postgresql/src/include/access/tableam.h

1741 lines
60 KiB
C

/*-------------------------------------------------------------------------
*
* tableam.h
* POSTGRES table access method definitions.
*
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/access/tableam.h
*
* NOTES
* See tableam.sgml for higher level documentation.
*
*-------------------------------------------------------------------------
*/
#ifndef TABLEAM_H
#define TABLEAM_H
#include "access/relscan.h"
#include "access/sdir.h"
#include "utils/guc.h"
#include "utils/rel.h"
#include "utils/snapshot.h"
#define DEFAULT_TABLE_ACCESS_METHOD "heap"
/* GUCs */
extern char *default_table_access_method;
extern bool synchronize_seqscans;
struct BulkInsertStateData;
struct IndexInfo;
struct SampleScanState;
struct TBMIterateResult;
struct VacuumParams;
struct ValidateIndexState;
/*
* Bitmask values for the flags argument to the scan_begin callback.
*/
typedef enum ScanOptions
{
/* one of SO_TYPE_* may be specified */
SO_TYPE_SEQSCAN = 1 << 0,
SO_TYPE_BITMAPSCAN = 1 << 1,
SO_TYPE_SAMPLESCAN = 1 << 2,
SO_TYPE_ANALYZE = 1 << 3,
/* several of SO_ALLOW_* may be specified */
/* allow or disallow use of access strategy */
SO_ALLOW_STRAT = 1 << 4,
/* report location to syncscan logic? */
SO_ALLOW_SYNC = 1 << 5,
/* verify visibility page-at-a-time? */
SO_ALLOW_PAGEMODE = 1 << 6,
/* unregister snapshot at scan end? */
SO_TEMP_SNAPSHOT = 1 << 7
} ScanOptions;
/*
* Result codes for table_{update,delete,lock_tuple}, and for visibility
* routines inside table AMs.
*/
typedef enum TM_Result
{
/*
* Signals that the action succeeded (i.e. update/delete performed, lock
* was acquired)
*/
TM_Ok,
/* The affected tuple wasn't visible to the relevant snapshot */
TM_Invisible,
/* The affected tuple was already modified by the calling backend */
TM_SelfModified,
/*
* The affected tuple was updated by another transaction. This includes
* the case where tuple was moved to another partition.
*/
TM_Updated,
/* The affected tuple was deleted by another transaction */
TM_Deleted,
/*
* The affected tuple is currently being modified by another session. This
* will only be returned if table_(update/delete/lock_tuple) are
* instructed not to wait.
*/
TM_BeingModified,
/* lock couldn't be acquired, action skipped. Only used by lock_tuple */
TM_WouldBlock
} TM_Result;
/*
* When table_tuple_update, table_tuple_delete, or table_tuple_lock fail
* because the target tuple is already outdated, they fill in this struct to
* provide information to the caller about what happened.
*
* ctid is the target's ctid link: it is the same as the target's TID if the
* target was deleted, or the location of the replacement tuple if the target
* was updated.
*
* xmax is the outdating transaction's XID. If the caller wants to visit the
* replacement tuple, it must check that this matches before believing the
* replacement is really a match.
*
* cmax is the outdating command's CID, but only when the failure code is
* TM_SelfModified (i.e., something in the current transaction outdated the
* tuple); otherwise cmax is zero. (We make this restriction because
* HeapTupleHeaderGetCmax doesn't work for tuples outdated in other
* transactions.)
*/
typedef struct TM_FailureData
{
ItemPointerData ctid;
TransactionId xmax;
CommandId cmax;
bool traversed;
} TM_FailureData;
/* "options" flag bits for table_tuple_insert */
#define TABLE_INSERT_SKIP_WAL 0x0001
#define TABLE_INSERT_SKIP_FSM 0x0002
#define TABLE_INSERT_FROZEN 0x0004
#define TABLE_INSERT_NO_LOGICAL 0x0008
/* flag bits for table_tuple_lock */
/* Follow tuples whose update is in progress if lock modes don't conflict */
#define TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS (1 << 0)
/* Follow update chain and lock latest version of tuple */
#define TUPLE_LOCK_FLAG_FIND_LAST_VERSION (1 << 1)
/* Typedef for callback function for table_index_build_scan */
typedef void (*IndexBuildCallback) (Relation index,
HeapTuple htup,
Datum *values,
bool *isnull,
bool tupleIsAlive,
void *state);
/*
* API struct for a table AM. Note this must be allocated in a
* server-lifetime manner, typically as a static const struct, which then gets
* returned by FormData_pg_am.amhandler.
*
* In most cases it's not appropriate to call the callbacks directly, use the
* table_* wrapper functions instead.
*
* GetTableAmRoutine() asserts that required callbacks are filled in, remember
* to update when adding a callback.
*/
typedef struct TableAmRoutine
{
/* this must be set to T_TableAmRoutine */
NodeTag type;
/* ------------------------------------------------------------------------
* Slot related callbacks.
* ------------------------------------------------------------------------
*/
/*
* Return slot implementation suitable for storing a tuple of this AM.
*/
const TupleTableSlotOps *(*slot_callbacks) (Relation rel);
/* ------------------------------------------------------------------------
* Table scan callbacks.
* ------------------------------------------------------------------------
*/
/*
* Start a scan of `rel`. The callback has to return a TableScanDesc,
* which will typically be embedded in a larger, AM specific, struct.
*
* If nkeys != 0, the results need to be filtered by those scan keys.
*
* pscan, if not NULL, will have already been initialized with
* parallelscan_initialize(), and has to be for the same relation. Will
* only be set coming from table_beginscan_parallel().
*
* `flags` is a bitmask indicating the type of scan (ScanOptions's
* SO_TYPE_*, currently only one may be specified), options controlling
* the scan's behaviour (ScanOptions's SO_ALLOW_*, several may be
* specified, an AM may ignore unsupported ones) and whether the snapshot
* needs to be deallocated at scan_end (ScanOptions's SO_TEMP_SNAPSHOT).
*/
TableScanDesc (*scan_begin) (Relation rel,
Snapshot snapshot,
int nkeys, struct ScanKeyData *key,
ParallelTableScanDesc pscan,
uint32 flags);
/*
* Release resources and deallocate scan. If TableScanDesc.temp_snap,
* TableScanDesc.rs_snapshot needs to be unregistered.
*/
void (*scan_end) (TableScanDesc scan);
/*
* Restart relation scan. If set_params is set to true, allow_{strat,
* sync, pagemode} (see scan_begin) changes should be taken into account.
*/
void (*scan_rescan) (TableScanDesc scan, struct ScanKeyData *key,
bool set_params, bool allow_strat,
bool allow_sync, bool allow_pagemode);
/*
* Return next tuple from `scan`, store in slot.
*/
bool (*scan_getnextslot) (TableScanDesc scan,
ScanDirection direction,
TupleTableSlot *slot);
/* ------------------------------------------------------------------------
* Parallel table scan related functions.
* ------------------------------------------------------------------------
*/
/*
* Estimate the size of shared memory needed for a parallel scan of this
* relation. The snapshot does not need to be accounted for.
*/
Size (*parallelscan_estimate) (Relation rel);
/*
* Initialize ParallelTableScanDesc for a parallel scan of this relation.
* `pscan` will be sized according to parallelscan_estimate() for the same
* relation.
*/
Size (*parallelscan_initialize) (Relation rel,
ParallelTableScanDesc pscan);
/*
* Reinitialize `pscan` for a new scan. `rel` will be the same relation as
* when `pscan` was initialized by parallelscan_initialize.
*/
void (*parallelscan_reinitialize) (Relation rel,
ParallelTableScanDesc pscan);
/* ------------------------------------------------------------------------
* Index Scan Callbacks
* ------------------------------------------------------------------------
*/
/*
* Prepare to fetch tuples from the relation, as needed when fetching
* tuples for an index scan. The callback has to return an
* IndexFetchTableData, which the AM will typically embed in a larger
* structure with additional information.
*
* Tuples for an index scan can then be fetched via index_fetch_tuple.
*/
struct IndexFetchTableData *(*index_fetch_begin) (Relation rel);
/*
* Reset index fetch. Typically this will release cross index fetch
* resources held in IndexFetchTableData.
*/
void (*index_fetch_reset) (struct IndexFetchTableData *data);
/*
* Release resources and deallocate index fetch.
*/
void (*index_fetch_end) (struct IndexFetchTableData *data);
/*
* Fetch tuple at `tid` into `slot`, after doing a visibility test
* according to `snapshot`. If a tuple was found and passed the visibility
* test, return true, false otherwise.
*
* Note that AMs that do not necessarily update indexes when indexed
* columns do not change, need to return the current/correct version of
* the tuple that is visible to the snapshot, even if the tid points to an
* older version of the tuple.
*
* *call_again is false on the first call to index_fetch_tuple for a tid.
* If there potentially is another tuple matching the tid, *call_again
* needs be set to true by index_fetch_tuple, signalling to the caller
* that index_fetch_tuple should be called again for the same tid.
*
* *all_dead, if all_dead is not NULL, should be set to true by
* index_fetch_tuple iff it is guaranteed that no backend needs to see
* that tuple. Index AMs can use that do avoid returning that tid in
* future searches.
*/
bool (*index_fetch_tuple) (struct IndexFetchTableData *scan,
ItemPointer tid,
Snapshot snapshot,
TupleTableSlot *slot,
bool *call_again, bool *all_dead);
/* ------------------------------------------------------------------------
* Callbacks for non-modifying operations on individual tuples
* ------------------------------------------------------------------------
*/
/*
* Fetch tuple at `tid` into `slot`, after doing a visibility test
* according to `snapshot`. If a tuple was found and passed the visibility
* test, returns true, false otherwise.
*/
bool (*tuple_fetch_row_version) (Relation rel,
ItemPointer tid,
Snapshot snapshot,
TupleTableSlot *slot);
/*
* Is tid valid for a scan of this relation.
*/
bool (*tuple_tid_valid) (TableScanDesc scan,
ItemPointer tid);
/*
* Return the latest version of the tuple at `tid`, by updating `tid` to
* point at the newest version.
*/
void (*tuple_get_latest_tid) (TableScanDesc scan,
ItemPointer tid);
/*
* Does the tuple in `slot` satisfy `snapshot`? The slot needs to be of
* the appropriate type for the AM.
*/
bool (*tuple_satisfies_snapshot) (Relation rel,
TupleTableSlot *slot,
Snapshot snapshot);
/* see table_compute_xid_horizon_for_tuples() */
TransactionId (*compute_xid_horizon_for_tuples) (Relation rel,
ItemPointerData *items,
int nitems);
/* ------------------------------------------------------------------------
* Manipulations of physical tuples.
* ------------------------------------------------------------------------
*/
/* see table_tuple_insert() for reference about parameters */
void (*tuple_insert) (Relation rel, TupleTableSlot *slot,
CommandId cid, int options,
struct BulkInsertStateData *bistate);
/* see table_tuple_insert_speculative() for reference about parameters */
void (*tuple_insert_speculative) (Relation rel,
TupleTableSlot *slot,
CommandId cid,
int options,
struct BulkInsertStateData *bistate,
uint32 specToken);
/* see table_tuple_complete_speculative() for reference about parameters */
void (*tuple_complete_speculative) (Relation rel,
TupleTableSlot *slot,
uint32 specToken,
bool succeeded);
/* see table_multi_insert() for reference about parameters */
void (*multi_insert) (Relation rel, TupleTableSlot **slots, int nslots,
CommandId cid, int options, struct BulkInsertStateData *bistate);
/* see table_tuple_delete() for reference about parameters */
TM_Result (*tuple_delete) (Relation rel,
ItemPointer tid,
CommandId cid,
Snapshot snapshot,
Snapshot crosscheck,
bool wait,
TM_FailureData *tmfd,
bool changingPart);
/* see table_tuple_update() for reference about parameters */
TM_Result (*tuple_update) (Relation rel,
ItemPointer otid,
TupleTableSlot *slot,
CommandId cid,
Snapshot snapshot,
Snapshot crosscheck,
bool wait,
TM_FailureData *tmfd,
LockTupleMode *lockmode,
bool *update_indexes);
/* see table_tuple_lock() for reference about parameters */
TM_Result (*tuple_lock) (Relation rel,
ItemPointer tid,
Snapshot snapshot,
TupleTableSlot *slot,
CommandId cid,
LockTupleMode mode,
LockWaitPolicy wait_policy,
uint8 flags,
TM_FailureData *tmfd);
/*
* Perform operations necessary to complete insertions made via
* tuple_insert and multi_insert with a BulkInsertState specified. This
* may for example be used to flush the relation, when the
* TABLE_INSERT_SKIP_WAL option was used.
*
* Typically callers of tuple_insert and multi_insert will just pass all
* the flags that apply to them, and each AM has to decide which of them
* make sense for it, and then only take actions in finish_bulk_insert for
* those flags, and ignore others.
*
* Optional callback.
*/
void (*finish_bulk_insert) (Relation rel, int options);
/* ------------------------------------------------------------------------
* DDL related functionality.
* ------------------------------------------------------------------------
*/
/*
* This callback needs to create a new relation filenode for `rel`, with
* appropriate durability behaviour for `persistence`.
*
* Note that only the subset of the relcache filled by
* RelationBuildLocalRelation() can be relied upon and that the relation's
* catalog entries either will either not yet exist (new relation), or
* will still reference the old relfilenode.
*
* As output *freezeXid, *minmulti must be set to the values appropriate
* for pg_class.{relfrozenxid, relminmxid}. For AMs that don't need those
* fields to be filled they can be set to InvalidTransactionId and
* InvalidMultiXactId, respectively.
*
* See also table_relation_set_new_filenode().
*/
void (*relation_set_new_filenode) (Relation rel,
const RelFileNode *newrnode,
char persistence,
TransactionId *freezeXid,
MultiXactId *minmulti);
/*
* This callback needs to remove all contents from `rel`'s current
* relfilenode. No provisions for transactional behaviour need to be made.
* Often this can be implemented by truncating the underlying storage to
* its minimal size.
*
* See also table_relation_nontransactional_truncate().
*/
void (*relation_nontransactional_truncate) (Relation rel);
/*
* See table_relation_copy_data().
*
* This can typically be implemented by directly copying the underlying
* storage, unless it contains references to the tablespace internally.
*/
void (*relation_copy_data) (Relation rel,
const RelFileNode *newrnode);
/* See table_relation_copy_for_cluster() */
void (*relation_copy_for_cluster) (Relation NewHeap,
Relation OldHeap,
Relation OldIndex,
bool use_sort,
TransactionId OldestXmin,
TransactionId *xid_cutoff,
MultiXactId *multi_cutoff,
double *num_tuples,
double *tups_vacuumed,
double *tups_recently_dead);
/*
* React to VACUUM command on the relation. The VACUUM might be user
* triggered or by autovacuum. The specific actions performed by the AM
* will depend heavily on the individual AM.
*
* On entry a transaction is already established, and the relation is
* locked with a ShareUpdateExclusive lock.
*
* Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through
* this routine, even if (for ANALYZE) it is part of the same VACUUM
* command.
*
* There probably, in the future, needs to be a separate callback to
* integrate with autovacuum's scheduling.
*/
void (*relation_vacuum) (Relation onerel,
struct VacuumParams *params,
BufferAccessStrategy bstrategy);
/*
* Prepare to analyze block `blockno` of `scan`. The scan has been started
* with table_beginscan_analyze(). See also
* table_scan_analyze_next_block().
*
* The callback may acquire resources like locks that are held until
* table_scan_analyze_next_tuple() returns false. It e.g. can make sense
* to hold a lock until all tuples on a block have been analyzed by
* scan_analyze_next_tuple.
*
* The callback can return false if the block is not suitable for
* sampling, e.g. because it's a metapage that could never contain tuples.
*
* XXX: This obviously is primarily suited for block-based AMs. It's not
* clear what a good interface for non block based AMs would be, so there
* isn't one yet.
*/
bool (*scan_analyze_next_block) (TableScanDesc scan,
BlockNumber blockno,
BufferAccessStrategy bstrategy);
/*
* See table_scan_analyze_next_tuple().
*
* Not every AM might have a meaningful concept of dead rows, in which
* case it's OK to not increment *deadrows - but note that that may
* influence autovacuum scheduling (see comment for relation_vacuum
* callback).
*/
bool (*scan_analyze_next_tuple) (TableScanDesc scan,
TransactionId OldestXmin,
double *liverows,
double *deadrows,
TupleTableSlot *slot);
/* see table_index_build_range_scan for reference about parameters */
double (*index_build_range_scan) (Relation heap_rel,
Relation index_rel,
struct IndexInfo *index_nfo,
bool allow_sync,
bool anyvisible,
bool progress,
BlockNumber start_blockno,
BlockNumber end_blockno,
IndexBuildCallback callback,
void *callback_state,
TableScanDesc scan);
/* see table_index_validate_scan for reference about parameters */
void (*index_validate_scan) (Relation heap_rel,
Relation index_rel,
struct IndexInfo *index_info,
Snapshot snapshot,
struct ValidateIndexState *state);
/* ------------------------------------------------------------------------
* Miscellaneous functions.
* ------------------------------------------------------------------------
*/
/*
* See table_relation_size().
*
* Note that currently a few callers use the MAIN_FORKNUM size to figure
* out the range of potentially interesting blocks (brin, analyze). It's
* probable that we'll need to revise the interface for those at some
* point.
*/
uint64 (*relation_size) (Relation rel, ForkNumber forkNumber);
/*
* This callback should return true if the relation requires a TOAST table
* and false if it does not. It may wish to examine the relation's tuple
* descriptor before making a decision, but if it uses some other method
* of storing large values (or if it does not support them) it can simply
* return false.
*/
bool (*relation_needs_toast_table) (Relation rel);
/* ------------------------------------------------------------------------
* Planner related functions.
* ------------------------------------------------------------------------
*/
/*
* See table_relation_estimate_size().
*
* While block oriented, it shouldn't be too hard for an AM that doesn't
* doesn't internally use blocks to convert into a usable representation.
*
* This differs from the relation_size callback by returning size
* estimates (both relation size and tuple count) for planning purposes,
* rather than returning a currently correct estimate.
*/
void (*relation_estimate_size) (Relation rel, int32 *attr_widths,
BlockNumber *pages, double *tuples,
double *allvisfrac);
/* ------------------------------------------------------------------------
* Executor related functions.
* ------------------------------------------------------------------------
*/
/*
* Prepare to fetch / check / return tuples from `tbmres->blockno` as part
* of a bitmap table scan. `scan` was started via table_beginscan_bm().
* Return false if there are no tuples to be found on the page, true
* otherwise.
*
* This will typically read and pin the target block, and do the necessary
* work to allow scan_bitmap_next_tuple() to return tuples (e.g. it might
* make sense to perform tuple visibility checks at this time). For some
* AMs it will make more sense to do all the work referencing `tbmres`
* contents here, for others it might be better to defer more work to
* scan_bitmap_next_tuple.
*
* If `tbmres->blockno` is -1, this is a lossy scan and all visible tuples
* on the page have to be returned, otherwise the tuples at offsets in
* `tbmres->offsets` need to be returned.
*
* XXX: Currently this may only be implemented if the AM uses md.c as its
* storage manager, and uses ItemPointer->ip_blkid in a manner that maps
* blockids directly to the underlying storage. nodeBitmapHeapscan.c
* performs prefetching directly using that interface. This probably
* needs to be rectified at a later point.
*
* XXX: Currently this may only be implemented if the AM uses the
* visibilitymap, as nodeBitmapHeapscan.c unconditionally accesses it to
* perform prefetching. This probably needs to be rectified at a later
* point.
*
* Optional callback, but either both scan_bitmap_next_block and
* scan_bitmap_next_tuple need to exist, or neither.
*/
bool (*scan_bitmap_next_block) (TableScanDesc scan,
struct TBMIterateResult *tbmres);
/*
* Fetch the next tuple of a bitmap table scan into `slot` and return true
* if a visible tuple was found, false otherwise.
*
* For some AMs it will make more sense to do all the work referencing
* `tbmres` contents in scan_bitmap_next_block, for others it might be
* better to defer more work to this callback.
*
* Optional callback, but either both scan_bitmap_next_block and
* scan_bitmap_next_tuple need to exist, or neither.
*/
bool (*scan_bitmap_next_tuple) (TableScanDesc scan,
struct TBMIterateResult *tbmres,
TupleTableSlot *slot);
/*
* Prepare to fetch tuples from the next block in a sample scan. Return
* false if the sample scan is finished, true otherwise. `scan` was
* started via table_beginscan_sampling().
*
* Typically this will first determine the target block by call the
* TsmRoutine's NextSampleBlock() callback if not NULL, or alternatively
* perform a sequential scan over all blocks. The determined block is
* then typically read and pinned.
*
* As the TsmRoutine interface is block based, a block needs to be passed
* to NextSampleBlock(). If that's not appropriate for an AM, it
* internally needs to perform mapping between the internal and a block
* based representation.
*
* Note that it's not acceptable to hold deadlock prone resources such as
* lwlocks until scan_sample_next_tuple() has exhausted the tuples on the
* block - the tuple is likely to be returned to an upper query node, and
* the next call could be off a long while. Holding buffer pins and such
* is obviously OK.
*
* Currently it is required to implement this interface, as there's no
* alternative way (contrary e.g. to bitmap scans) to implement sample
* scans. If infeasible to implement the AM may raise an error.
*/
bool (*scan_sample_next_block) (TableScanDesc scan,
struct SampleScanState *scanstate);
/*
* This callback, only called after scan_sample_next_block has returned
* true, should determine the next tuple to be returned from the selected
* block using the TsmRoutine's NextSampleTuple() callback.
*
* The callback needs to perform visibility checks, and only return
* visible tuples. That obviously can mean calling NextSampletuple()
* multiple times.
*
* The TsmRoutine interface assumes that there's a maximum offset on a
* given page, so if that doesn't apply to an AM, it needs to emulate that
* assumption somehow.
*/
bool (*scan_sample_next_tuple) (TableScanDesc scan,
struct SampleScanState *scanstate,
TupleTableSlot *slot);
} TableAmRoutine;
/* ----------------------------------------------------------------------------
* Slot functions.
* ----------------------------------------------------------------------------
*/
/*
* Returns slot callbacks suitable for holding tuples of the appropriate type
* for the relation. Works for tables, views, foreign tables and partitioned
* tables.
*/
extern const TupleTableSlotOps *table_slot_callbacks(Relation rel);
/*
* Returns slot using the callbacks returned by table_slot_callbacks(), and
* registers it on *reglist.
*/
extern TupleTableSlot *table_slot_create(Relation rel, List **reglist);
/* ----------------------------------------------------------------------------
* Table scan functions.
* ----------------------------------------------------------------------------
*/
/*
* Start a scan of `rel`. Returned tuples pass a visibility test of
* `snapshot`, and if nkeys != 0, the results are filtered by those scan keys.
*/
static inline TableScanDesc
table_beginscan(Relation rel, Snapshot snapshot,
int nkeys, struct ScanKeyData *key)
{
uint32 flags = SO_TYPE_SEQSCAN |
SO_ALLOW_STRAT | SO_ALLOW_SYNC | SO_ALLOW_PAGEMODE;
return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
}
/*
* Like table_beginscan(), but for scanning catalog. It'll automatically use a
* snapshot appropriate for scanning catalog relations.
*/
extern TableScanDesc table_beginscan_catalog(Relation rel, int nkeys,
struct ScanKeyData *key);
/*
* Like table_beginscan(), but table_beginscan_strat() offers an extended API
* that lets the caller control whether a nondefault buffer access strategy
* can be used, and whether syncscan can be chosen (possibly resulting in the
* scan not starting from block zero). Both of these default to true with
* plain table_beginscan.
*/
static inline TableScanDesc
table_beginscan_strat(Relation rel, Snapshot snapshot,
int nkeys, struct ScanKeyData *key,
bool allow_strat, bool allow_sync)
{
uint32 flags = SO_TYPE_SEQSCAN | SO_ALLOW_PAGEMODE;
if (allow_strat)
flags |= SO_ALLOW_STRAT;
if (allow_sync)
flags |= SO_ALLOW_SYNC;
return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
}
/*
* table_beginscan_bm is an alternative entry point for setting up a
* TableScanDesc for a bitmap heap scan. Although that scan technology is
* really quite unlike a standard seqscan, there is just enough commonality to
* make it worth using the same data structure.
*/
static inline TableScanDesc
table_beginscan_bm(Relation rel, Snapshot snapshot,
int nkeys, struct ScanKeyData *key)
{
uint32 flags = SO_TYPE_BITMAPSCAN | SO_ALLOW_PAGEMODE;
return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
}
/*
* table_beginscan_sampling is an alternative entry point for setting up a
* TableScanDesc for a TABLESAMPLE scan. As with bitmap scans, it's worth
* using the same data structure although the behavior is rather different.
* In addition to the options offered by table_beginscan_strat, this call
* also allows control of whether page-mode visibility checking is used.
*/
static inline TableScanDesc
table_beginscan_sampling(Relation rel, Snapshot snapshot,
int nkeys, struct ScanKeyData *key,
bool allow_strat, bool allow_sync,
bool allow_pagemode)
{
uint32 flags = SO_TYPE_SAMPLESCAN;
if (allow_strat)
flags |= SO_ALLOW_STRAT;
if (allow_sync)
flags |= SO_ALLOW_SYNC;
if (allow_pagemode)
flags |= SO_ALLOW_PAGEMODE;
return rel->rd_tableam->scan_begin(rel, snapshot, nkeys, key, NULL, flags);
}
/*
* table_beginscan_analyze is an alternative entry point for setting up a
* TableScanDesc for an ANALYZE scan. As with bitmap scans, it's worth using
* the same data structure although the behavior is rather different.
*/
static inline TableScanDesc
table_beginscan_analyze(Relation rel)
{
uint32 flags = SO_TYPE_ANALYZE;
return rel->rd_tableam->scan_begin(rel, NULL, 0, NULL, NULL, flags);
}
/*
* End relation scan.
*/
static inline void
table_endscan(TableScanDesc scan)
{
scan->rs_rd->rd_tableam->scan_end(scan);
}
/*
* Restart a relation scan.
*/
static inline void
table_rescan(TableScanDesc scan,
struct ScanKeyData *key)
{
scan->rs_rd->rd_tableam->scan_rescan(scan, key, false, false, false, false);
}
/*
* Restart a relation scan after changing params.
*
* This call allows changing the buffer strategy, syncscan, and pagemode
* options before starting a fresh scan. Note that although the actual use of
* syncscan might change (effectively, enabling or disabling reporting), the
* previously selected startblock will be kept.
*/
static inline void
table_rescan_set_params(TableScanDesc scan, struct ScanKeyData *key,
bool allow_strat, bool allow_sync, bool allow_pagemode)
{
scan->rs_rd->rd_tableam->scan_rescan(scan, key, true,
allow_strat, allow_sync,
allow_pagemode);
}
/*
* Update snapshot used by the scan.
*/
extern void table_scan_update_snapshot(TableScanDesc scan, Snapshot snapshot);
/*
* Return next tuple from `scan`, store in slot.
*/
static inline bool
table_scan_getnextslot(TableScanDesc sscan, ScanDirection direction, TupleTableSlot *slot)
{
slot->tts_tableOid = RelationGetRelid(sscan->rs_rd);
return sscan->rs_rd->rd_tableam->scan_getnextslot(sscan, direction, slot);
}
/* ----------------------------------------------------------------------------
* Parallel table scan related functions.
* ----------------------------------------------------------------------------
*/
/*
* Estimate the size of shared memory needed for a parallel scan of this
* relation.
*/
extern Size table_parallelscan_estimate(Relation rel, Snapshot snapshot);
/*
* Initialize ParallelTableScanDesc for a parallel scan of this
* relation. `pscan` needs to be sized according to parallelscan_estimate()
* for the same relation. Call this just once in the leader process; then,
* individual workers attach via table_beginscan_parallel.
*/
extern void table_parallelscan_initialize(Relation rel,
ParallelTableScanDesc pscan,
Snapshot snapshot);
/*
* Begin a parallel scan. `pscan` needs to have been initialized with
* table_parallelscan_initialize(), for the same relation. The initialization
* does not need to have happened in this backend.
*
* Caller must hold a suitable lock on the relation.
*/
extern TableScanDesc table_beginscan_parallel(Relation rel,
ParallelTableScanDesc pscan);
/*
* Restart a parallel scan. Call this in the leader process. Caller is
* responsible for making sure that all workers have finished the scan
* beforehand.
*/
static inline void
table_parallelscan_reinitialize(Relation rel, ParallelTableScanDesc pscan)
{
rel->rd_tableam->parallelscan_reinitialize(rel, pscan);
}
/* ----------------------------------------------------------------------------
* Index scan related functions.
* ----------------------------------------------------------------------------
*/
/*
* Prepare to fetch tuples from the relation, as needed when fetching tuples
* for an index scan.
*
* Tuples for an index scan can then be fetched via table_index_fetch_tuple().
*/
static inline IndexFetchTableData *
table_index_fetch_begin(Relation rel)
{
return rel->rd_tableam->index_fetch_begin(rel);
}
/*
* Reset index fetch. Typically this will release cross index fetch resources
* held in IndexFetchTableData.
*/
static inline void
table_index_fetch_reset(struct IndexFetchTableData *scan)
{
scan->rel->rd_tableam->index_fetch_reset(scan);
}
/*
* Release resources and deallocate index fetch.
*/
static inline void
table_index_fetch_end(struct IndexFetchTableData *scan)
{
scan->rel->rd_tableam->index_fetch_end(scan);
}
/*
* Fetches, as part of an index scan, tuple at `tid` into `slot`, after doing
* a visibility test according to `snapshot`. If a tuple was found and passed
* the visibility test, returns true, false otherwise.
*
* *call_again needs to be false on the first call to table_index_fetch_tuple() for
* a tid. If there potentially is another tuple matching the tid, *call_again
* will be set to true, signalling that table_index_fetch_tuple() should be called
* again for the same tid.
*
* *all_dead, if all_dead is not NULL, will be set to true by
* table_index_fetch_tuple() iff it is guaranteed that no backend needs to see
* that tuple. Index AMs can use that do avoid returning that tid in future
* searches.
*
* The difference between this function and table_fetch_row_version is that
* this function returns the currently visible version of a row if the AM
* supports storing multiple row versions reachable via a single index entry
* (like heap's HOT). Whereas table_fetch_row_version only evaluates the
* tuple exactly at `tid`. Outside of index entry ->table tuple lookups,
* table_tuple_fetch_row_version is what's usually needed.
*/
static inline bool
table_index_fetch_tuple(struct IndexFetchTableData *scan,
ItemPointer tid,
Snapshot snapshot,
TupleTableSlot *slot,
bool *call_again, bool *all_dead)
{
return scan->rel->rd_tableam->index_fetch_tuple(scan, tid, snapshot,
slot, call_again,
all_dead);
}
/*
* This is a convenience wrapper around table_index_fetch_tuple() which
* returns whether there are table tuple items corresponding to an index
* entry. This likely is only useful to verify if there's a conflict in a
* unique index.
*/
extern bool table_index_fetch_tuple_check(Relation rel,
ItemPointer tid,
Snapshot snapshot,
bool *all_dead);
/* ------------------------------------------------------------------------
* Functions for non-modifying operations on individual tuples
* ------------------------------------------------------------------------
*/
/*
* Fetch tuple at `tid` into `slot`, after doing a visibility test according to
* `snapshot`. If a tuple was found and passed the visibility test, returns
* true, false otherwise.
*
* See table_index_fetch_tuple's comment about what the difference between
* these functions is. This function is the correct to use outside of
* index entry->table tuple lookups.
*/
static inline bool
table_tuple_fetch_row_version(Relation rel,
ItemPointer tid,
Snapshot snapshot,
TupleTableSlot *slot)
{
return rel->rd_tableam->tuple_fetch_row_version(rel, tid, snapshot, slot);
}
/*
* Verify that `tid` is a potentially valid tuple identifier. That doesn't
* mean that the pointed to row needs to exist or be visible, but that
* attempting to fetch the row (e.g. with table_get_latest_tid() or
* table_fetch_row_version()) should not error out if called with that tid.
*
* `scan` needs to have been started via table_beginscan().
*/
static inline bool
table_tuple_tid_valid(TableScanDesc scan, ItemPointer tid)
{
return scan->rs_rd->rd_tableam->tuple_tid_valid(scan, tid);
}
/*
* Return the latest version of the tuple at `tid`, by updating `tid` to
* point at the newest version.
*/
extern void table_tuple_get_latest_tid(TableScanDesc scan, ItemPointer tid);
/*
* Return true iff tuple in slot satisfies the snapshot.
*
* This assumes the slot's tuple is valid, and of the appropriate type for the
* AM.
*
* Some AMs might modify the data underlying the tuple as a side-effect. If so
* they ought to mark the relevant buffer dirty.
*/
static inline bool
table_tuple_satisfies_snapshot(Relation rel, TupleTableSlot *slot,
Snapshot snapshot)
{
return rel->rd_tableam->tuple_satisfies_snapshot(rel, slot, snapshot);
}
/*
* Compute the newest xid among the tuples pointed to by items. This is used
* to compute what snapshots to conflict with when replaying WAL records for
* page-level index vacuums.
*/
static inline TransactionId
table_compute_xid_horizon_for_tuples(Relation rel,
ItemPointerData *items,
int nitems)
{
return rel->rd_tableam->compute_xid_horizon_for_tuples(rel, items, nitems);
}
/* ----------------------------------------------------------------------------
* Functions for manipulations of physical tuples.
* ----------------------------------------------------------------------------
*/
/*
* Insert a tuple from a slot into table AM routine.
*
* The options bitmask allows to specify options that allow to change the
* behaviour of the AM. Several options might be ignored by AMs not supporting
* them.
*
* If the TABLE_INSERT_SKIP_WAL option is specified, the new tuple doesn't
* need to be logged to WAL, even for a non-temp relation. It is the AMs
* choice whether this optimization is supported.
*
* If the TABLE_INSERT_SKIP_FSM option is specified, AMs are free to not reuse
* free space in the relation. This can save some cycles when we know the
* relation is new and doesn't contain useful amounts of free space. It's
* commonly passed directly to RelationGetBufferForTuple, see for more info.
*
* TABLE_INSERT_FROZEN should only be specified for inserts into
* relfilenodes created during the current subtransaction and when
* there are no prior snapshots or pre-existing portals open.
* This causes rows to be frozen, which is an MVCC violation and
* requires explicit options chosen by user.
*
* TABLE_INSERT_NO_LOGICAL force-disables the emitting of logical decoding
* information for the tuple. This should solely be used during table rewrites
* where RelationIsLogicallyLogged(relation) is not yet accurate for the new
* relation.
*
* Note that most of these options will be applied when inserting into the
* heap's TOAST table, too, if the tuple requires any out-of-line data.
*
*
* The BulkInsertState object (if any; bistate can be NULL for default
* behavior) is also just passed through to RelationGetBufferForTuple. If
* `bistate` is provided, table_finish_bulk_insert() needs to be called.
*
* On return the slot's tts_tid and tts_tableOid are updated to reflect the
* insertion. But note that any toasting of fields within the slot is NOT
* reflected in the slots contents.
*/
static inline void
table_tuple_insert(Relation rel, TupleTableSlot *slot, CommandId cid,
int options, struct BulkInsertStateData *bistate)
{
rel->rd_tableam->tuple_insert(rel, slot, cid, options,
bistate);
}
/*
* Perform a "speculative insertion". These can be backed out afterwards
* without aborting the whole transaction. Other sessions can wait for the
* speculative insertion to be confirmed, turning it into a regular tuple, or
* aborted, as if it never existed. Speculatively inserted tuples behave as
* "value locks" of short duration, used to implement INSERT .. ON CONFLICT.
*
* A transaction having performed a speculative insertion has to either abort,
* or finish the speculative insertion with
* table_tuple_complete_speculative(succeeded = ...).
*/
static inline void
table_tuple_insert_speculative(Relation rel, TupleTableSlot *slot,
CommandId cid, int options,
struct BulkInsertStateData *bistate,
uint32 specToken)
{
rel->rd_tableam->tuple_insert_speculative(rel, slot, cid, options,
bistate, specToken);
}
/*
* Complete "speculative insertion" started in the same transaction. If
* succeeded is true, the tuple is fully inserted, if false, it's removed.
*/
static inline void
table_tuple_complete_speculative(Relation rel, TupleTableSlot *slot,
uint32 specToken, bool succeeded)
{
rel->rd_tableam->tuple_complete_speculative(rel, slot, specToken,
succeeded);
}
/*
* Insert multiple tuples into a table.
*
* This is like table_insert(), but inserts multiple tuples in one
* operation. That's often faster than calling table_insert() in a loop,
* because e.g. the AM can reduce WAL logging and page locking overhead.
*
* Except for taking `nslots` tuples as input, as an array of TupleTableSlots
* in `slots`, the parameters for table_multi_insert() are the same as for
* table_tuple_insert().
*
* Note: this leaks memory into the current memory context. You can create a
* temporary context before calling this, if that's a problem.
*/
static inline void
table_multi_insert(Relation rel, TupleTableSlot **slots, int nslots,
CommandId cid, int options, struct BulkInsertStateData *bistate)
{
rel->rd_tableam->multi_insert(rel, slots, nslots,
cid, options, bistate);
}
/*
* Delete a tuple.
*
* NB: do not call this directly unless prepared to deal with
* concurrent-update conditions. Use simple_table_tuple_delete instead.
*
* Input parameters:
* relation - table to be modified (caller must hold suitable lock)
* tid - TID of tuple to be deleted
* cid - delete command ID (used for visibility test, and stored into
* cmax if successful)
* crosscheck - if not InvalidSnapshot, also check tuple against this
* wait - true if should wait for any conflicting update to commit/abort
* Output parameters:
* tmfd - filled in failure cases (see below)
* changingPart - true iff the tuple is being moved to another partition
* table due to an update of the partition key. Otherwise, false.
*
* Normal, successful return value is TM_Ok, which means we did actually
* delete it. Failure return codes are TM_SelfModified, TM_Updated, and
* TM_BeingModified (the last only possible if wait == false).
*
* In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
* t_xmax, and, if possible, and, if possible, t_cmax. See comments for
* struct TM_FailureData for additional info.
*/
static inline TM_Result
table_tuple_delete(Relation rel, ItemPointer tid, CommandId cid,
Snapshot snapshot, Snapshot crosscheck, bool wait,
TM_FailureData *tmfd, bool changingPart)
{
return rel->rd_tableam->tuple_delete(rel, tid, cid,
snapshot, crosscheck,
wait, tmfd, changingPart);
}
/*
* Update a tuple.
*
* NB: do not call this directly unless you are prepared to deal with
* concurrent-update conditions. Use simple_table_tuple_update instead.
*
* Input parameters:
* relation - table to be modified (caller must hold suitable lock)
* otid - TID of old tuple to be replaced
* slot - newly constructed tuple data to store
* cid - update command ID (used for visibility test, and stored into
* cmax/cmin if successful)
* crosscheck - if not InvalidSnapshot, also check old tuple against this
* wait - true if should wait for any conflicting update to commit/abort
* Output parameters:
* tmfd - filled in failure cases (see below)
* lockmode - filled with lock mode acquired on tuple
* update_indexes - in success cases this is set to true if new index entries
* are required for this tuple
*
* Normal, successful return value is TM_Ok, which means we did actually
* update it. Failure return codes are TM_SelfModified, TM_Updated, and
* TM_BeingModified (the last only possible if wait == false).
*
* On success, the slot's tts_tid and tts_tableOid are updated to match the new
* stored tuple; in particular, slot->tts_tid is set to the TID where the
* new tuple was inserted, and its HEAP_ONLY_TUPLE flag is set iff a HOT
* update was done. However, any TOAST changes in the new tuple's
* data are not reflected into *newtup.
*
* In the failure cases, the routine fills *tmfd with the tuple's t_ctid,
* t_xmax, and, if possible, t_cmax. See comments for struct TM_FailureData
* for additional info.
*/
static inline TM_Result
table_tuple_update(Relation rel, ItemPointer otid, TupleTableSlot *slot,
CommandId cid, Snapshot snapshot, Snapshot crosscheck,
bool wait, TM_FailureData *tmfd, LockTupleMode *lockmode,
bool *update_indexes)
{
return rel->rd_tableam->tuple_update(rel, otid, slot,
cid, snapshot, crosscheck,
wait, tmfd,
lockmode, update_indexes);
}
/*
* Lock a tuple in the specified mode.
*
* Input parameters:
* relation: relation containing tuple (caller must hold suitable lock)
* tid: TID of tuple to lock
* snapshot: snapshot to use for visibility determinations
* cid: current command ID (used for visibility test, and stored into
* tuple's cmax if lock is successful)
* mode: lock mode desired
* wait_policy: what to do if tuple lock is not available
* flags:
* If TUPLE_LOCK_FLAG_LOCK_UPDATE_IN_PROGRESS, follow the update chain to
* also lock descendant tuples if lock modes don't conflict.
* If TUPLE_LOCK_FLAG_FIND_LAST_VERSION, follow the update chain and lock
* latest version.
*
* Output parameters:
* *slot: contains the target tuple
* *tmfd: filled in failure cases (see below)
*
* Function result may be:
* TM_Ok: lock was successfully acquired
* TM_Invisible: lock failed because tuple was never visible to us
* TM_SelfModified: lock failed because tuple updated by self
* TM_Updated: lock failed because tuple updated by other xact
* TM_Deleted: lock failed because tuple deleted by other xact
* TM_WouldBlock: lock couldn't be acquired and wait_policy is skip
*
* In the failure cases other than TM_Invisible and TM_Deleted, the routine
* fills *tmfd with the tuple's t_ctid, t_xmax, and, if possible, t_cmax. See
* comments for struct TM_FailureData for additional info.
*/
static inline TM_Result
table_tuple_lock(Relation rel, ItemPointer tid, Snapshot snapshot,
TupleTableSlot *slot, CommandId cid, LockTupleMode mode,
LockWaitPolicy wait_policy, uint8 flags,
TM_FailureData *tmfd)
{
return rel->rd_tableam->tuple_lock(rel, tid, snapshot, slot,
cid, mode, wait_policy,
flags, tmfd);
}
/*
* Perform operations necessary to complete insertions made via
* tuple_insert and multi_insert with a BulkInsertState specified. This
* e.g. may e.g. used to flush the relation when inserting with
* TABLE_INSERT_SKIP_WAL specified.
*/
static inline void
table_finish_bulk_insert(Relation rel, int options)
{
/* optional callback */
if (rel->rd_tableam && rel->rd_tableam->finish_bulk_insert)
rel->rd_tableam->finish_bulk_insert(rel, options);
}
/* ------------------------------------------------------------------------
* DDL related functionality.
* ------------------------------------------------------------------------
*/
/*
* Create storage for `rel` in `newrnode`, with persistence set to
* `persistence`.
*
* This is used both during relation creation and various DDL operations to
* create a new relfilenode that can be filled from scratch. When creating
* new storage for an existing relfilenode, this should be called before the
* relcache entry has been updated.
*
* *freezeXid, *minmulti are set to the xid / multixact horizon for the table
* that pg_class.{relfrozenxid, relminmxid} have to be set to.
*/
static inline void
table_relation_set_new_filenode(Relation rel,
const RelFileNode *newrnode,
char persistence,
TransactionId *freezeXid,
MultiXactId *minmulti)
{
rel->rd_tableam->relation_set_new_filenode(rel, newrnode, persistence,
freezeXid, minmulti);
}
/*
* Remove all table contents from `rel`, in a non-transactional manner.
* Non-transactional meaning that there's no need to support rollbacks. This
* commonly only is used to perform truncations for relfilenodes created in the
* current transaction.
*/
static inline void
table_relation_nontransactional_truncate(Relation rel)
{
rel->rd_tableam->relation_nontransactional_truncate(rel);
}
/*
* Copy data from `rel` into the new relfilenode `newrnode`. The new
* relfilenode may not have storage associated before this function is
* called. This is only supposed to be used for low level operations like
* changing a relation's tablespace.
*/
static inline void
table_relation_copy_data(Relation rel, const RelFileNode *newrnode)
{
rel->rd_tableam->relation_copy_data(rel, newrnode);
}
/*
* Copy data from `OldHeap` into `NewHeap`, as part of a CLUSTER or VACUUM
* FULL.
*
* Additional Input parameters:
* - use_sort - if true, the table contents are sorted appropriate for
* `OldIndex`; if false and OldIndex is not InvalidOid, the data is copied
* in that index's order; if false and OidIndex is InvalidOid, no sorting is
* performed
* - OidIndex - see use_sort
* - OldestXmin - computed by vacuum_set_xid_limits(), even when
* not needed for the relation's AM
* - *xid_cutoff - dito
* - *multi_cutoff - dito
*
* Output parameters:
* - *xid_cutoff - rel's new relfrozenxid value, may be invalid
* - *multi_cutoff - rel's new relminmxid value, may be invalid
* - *tups_vacuumed - stats, for logging, if appropriate for AM
* - *tups_recently_dead - stats, for logging, if appropriate for AM
*/
static inline void
table_relation_copy_for_cluster(Relation OldHeap, Relation NewHeap,
Relation OldIndex,
bool use_sort,
TransactionId OldestXmin,
TransactionId *xid_cutoff,
MultiXactId *multi_cutoff,
double *num_tuples,
double *tups_vacuumed,
double *tups_recently_dead)
{
OldHeap->rd_tableam->relation_copy_for_cluster(OldHeap, NewHeap, OldIndex,
use_sort, OldestXmin,
xid_cutoff, multi_cutoff,
num_tuples, tups_vacuumed,
tups_recently_dead);
}
/*
* Perform VACUUM on the relation. The VACUUM can be user-triggered or by
* autovacuum. The specific actions performed by the AM will depend heavily on
* the individual AM.
* On entry a transaction needs to already been established, and the
* table is locked with a ShareUpdateExclusive lock.
*
* Note that neither VACUUM FULL (and CLUSTER), nor ANALYZE go through this
* routine, even if (for ANALYZE) it is part of the same VACUUM command.
*/
static inline void
table_relation_vacuum(Relation rel, struct VacuumParams *params,
BufferAccessStrategy bstrategy)
{
rel->rd_tableam->relation_vacuum(rel, params, bstrategy);
}
/*
* Prepare to analyze block `blockno` of `scan`. The scan needs to have been
* started with table_beginscan_analyze(). Note that this routine might
* acquire resources like locks that are held until
* table_scan_analyze_next_tuple() returns false.
*
* Returns false if block is unsuitable for sampling, true otherwise.
*/
static inline bool
table_scan_analyze_next_block(TableScanDesc scan, BlockNumber blockno,
BufferAccessStrategy bstrategy)
{
return scan->rs_rd->rd_tableam->scan_analyze_next_block(scan, blockno,
bstrategy);
}
/*
* Iterate over tuples in the block selected with
* table_scan_analyze_next_block() (which needs to have returned true, and
* this routine may not have returned false for the same block before). If a
* tuple that's suitable for sampling is found, true is returned and a tuple
* is stored in `slot`.
*
* *liverows and *deadrows are incremented according to the encountered
* tuples.
*/
static inline bool
table_scan_analyze_next_tuple(TableScanDesc scan, TransactionId OldestXmin,
double *liverows, double *deadrows,
TupleTableSlot *slot)
{
return scan->rs_rd->rd_tableam->scan_analyze_next_tuple(scan, OldestXmin,
liverows, deadrows,
slot);
}
/*
* table_index_build_scan - scan the table to find tuples to be indexed
*
* This is called back from an access-method-specific index build procedure
* after the AM has done whatever setup it needs. The parent heap relation
* is scanned to find tuples that should be entered into the index. Each
* such tuple is passed to the AM's callback routine, which does the right
* things to add it to the new index. After we return, the AM's index
* build procedure does whatever cleanup it needs.
*
* The total count of live tuples is returned. This is for updating pg_class
* statistics. (It's annoying not to be able to do that here, but we want to
* merge that update with others; see index_update_stats.) Note that the
* index AM itself must keep track of the number of index tuples; we don't do
* so here because the AM might reject some of the tuples for its own reasons,
* such as being unable to store NULLs.
*
* If 'progress', the PROGRESS_SCAN_BLOCKS_TOTAL counter is updated when
* starting the scan, and PROGRESS_SCAN_BLOCKS_DONE is updated as we go along.
*
* A side effect is to set indexInfo->ii_BrokenHotChain to true if we detect
* any potentially broken HOT chains. Currently, we set this if there are any
* RECENTLY_DEAD or DELETE_IN_PROGRESS entries in a HOT chain, without trying
* very hard to detect whether they're really incompatible with the chain tip.
* This only really makes sense for heap AM, it might need to be generalized
* for other AMs later.
*/
static inline double
table_index_build_scan(Relation heap_rel,
Relation index_rel,
struct IndexInfo *index_nfo,
bool allow_sync,
bool progress,
IndexBuildCallback callback,
void *callback_state,
TableScanDesc scan)
{
return heap_rel->rd_tableam->index_build_range_scan(heap_rel,
index_rel,
index_nfo,
allow_sync,
false,
progress,
0,
InvalidBlockNumber,
callback,
callback_state,
scan);
}
/*
* As table_index_build_scan(), except that instead of scanning the complete
* table, only the given number of blocks are scanned. Scan to end-of-rel can
* be signalled by passing InvalidBlockNumber as numblocks. Note that
* restricting the range to scan cannot be done when requesting syncscan.
*
* When "anyvisible" mode is requested, all tuples visible to any transaction
* are indexed and counted as live, including those inserted or deleted by
* transactions that are still in progress.
*/
static inline double
table_index_build_range_scan(Relation heap_rel,
Relation index_rel,
struct IndexInfo *index_nfo,
bool allow_sync,
bool anyvisible,
bool progress,
BlockNumber start_blockno,
BlockNumber numblocks,
IndexBuildCallback callback,
void *callback_state,
TableScanDesc scan)
{
return heap_rel->rd_tableam->index_build_range_scan(heap_rel,
index_rel,
index_nfo,
allow_sync,
anyvisible,
progress,
start_blockno,
numblocks,
callback,
callback_state,
scan);
}
/*
* table_index_validate_scan - second table scan for concurrent index build
*
* See validate_index() for an explanation.
*/
static inline void
table_index_validate_scan(Relation heap_rel,
Relation index_rel,
struct IndexInfo *index_info,
Snapshot snapshot,
struct ValidateIndexState *state)
{
heap_rel->rd_tableam->index_validate_scan(heap_rel,
index_rel,
index_info,
snapshot,
state);
}
/* ----------------------------------------------------------------------------
* Miscellaneous functionality
* ----------------------------------------------------------------------------
*/
/*
* Return the current size of `rel` in bytes. If `forkNumber` is
* InvalidForkNumber, return the relation's overall size, otherwise the size
* for the indicated fork.
*
* Note that the overall size might not be the equivalent of the sum of sizes
* for the individual forks for some AMs, e.g. because the AMs storage does
* not neatly map onto the builtin types of forks.
*/
static inline uint64
table_relation_size(Relation rel, ForkNumber forkNumber)
{
return rel->rd_tableam->relation_size(rel, forkNumber);
}
/*
* table_needs_toast_table - does this relation need a toast table?
*/
static inline bool
table_relation_needs_toast_table(Relation rel)
{
return rel->rd_tableam->relation_needs_toast_table(rel);
}
/* ----------------------------------------------------------------------------
* Planner related functionality
* ----------------------------------------------------------------------------
*/
/*
* Estimate the current size of the relation, as an AM specific workhorse for
* estimate_rel_size(). Look there for an explanation of the parameters.
*/
static inline void
table_relation_estimate_size(Relation rel, int32 *attr_widths,
BlockNumber *pages, double *tuples,
double *allvisfrac)
{
rel->rd_tableam->relation_estimate_size(rel, attr_widths, pages, tuples,
allvisfrac);
}
/* ----------------------------------------------------------------------------
* Executor related functionality
* ----------------------------------------------------------------------------
*/
/*
* Prepare to fetch / check / return tuples from `tbmres->blockno` as part of
* a bitmap table scan. `scan` needs to have been started via
* table_beginscan_bm(). Returns false if there are no tuples to be found on
* the page, true otherwise.
*
* Note, this is an optionally implemented function, therefore should only be
* used after verifying the presence (at plan time or such).
*/
static inline bool
table_scan_bitmap_next_block(TableScanDesc scan,
struct TBMIterateResult *tbmres)
{
return scan->rs_rd->rd_tableam->scan_bitmap_next_block(scan,
tbmres);
}
/*
* Fetch the next tuple of a bitmap table scan into `slot` and return true if
* a visible tuple was found, false otherwise.
* table_scan_bitmap_next_block() needs to previously have selected a
* block (i.e. returned true), and no previous
* table_scan_bitmap_next_tuple() for the same block may have
* returned false.
*/
static inline bool
table_scan_bitmap_next_tuple(TableScanDesc scan,
struct TBMIterateResult *tbmres,
TupleTableSlot *slot)
{
return scan->rs_rd->rd_tableam->scan_bitmap_next_tuple(scan,
tbmres,
slot);
}
/*
* Prepare to fetch tuples from the next block in a sample scan. Returns false
* if the sample scan is finished, true otherwise. `scan` needs to have been
* started via table_beginscan_sampling().
*
* This will call the TsmRoutine's NextSampleBlock() callback if necessary
* (i.e. NextSampleBlock is not NULL), or perform a sequential scan over the
* underlying relation.
*/
static inline bool
table_scan_sample_next_block(TableScanDesc scan,
struct SampleScanState *scanstate)
{
return scan->rs_rd->rd_tableam->scan_sample_next_block(scan, scanstate);
}
/*
* Fetch the next sample tuple into `slot` and return true if a visible tuple
* was found, false otherwise. table_scan_sample_next_block() needs to
* previously have selected a block (i.e. returned true), and no previous
* table_scan_sample_next_tuple() for the same block may have returned false.
*
* This will call the TsmRoutine's NextSampleTuple() callback.
*/
static inline bool
table_scan_sample_next_tuple(TableScanDesc scan,
struct SampleScanState *scanstate,
TupleTableSlot *slot)
{
return scan->rs_rd->rd_tableam->scan_sample_next_tuple(scan, scanstate,
slot);
}
/* ----------------------------------------------------------------------------
* Functions to make modifications a bit simpler.
* ----------------------------------------------------------------------------
*/
extern void simple_table_tuple_insert(Relation rel, TupleTableSlot *slot);
extern void simple_table_tuple_delete(Relation rel, ItemPointer tid,
Snapshot snapshot);
extern void simple_table_tuple_update(Relation rel, ItemPointer otid,
TupleTableSlot *slot, Snapshot snapshot,
bool *update_indexes);
/* ----------------------------------------------------------------------------
* Helper functions to implement parallel scans for block oriented AMs.
* ----------------------------------------------------------------------------
*/
extern Size table_block_parallelscan_estimate(Relation rel);
extern Size table_block_parallelscan_initialize(Relation rel,
ParallelTableScanDesc pscan);
extern void table_block_parallelscan_reinitialize(Relation rel,
ParallelTableScanDesc pscan);
extern BlockNumber table_block_parallelscan_nextpage(Relation rel,
ParallelBlockTableScanDesc pbscan);
extern void table_block_parallelscan_startblock_init(Relation rel,
ParallelBlockTableScanDesc pbscan);
/* ----------------------------------------------------------------------------
* Functions in tableamapi.c
* ----------------------------------------------------------------------------
*/
extern const TableAmRoutine *GetTableAmRoutine(Oid amhandler);
extern const TableAmRoutine *GetHeapamTableAmRoutine(void);
extern bool check_default_table_access_method(char **newval, void **extra,
GucSource source);
#endif /* TABLEAM_H */