is used
* to determine whether a cached copy of the metapage is too stale to be used
* without needing to lock or pin the metapage.
*
* hasho_nextblkno is always the block number of the next page in the
* bucket chain, or InvalidBlockNumber if there are no more such pages.
*/
typedef struct HashPageOpaqueData
{
BlockNumber hasho_prevblkno; /* see above */
BlockNumber hasho_nextblkno; /* see above */
Bucket hasho_bucket; /* bucket number this pg belongs to */
uint16 hasho_flag; /* page type code + flag bits, see above */
uint16 hasho_page_id; /* for identification of hash indexes */
} HashPageOpaqueData;
typedef HashPageOpaqueData *HashPageOpaque;
#define H_NEEDS_SPLIT_CLEANUP(opaque) (((opaque)->hasho_flag & LH_BUCKET_NEEDS_SPLIT_CLEANUP) != 0)
#define H_BUCKET_BEING_SPLIT(opaque) (((opaque)->hasho_flag & LH_BUCKET_BEING_SPLIT) != 0)
#define H_BUCKET_BEING_POPULATED(opaque) (((opaque)->hasho_flag & LH_BUCKET_BEING_POPULATED) != 0)
#define H_HAS_DEAD_TUPLES(opaque) (((opaque)->hasho_flag & LH_PAGE_HAS_DEAD_TUPLES) != 0)
/*
* The page ID is for the convenience of pg_filedump and similar utilities,
* which otherwise would have a hard time telling pages of different index
* types apart. It should be the last 2 bytes on the page. This is more or
* less "free" due to alignment considerations.
*/
#define HASHO_PAGE_ID 0xFF80
typedef struct HashScanPosItem /* what we remember about each match */
{
ItemPointerData heapTid; /* TID of referenced heap item */
OffsetNumber indexOffset; /* index item's location within page */
} HashScanPosItem;
typedef struct HashScanPosData
{
Buffer buf; /* if valid, the buffer is pinned */
BlockNumber currPage; /* current hash index page */
BlockNumber nextPage; /* next overflow page */
BlockNumber prevPage; /* prev overflow or bucket page */
/*
* The items array is always ordered in index order (ie, increasing
* indexoffset). When scanning backwards it is convenient to fill the
* array back-to-front, so we start at the last slot and fill downwards.
* Hence we need both a first-valid-entry and a last-valid-entry counter.
* itemIndex is a cursor showing which entry was last returned to caller.
*/
int firstItem; /* first valid index in items[] */
int lastItem; /* last valid index in items[] */
int itemIndex; /* current index in items[] */
HashScanPosItem items[MaxIndexTuplesPerPage]; /* MUST BE LAST */
} HashScanPosData;
#define HashScanPosIsPinned(scanpos) \
( \
AssertMacro(BlockNumberIsValid((scanpos).currPage) || \
!BufferIsValid((scanpos).buf)), \
BufferIsValid((scanpos).buf) \
)
#define HashScanPosIsValid(scanpos) \
( \
AssertMacro(BlockNumberIsValid((scanpos).currPage) || \
!BufferIsValid((scanpos).buf)), \
BlockNumberIsValid((scanpos).currPage) \
)
#define HashScanPosInvalidate(scanpos) \
do { \
(scanpos).buf = InvalidBuffer; \
(scanpos).currPage = InvalidBlockNumber; \
(scanpos).nextPage = InvalidBlockNumber; \
(scanpos).prevPage = InvalidBlockNumber; \
(scanpos).firstItem = 0; \
(scanpos).lastItem = 0; \
(scanpos).itemIndex = 0; \
} while (0);
/*
* HashScanOpaqueData is private state for a hash index scan.
*/
typedef struct HashScanOpaqueData
{
/* Hash value of the scan key, ie, the hash key we seek */
uint32 hashso_sk_hash;
/* remember the buffer associated with primary bucket */
Buffer hashso_bucket_buf;
/*
* remember the buffer associated with primary bucket page of bucket being
* split. it is required during the scan of the bucket which is being
* populated during split operation.
*/
Buffer hashso_split_bucket_buf;
/* Whether scan starts on bucket being populated due to split */
bool hashso_buc_populated;
/*
* Whether scanning bucket being split? The value of this parameter is
* referred only when hashso_buc_populated is true.
*/
bool hashso_buc_split;
/* info about killed items if any (killedItems is NULL if never used) */
int *killedItems; /* currPos.items indexes of killed items */
int numKilled; /* number of currently stored items */
/*
* Identify all the matching items on a page and save them in
* HashScanPosData
*/
HashScanPosData currPos; /* current position data */
} HashScanOpaqueData;
typedef HashScanOpaqueData *HashScanOpaque;
/*
* Definitions for metapage.
*/
#define HASH_METAPAGE 0 /* metapage is always block 0 */
#define HASH_MAGIC 0x6440640
#define HASH_VERSION 4
/*
* spares[] holds the number of overflow pages currently allocated at or
* before a certain splitpoint. For example, if spares[3] = 7 then there are
* 7 ovflpages before splitpoint 3 (compare BUCKET_TO_BLKNO macro). The
* value in spares[ovflpoint] increases as overflow pages are added at the
* end of the index. Once ovflpoint increases (ie, we have actually allocated
* the bucket pages belonging to that splitpoint) the number of spares at the
* prior splitpoint cannot change anymore.
*
* ovflpages that have been recycled for reuse can be found by looking at
* bitmaps that are stored within ovflpages dedicated for the purpose.
* The blknos of these bitmap pages are kept in mapp[]; nmaps is the
* number of currently existing bitmaps.
*
* The limitation on the size of spares[] comes from the fact that there's
* no point in having more than 2^32 buckets with only uint32 hashcodes.
* (Note: The value of HASH_MAX_SPLITPOINTS which is the size of spares[] is
* adjusted in such a way to accommodate multi phased allocation of buckets
* after HASH_SPLITPOINT_GROUPS_WITH_ONE_PHASE).
*
* There is no particular upper limit on the size of mapp[], other than
* needing to fit into the metapage. (With 8K block size, 1024 bitmaps
* limit us to 256 GB of overflow space...). For smaller block size we
* can not use 1024 bitmaps as it will lead to the meta page data crossing
* the block size boundary. So we use BLCKSZ to determine the maximum number
* of bitmaps.
*/
#define HASH_MAX_BITMAPS Min(BLCKSZ / 8, 1024)
#define HASH_SPLITPOINT_PHASE_BITS 2
#define HASH_SPLITPOINT_PHASES_PER_GRP (1 << HASH_SPLITPOINT_PHASE_BITS)
#define HASH_SPLITPOINT_PHASE_MASK (HASH_SPLITPOINT_PHASES_PER_GRP - 1)
#define HASH_SPLITPOINT_GROUPS_WITH_ONE_PHASE 10
/* defines max number of splitpoint phases a hash index can have */
#define HASH_MAX_SPLITPOINT_GROUP 32
#define HASH_MAX_SPLITPOINTS \
(((HASH_MAX_SPLITPOINT_GROUP - HASH_SPLITPOINT_GROUPS_WITH_ONE_PHASE) * \
HASH_SPLITPOINT_PHASES_PER_GRP) + \
HASH_SPLITPOINT_GROUPS_WITH_ONE_PHASE)
typedef struct HashMetaPageData
{
uint32 hashm_magic; /* magic no. for hash tables */
uint32 hashm_version; /* version ID */
double hashm_ntuples; /* number of tuples stored in the table */
uint16 hashm_ffactor; /* target fill factor (tuples/bucket) */
uint16 hashm_bsize; /* index page size (bytes) */
uint16 hashm_bmsize; /* bitmap array size (bytes) - must be a power
* of 2 */
uint16 hashm_bmshift; /* log2(bitmap array size in BITS) */
uint32 hashm_maxbucket; /* ID of maximum bucket in use */
uint32 hashm_highmask; /* mask to modulo into entire table */
uint32 hashm_lowmask; /* mask to modulo into lower half of table */
uint32 hashm_ovflpoint; /* splitpoint from which ovflpage being
* allocated */
uint32 hashm_firstfree; /* lowest-number free ovflpage (bit#) */
uint32 hashm_nmaps; /* number of bitmap pages */
RegProcedure hashm_procid; /* hash function id from pg_proc */
uint32 hashm_spares[HASH_MAX_SPLITPOINTS]; /* spare pages before each
* splitpoint */
BlockNumber hashm_mapp[HASH_MAX_BITMAPS]; /* blknos of ovfl bitmaps */
} HashMetaPageData;
typedef HashMetaPageData *HashMetaPage;
/*
* Maximum size of a hash index item (it's okay to have only one per page)
*/
#define HashMaxItemSize(page) \
MAXALIGN_DOWN(PageGetPageSize(page) - \
SizeOfPageHeaderData - \
sizeof(ItemIdData) - \
MAXALIGN(sizeof(HashPageOpaqueData)))
#define INDEX_MOVED_BY_SPLIT_MASK INDEX_AM_RESERVED_BIT
#define HASH_MIN_FILLFACTOR 10
#define HASH_DEFAULT_FILLFACTOR 75
/*
* Constants
*/
#define BYTE_TO_BIT 3 /* 2^3 bits/byte */
#define ALL_SET ((uint32) ~0)
/*
* Bitmap pages do not contain tuples. They do contain the standard
* page headers and trailers; however, everything in between is a
* giant bit array. The number of bits that fit on a page obviously
* depends on the page size and the header/trailer overhead. We require
* the number of bits per page to be a power of 2.
*/
#define BMPGSZ_BYTE(metap) ((metap)->hashm_bmsize)
#define BMPGSZ_BIT(metap) ((metap)->hashm_bmsize << BYTE_TO_BIT)
#define BMPG_SHIFT(metap) ((metap)->hashm_bmshift)
#define BMPG_MASK(metap) (BMPGSZ_BIT(metap) - 1)
#define HashPageGetBitmap(page) \
((uint32 *) PageGetContents(page))
#define HashGetMaxBitmapSize(page) \
(PageGetPageSize((Page) page) - \
(MAXALIGN(SizeOfPageHeaderData) + MAXALIGN(sizeof(HashPageOpaqueData))))
#define HashPageGetMeta(page) \
((HashMetaPage) PageGetContents(page))
/*
* The number of bits in an ovflpage bitmap word.
*/
#define BITS_PER_MAP 32 /* Number of bits in uint32 */
/* Given the address of the beginning of a bit map, clear/set the nth bit */
#define CLRBIT(A, N) ((A)[(N)/BITS_PER_MAP] &= ~(1<<((N)%BITS_PER_MAP)))
#define SETBIT(A, N) ((A)[(N)/BITS_PER_MAP] |= (1<<((N)%BITS_PER_MAP)))
#define ISSET(A, N) ((A)[(N)/BITS_PER_MAP] & (1<<((N)%BITS_PER_MAP)))
/*
* page-level and high-level locking modes (see README)
*/
#define HASH_READ BUFFER_LOCK_SHARE
#define HASH_WRITE BUFFER_LOCK_EXCLUSIVE
#define HASH_NOLOCK (-1)
/*
* When a new operator class is declared, we require that the user supply
* us with an amproc function for hashing a key of the new type, returning
* a 32-bit hash value. We call this the "standard" hash function. We
* also allow an optional "extended" hash function which accepts a salt and
* returns a 64-bit hash value. This is highly recommended but, for reasons
* of backward compatibility, optional.
*
* When the salt is 0, the low 32 bits of the value returned by the extended
* hash function should match the value that would have been returned by the
* standard hash function.
*/
#define HASHSTANDARD_PROC 1
#define HASHEXTENDED_PROC 2
#define HASHNProcs 2
/* public routines */
extern IndexBuildResult *hashbuild(Relation heap, Relation index,
struct IndexInfo *indexInfo);
extern void hashbuildempty(Relation index);
extern bool hashinsert(Relation rel, Datum *values, bool *isnull,
ItemPointer ht_ctid, Relation heapRel,
IndexUniqueCheck checkUnique,
struct IndexInfo *indexInfo);
extern bool hashgettuple(IndexScanDesc scan, ScanDirection dir);
extern int64 hashgetbitmap(IndexScanDesc scan, TIDBitmap *tbm);
extern IndexScanDesc hashbeginscan(Relation rel, int nkeys, int norderbys);
extern void hashrescan(IndexScanDesc scan, ScanKey scankey, int nscankeys,
ScanKey orderbys, int norderbys);
extern void hashendscan(IndexScanDesc scan);
extern IndexBulkDeleteResult *hashbulkdelete(IndexVacuumInfo *info,
IndexBulkDeleteResult *stats,
IndexBulkDeleteCallback callback,
void *callback_state);
extern IndexBulkDeleteResult *hashvacuumcleanup(IndexVacuumInfo *info,
IndexBulkDeleteResult *stats);
extern bytea *hashoptions(Datum reloptions, bool validate);
extern bool hashvalidate(Oid opclassoid);
/* private routines */
/* hashinsert.c */
extern void _hash_doinsert(Relation rel, IndexTuple itup, Relation heapRel);
extern OffsetNumber _hash_pgaddtup(Relation rel, Buffer buf,
Size itemsize, IndexTuple itup);
extern void _hash_pgaddmultitup(Relation rel, Buffer buf, IndexTuple *itups,
OffsetNumber *itup_offsets, uint16 nitups);
/* hashovfl.c */
extern Buffer _hash_addovflpage(Relation rel, Buffer metabuf, Buffer buf, bool retain_pin);
extern BlockNumber _hash_freeovflpage(Relation rel, Buffer bucketbuf, Buffer ovflbuf,
Buffer wbuf, IndexTuple *itups, OffsetNumber *itup_offsets,
Size *tups_size, uint16 nitups, BufferAccessStrategy bstrategy);
extern void _hash_initbitmapbuffer(Buffer buf, uint16 bmsize, bool initpage);
extern void _hash_squeezebucket(Relation rel,
Bucket bucket, BlockNumber bucket_blkno,
Buffer bucket_buf,
BufferAccessStrategy bstrategy);
extern uint32 _hash_ovflblkno_to_bitno(HashMetaPage metap, BlockNumber ovflblkno);
/* hashpage.c */
extern Buffer _hash_getbuf(Relation rel, BlockNumber blkno,
int access, int flags);
extern Buffer _hash_getbuf_with_condlock_cleanup(Relation rel,
BlockNumber blkno, int flags);
extern HashMetaPage _hash_getcachedmetap(Relation rel, Buffer *metabuf,
bool force_refresh);
extern Buffer _hash_getbucketbuf_from_hashkey(Relation rel, uint32 hashkey,
int access,
HashMetaPage *cachedmetap);
extern Buffer _hash_getinitbuf(Relation rel, BlockNumber blkno);
extern void _hash_initbuf(Buffer buf, uint32 max_bucket, uint32 num_bucket,
uint32 flag, bool initpage);
extern Buffer _hash_getnewbuf(Relation rel, BlockNumber blkno,
ForkNumber forkNum);
extern Buffer _hash_getbuf_with_strategy(Relation rel, BlockNumber blkno,
int access, int flags,
BufferAccessStrategy bstrategy);
extern void _hash_relbuf(Relation rel, Buffer buf);
extern void _hash_dropbuf(Relation rel, Buffer buf);
extern void _hash_dropscanbuf(Relation rel, HashScanOpaque so);
extern uint32 _hash_init(Relation rel, double num_tuples,
ForkNumber forkNum);
extern void _hash_init_metabuffer(Buffer buf, double num_tuples,
RegProcedure procid, uint16 ffactor, bool initpage);
extern void _hash_pageinit(Page page, Size size);
extern void _hash_expandtable(Relation rel, Buffer metabuf);
extern void _hash_finish_split(Relation rel, Buffer metabuf, Buffer obuf,
Bucket obucket, uint32 maxbucket, uint32 highmask,
uint32 lowmask);
/* hashsearch.c */
extern bool _hash_next(IndexScanDesc scan, ScanDirection dir);
extern bool _hash_first(IndexScanDesc scan, ScanDirection dir);
/* hashsort.c */
typedef struct HSpool HSpool; /* opaque struct in hashsort.c */
extern HSpool *_h_spoolinit(Relation heap, Relation index, uint32 num_buckets);
extern void _h_spooldestroy(HSpool *hspool);
extern void _h_spool(HSpool *hspool, ItemPointer self,
Datum *values, bool *isnull);
extern void _h_indexbuild(HSpool *hspool, Relation heapRel);
/* hashutil.c */
extern bool _hash_checkqual(IndexScanDesc scan, IndexTuple itup);
extern uint32 _hash_datum2hashkey(Relation rel, Datum key);
extern uint32 _hash_datum2hashkey_type(Relation rel, Datum key, Oid keytype);
extern Bucket _hash_hashkey2bucket(uint32 hashkey, uint32 maxbucket,
uint32 highmask, uint32 lowmask);
extern uint32 _hash_log2(uint32 num);
extern uint32 _hash_spareindex(uint32 num_bucket);
extern uint32 _hash_get_totalbuckets(uint32 splitpoint_phase);
extern void _hash_checkpage(Relation rel, Buffer buf, int flags);
extern uint32 _hash_get_indextuple_hashkey(IndexTuple itup);
extern bool _hash_convert_tuple(Relation index,
Datum *user_values, bool *user_isnull,
Datum *index_values, bool *index_isnull);
extern OffsetNumber _hash_binsearch(Page page, uint32 hash_value);
extern OffsetNumber _hash_binsearch_last(Page page, uint32 hash_value);
extern BlockNumber _hash_get_oldblock_from_newbucket(Relation rel, Bucket new_bucket);
extern BlockNumber _hash_get_newblock_from_oldbucket(Relation rel, Bucket old_bucket);
extern Bucket _hash_get_newbucket_from_oldbucket(Relation rel, Bucket old_bucket,
uint32 lowmask, uint32 maxbucket);
extern void _hash_kill_items(IndexScanDesc scan);
/* hash.c */
extern void hashbucketcleanup(Relation rel, Bucket cur_bucket,
Buffer bucket_buf, BlockNumber bucket_blkno,
BufferAccessStrategy bstrategy,
uint32 maxbucket, uint32 highmask, uint32 lowmask,
double *tuples_removed, double *num_index_tuples,
bool split_cleanup,
IndexBulkDeleteCallback callback, void *callback_state);
#endif /* HASH_H */