postgresql/src/backend/commands/indexcmds.c

1953 lines
60 KiB
C

/*-------------------------------------------------------------------------
*
* indexcmds.c
* POSTGRES define and remove index code.
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/commands/indexcmds.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/reloptions.h"
#include "access/xact.h"
#include "catalog/catalog.h"
#include "catalog/index.h"
#include "catalog/indexing.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_opfamily.h"
#include "catalog/pg_tablespace.h"
#include "catalog/pg_type.h"
#include "commands/comment.h"
#include "commands/dbcommands.h"
#include "commands/defrem.h"
#include "commands/tablecmds.h"
#include "commands/tablespace.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/planner.h"
#include "parser/parse_coerce.h"
#include "parser/parse_func.h"
#include "parser/parse_oper.h"
#include "storage/lmgr.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/snapmgr.h"
#include "utils/syscache.h"
#include "utils/tqual.h"
/* non-export function prototypes */
static void CheckPredicate(Expr *predicate);
static void ComputeIndexAttrs(IndexInfo *indexInfo,
Oid *typeOidP,
Oid *collationOidP,
Oid *classOidP,
int16 *colOptionP,
List *attList,
List *exclusionOpNames,
Oid relId,
char *accessMethodName, Oid accessMethodId,
bool amcanorder,
bool isconstraint);
static Oid GetIndexOpClass(List *opclass, Oid attrType,
char *accessMethodName, Oid accessMethodId);
static char *ChooseIndexName(const char *tabname, Oid namespaceId,
List *colnames, List *exclusionOpNames,
bool primary, bool isconstraint);
static char *ChooseIndexNameAddition(List *colnames);
static List *ChooseIndexColumnNames(List *indexElems);
static void RangeVarCallbackForReindexIndex(const RangeVar *relation,
Oid relId, Oid oldRelId, void *arg);
/*
* CheckIndexCompatible
* Determine whether an existing index definition is compatible with a
* prospective index definition, such that the existing index storage
* could become the storage of the new index, avoiding a rebuild.
*
* 'heapRelation': the relation the index would apply to.
* 'accessMethodName': name of the AM to use.
* 'attributeList': a list of IndexElem specifying columns and expressions
* to index on.
* 'exclusionOpNames': list of names of exclusion-constraint operators,
* or NIL if not an exclusion constraint.
*
* This is tailored to the needs of ALTER TABLE ALTER TYPE, which recreates
* any indexes that depended on a changing column from their pg_get_indexdef
* or pg_get_constraintdef definitions. We omit some of the sanity checks of
* DefineIndex. We assume that the old and new indexes have the same number
* of columns and that if one has an expression column or predicate, both do.
* Errors arising from the attribute list still apply.
*
* Most column type changes that can skip a table rewrite do not invalidate
* indexes. We ackowledge this when all operator classes, collations and
* exclusion operators match. Though we could further permit intra-opfamily
* changes for btree and hash indexes, that adds subtle complexity with no
* concrete benefit for core types.
* When a comparison or exclusion operator has a polymorphic input type, the
* actual input types must also match. This defends against the possibility
* that operators could vary behavior in response to get_fn_expr_argtype().
* At present, this hazard is theoretical: check_exclusion_constraint() and
* all core index access methods decline to set fn_expr for such calls.
*
* We do not yet implement a test to verify compatibility of expression
* columns or predicates, so assume any such index is incompatible.
*/
bool
CheckIndexCompatible(Oid oldId,
char *accessMethodName,
List *attributeList,
List *exclusionOpNames)
{
bool isconstraint;
Oid *typeObjectId;
Oid *collationObjectId;
Oid *classObjectId;
Oid accessMethodId;
Oid relationId;
HeapTuple tuple;
Form_pg_index indexForm;
Form_pg_am accessMethodForm;
bool amcanorder;
int16 *coloptions;
IndexInfo *indexInfo;
int numberOfAttributes;
int old_natts;
bool isnull;
bool ret = true;
oidvector *old_indclass;
oidvector *old_indcollation;
Relation irel;
int i;
Datum d;
/* Caller should already have the relation locked in some way. */
relationId = IndexGetRelation(oldId, false);
/*
* We can pretend isconstraint = false unconditionally. It only serves to
* decide the text of an error message that should never happen for us.
*/
isconstraint = false;
numberOfAttributes = list_length(attributeList);
Assert(numberOfAttributes > 0);
Assert(numberOfAttributes <= INDEX_MAX_KEYS);
/* look up the access method */
tuple = SearchSysCache1(AMNAME, PointerGetDatum(accessMethodName));
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("access method \"%s\" does not exist",
accessMethodName)));
accessMethodId = HeapTupleGetOid(tuple);
accessMethodForm = (Form_pg_am) GETSTRUCT(tuple);
amcanorder = accessMethodForm->amcanorder;
ReleaseSysCache(tuple);
/*
* Compute the operator classes, collations, and exclusion operators for
* the new index, so we can test whether it's compatible with the existing
* one. Note that ComputeIndexAttrs might fail here, but that's OK:
* DefineIndex would have called this function with the same arguments
* later on, and it would have failed then anyway.
*/
indexInfo = makeNode(IndexInfo);
indexInfo->ii_Expressions = NIL;
indexInfo->ii_ExpressionsState = NIL;
indexInfo->ii_PredicateState = NIL;
indexInfo->ii_ExclusionOps = NULL;
indexInfo->ii_ExclusionProcs = NULL;
indexInfo->ii_ExclusionStrats = NULL;
typeObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
collationObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
classObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
coloptions = (int16 *) palloc(numberOfAttributes * sizeof(int16));
ComputeIndexAttrs(indexInfo,
typeObjectId, collationObjectId, classObjectId,
coloptions, attributeList,
exclusionOpNames, relationId,
accessMethodName, accessMethodId,
amcanorder, isconstraint);
/* Get the soon-obsolete pg_index tuple. */
tuple = SearchSysCache1(INDEXRELID, ObjectIdGetDatum(oldId));
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for index %u", oldId);
indexForm = (Form_pg_index) GETSTRUCT(tuple);
/*
* We don't assess expressions or predicates; assume incompatibility.
* Also, if the index is invalid for any reason, treat it as incompatible.
*/
if (!(heap_attisnull(tuple, Anum_pg_index_indpred) &&
heap_attisnull(tuple, Anum_pg_index_indexprs) &&
IndexIsValid(indexForm)))
{
ReleaseSysCache(tuple);
return false;
}
/* Any change in operator class or collation breaks compatibility. */
old_natts = indexForm->indnatts;
Assert(old_natts == numberOfAttributes);
d = SysCacheGetAttr(INDEXRELID, tuple, Anum_pg_index_indcollation, &isnull);
Assert(!isnull);
old_indcollation = (oidvector *) DatumGetPointer(d);
d = SysCacheGetAttr(INDEXRELID, tuple, Anum_pg_index_indclass, &isnull);
Assert(!isnull);
old_indclass = (oidvector *) DatumGetPointer(d);
ret = (memcmp(old_indclass->values, classObjectId,
old_natts * sizeof(Oid)) == 0 &&
memcmp(old_indcollation->values, collationObjectId,
old_natts * sizeof(Oid)) == 0);
ReleaseSysCache(tuple);
if (!ret)
return false;
/* For polymorphic opcintype, column type changes break compatibility. */
irel = index_open(oldId, AccessShareLock); /* caller probably has a lock */
for (i = 0; i < old_natts; i++)
{
if (IsPolymorphicType(get_opclass_input_type(classObjectId[i])) &&
irel->rd_att->attrs[i]->atttypid != typeObjectId[i])
{
ret = false;
break;
}
}
/* Any change in exclusion operator selections breaks compatibility. */
if (ret && indexInfo->ii_ExclusionOps != NULL)
{
Oid *old_operators,
*old_procs;
uint16 *old_strats;
RelationGetExclusionInfo(irel, &old_operators, &old_procs, &old_strats);
ret = memcmp(old_operators, indexInfo->ii_ExclusionOps,
old_natts * sizeof(Oid)) == 0;
/* Require an exact input type match for polymorphic operators. */
if (ret)
{
for (i = 0; i < old_natts && ret; i++)
{
Oid left,
right;
op_input_types(indexInfo->ii_ExclusionOps[i], &left, &right);
if ((IsPolymorphicType(left) || IsPolymorphicType(right)) &&
irel->rd_att->attrs[i]->atttypid != typeObjectId[i])
{
ret = false;
break;
}
}
}
}
index_close(irel, NoLock);
return ret;
}
/*
* DefineIndex
* Creates a new index.
*
* 'relationId': the OID of the heap relation on which the index is to be
* created
* 'stmt': IndexStmt describing the properties of the new index.
* 'indexRelationId': normally InvalidOid, but during bootstrap can be
* nonzero to specify a preselected OID for the index.
* 'is_alter_table': this is due to an ALTER rather than a CREATE operation.
* 'check_rights': check for CREATE rights in the namespace. (This should
* be true except when ALTER is deleting/recreating an index.)
* 'skip_build': make the catalog entries but leave the index file empty;
* it will be filled later.
* 'quiet': suppress the NOTICE chatter ordinarily provided for constraints.
*
* Returns the object address of the created index.
*/
ObjectAddress
DefineIndex(Oid relationId,
IndexStmt *stmt,
Oid indexRelationId,
bool is_alter_table,
bool check_rights,
bool skip_build,
bool quiet)
{
char *indexRelationName;
char *accessMethodName;
Oid *typeObjectId;
Oid *collationObjectId;
Oid *classObjectId;
Oid accessMethodId;
Oid namespaceId;
Oid tablespaceId;
List *indexColNames;
Relation rel;
Relation indexRelation;
HeapTuple tuple;
Form_pg_am accessMethodForm;
bool amcanorder;
RegProcedure amoptions;
Datum reloptions;
int16 *coloptions;
IndexInfo *indexInfo;
int numberOfAttributes;
TransactionId limitXmin;
VirtualTransactionId *old_snapshots;
ObjectAddress address;
int n_old_snapshots;
LockRelId heaprelid;
LOCKTAG heaplocktag;
LOCKMODE lockmode;
Snapshot snapshot;
int i;
/*
* count attributes in index
*/
numberOfAttributes = list_length(stmt->indexParams);
if (numberOfAttributes <= 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("must specify at least one column")));
if (numberOfAttributes > INDEX_MAX_KEYS)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_COLUMNS),
errmsg("cannot use more than %d columns in an index",
INDEX_MAX_KEYS)));
/*
* Only SELECT ... FOR UPDATE/SHARE are allowed while doing a standard
* index build; but for concurrent builds we allow INSERT/UPDATE/DELETE
* (but not VACUUM).
*
* NB: Caller is responsible for making sure that relationId refers to the
* relation on which the index should be built; except in bootstrap mode,
* this will typically require the caller to have already locked the
* relation. To avoid lock upgrade hazards, that lock should be at least
* as strong as the one we take here.
*/
lockmode = stmt->concurrent ? ShareUpdateExclusiveLock : ShareLock;
rel = heap_open(relationId, lockmode);
relationId = RelationGetRelid(rel);
namespaceId = RelationGetNamespace(rel);
if (rel->rd_rel->relkind != RELKIND_RELATION &&
rel->rd_rel->relkind != RELKIND_MATVIEW)
{
if (rel->rd_rel->relkind == RELKIND_FOREIGN_TABLE)
/*
* Custom error message for FOREIGN TABLE since the term is close
* to a regular table and can confuse the user.
*/
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("cannot create index on foreign table \"%s\"",
RelationGetRelationName(rel))));
else
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table or materialized view",
RelationGetRelationName(rel))));
}
/*
* Don't try to CREATE INDEX on temp tables of other backends.
*/
if (RELATION_IS_OTHER_TEMP(rel))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot create indexes on temporary tables of other sessions")));
/*
* Verify we (still) have CREATE rights in the rel's namespace.
* (Presumably we did when the rel was created, but maybe not anymore.)
* Skip check if caller doesn't want it. Also skip check if
* bootstrapping, since permissions machinery may not be working yet.
*/
if (check_rights && !IsBootstrapProcessingMode())
{
AclResult aclresult;
aclresult = pg_namespace_aclcheck(namespaceId, GetUserId(),
ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_NAMESPACE,
get_namespace_name(namespaceId));
}
/*
* Select tablespace to use. If not specified, use default tablespace
* (which may in turn default to database's default).
*/
if (stmt->tableSpace)
{
tablespaceId = get_tablespace_oid(stmt->tableSpace, false);
}
else
{
tablespaceId = GetDefaultTablespace(rel->rd_rel->relpersistence);
/* note InvalidOid is OK in this case */
}
/* Check permissions except when using database's default */
if (OidIsValid(tablespaceId) && tablespaceId != MyDatabaseTableSpace)
{
AclResult aclresult;
aclresult = pg_tablespace_aclcheck(tablespaceId, GetUserId(),
ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_TABLESPACE,
get_tablespace_name(tablespaceId));
}
/*
* Force shared indexes into the pg_global tablespace. This is a bit of a
* hack but seems simpler than marking them in the BKI commands. On the
* other hand, if it's not shared, don't allow it to be placed there.
*/
if (rel->rd_rel->relisshared)
tablespaceId = GLOBALTABLESPACE_OID;
else if (tablespaceId == GLOBALTABLESPACE_OID)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("only shared relations can be placed in pg_global tablespace")));
/*
* Choose the index column names.
*/
indexColNames = ChooseIndexColumnNames(stmt->indexParams);
/*
* Select name for index if caller didn't specify
*/
indexRelationName = stmt->idxname;
if (indexRelationName == NULL)
indexRelationName = ChooseIndexName(RelationGetRelationName(rel),
namespaceId,
indexColNames,
stmt->excludeOpNames,
stmt->primary,
stmt->isconstraint);
/*
* look up the access method, verify it can handle the requested features
*/
accessMethodName = stmt->accessMethod;
tuple = SearchSysCache1(AMNAME, PointerGetDatum(accessMethodName));
if (!HeapTupleIsValid(tuple))
{
/*
* Hack to provide more-or-less-transparent updating of old RTREE
* indexes to GiST: if RTREE is requested and not found, use GIST.
*/
if (strcmp(accessMethodName, "rtree") == 0)
{
ereport(NOTICE,
(errmsg("substituting access method \"gist\" for obsolete method \"rtree\"")));
accessMethodName = "gist";
tuple = SearchSysCache1(AMNAME, PointerGetDatum(accessMethodName));
}
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("access method \"%s\" does not exist",
accessMethodName)));
}
accessMethodId = HeapTupleGetOid(tuple);
accessMethodForm = (Form_pg_am) GETSTRUCT(tuple);
if (strcmp(accessMethodName, "hash") == 0)
ereport(WARNING,
(errmsg("hash indexes are not WAL-logged and their use is discouraged")));
if (stmt->unique && !accessMethodForm->amcanunique)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support unique indexes",
accessMethodName)));
if (numberOfAttributes > 1 && !accessMethodForm->amcanmulticol)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support multicolumn indexes",
accessMethodName)));
if (stmt->excludeOpNames && !OidIsValid(accessMethodForm->amgettuple))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support exclusion constraints",
accessMethodName)));
amcanorder = accessMethodForm->amcanorder;
amoptions = accessMethodForm->amoptions;
ReleaseSysCache(tuple);
/*
* Validate predicate, if given
*/
if (stmt->whereClause)
CheckPredicate((Expr *) stmt->whereClause);
/*
* Parse AM-specific options, convert to text array form, validate.
*/
reloptions = transformRelOptions((Datum) 0, stmt->options,
NULL, NULL, false, false);
(void) index_reloptions(amoptions, reloptions, true);
/*
* Prepare arguments for index_create, primarily an IndexInfo structure.
* Note that ii_Predicate must be in implicit-AND format.
*/
indexInfo = makeNode(IndexInfo);
indexInfo->ii_NumIndexAttrs = numberOfAttributes;
indexInfo->ii_Expressions = NIL; /* for now */
indexInfo->ii_ExpressionsState = NIL;
indexInfo->ii_Predicate = make_ands_implicit((Expr *) stmt->whereClause);
indexInfo->ii_PredicateState = NIL;
indexInfo->ii_ExclusionOps = NULL;
indexInfo->ii_ExclusionProcs = NULL;
indexInfo->ii_ExclusionStrats = NULL;
indexInfo->ii_Unique = stmt->unique;
/* In a concurrent build, mark it not-ready-for-inserts */
indexInfo->ii_ReadyForInserts = !stmt->concurrent;
indexInfo->ii_Concurrent = stmt->concurrent;
indexInfo->ii_BrokenHotChain = false;
typeObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
collationObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
classObjectId = (Oid *) palloc(numberOfAttributes * sizeof(Oid));
coloptions = (int16 *) palloc(numberOfAttributes * sizeof(int16));
ComputeIndexAttrs(indexInfo,
typeObjectId, collationObjectId, classObjectId,
coloptions, stmt->indexParams,
stmt->excludeOpNames, relationId,
accessMethodName, accessMethodId,
amcanorder, stmt->isconstraint);
/*
* Extra checks when creating a PRIMARY KEY index.
*/
if (stmt->primary)
index_check_primary_key(rel, indexInfo, is_alter_table);
/*
* Report index creation if appropriate (delay this till after most of the
* error checks)
*/
if (stmt->isconstraint && !quiet)
{
const char *constraint_type;
if (stmt->primary)
constraint_type = "PRIMARY KEY";
else if (stmt->unique)
constraint_type = "UNIQUE";
else if (stmt->excludeOpNames != NIL)
constraint_type = "EXCLUDE";
else
{
elog(ERROR, "unknown constraint type");
constraint_type = NULL; /* keep compiler quiet */
}
ereport(DEBUG1,
(errmsg("%s %s will create implicit index \"%s\" for table \"%s\"",
is_alter_table ? "ALTER TABLE / ADD" : "CREATE TABLE /",
constraint_type,
indexRelationName, RelationGetRelationName(rel))));
}
/*
* A valid stmt->oldNode implies that we already have a built form of the
* index. The caller should also decline any index build.
*/
Assert(!OidIsValid(stmt->oldNode) || (skip_build && !stmt->concurrent));
/*
* Make the catalog entries for the index, including constraints. Then, if
* not skip_build || concurrent, actually build the index.
*/
indexRelationId =
index_create(rel, indexRelationName, indexRelationId, stmt->oldNode,
indexInfo, indexColNames,
accessMethodId, tablespaceId,
collationObjectId, classObjectId,
coloptions, reloptions, stmt->primary,
stmt->isconstraint, stmt->deferrable, stmt->initdeferred,
allowSystemTableMods,
skip_build || stmt->concurrent,
stmt->concurrent, !check_rights,
stmt->if_not_exists);
ObjectAddressSet(address, RelationRelationId, indexRelationId);
if (!OidIsValid(indexRelationId))
{
heap_close(rel, NoLock);
return address;
}
/* Add any requested comment */
if (stmt->idxcomment != NULL)
CreateComments(indexRelationId, RelationRelationId, 0,
stmt->idxcomment);
if (!stmt->concurrent)
{
/* Close the heap and we're done, in the non-concurrent case */
heap_close(rel, NoLock);
return address;
}
/* save lockrelid and locktag for below, then close rel */
heaprelid = rel->rd_lockInfo.lockRelId;
SET_LOCKTAG_RELATION(heaplocktag, heaprelid.dbId, heaprelid.relId);
heap_close(rel, NoLock);
/*
* For a concurrent build, it's important to make the catalog entries
* visible to other transactions before we start to build the index. That
* will prevent them from making incompatible HOT updates. The new index
* will be marked not indisready and not indisvalid, so that no one else
* tries to either insert into it or use it for queries.
*
* We must commit our current transaction so that the index becomes
* visible; then start another. Note that all the data structures we just
* built are lost in the commit. The only data we keep past here are the
* relation IDs.
*
* Before committing, get a session-level lock on the table, to ensure
* that neither it nor the index can be dropped before we finish. This
* cannot block, even if someone else is waiting for access, because we
* already have the same lock within our transaction.
*
* Note: we don't currently bother with a session lock on the index,
* because there are no operations that could change its state while we
* hold lock on the parent table. This might need to change later.
*/
LockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
PopActiveSnapshot();
CommitTransactionCommand();
StartTransactionCommand();
/*
* Phase 2 of concurrent index build (see comments for validate_index()
* for an overview of how this works)
*
* Now we must wait until no running transaction could have the table open
* with the old list of indexes. Use ShareLock to consider running
* transactions that hold locks that permit writing to the table. Note we
* do not need to worry about xacts that open the table for writing after
* this point; they will see the new index when they open it.
*
* Note: the reason we use actual lock acquisition here, rather than just
* checking the ProcArray and sleeping, is that deadlock is possible if
* one of the transactions in question is blocked trying to acquire an
* exclusive lock on our table. The lock code will detect deadlock and
* error out properly.
*/
WaitForLockers(heaplocktag, ShareLock);
/*
* At this moment we are sure that there are no transactions with the
* table open for write that don't have this new index in their list of
* indexes. We have waited out all the existing transactions and any new
* transaction will have the new index in its list, but the index is still
* marked as "not-ready-for-inserts". The index is consulted while
* deciding HOT-safety though. This arrangement ensures that no new HOT
* chains can be created where the new tuple and the old tuple in the
* chain have different index keys.
*
* We now take a new snapshot, and build the index using all tuples that
* are visible in this snapshot. We can be sure that any HOT updates to
* these tuples will be compatible with the index, since any updates made
* by transactions that didn't know about the index are now committed or
* rolled back. Thus, each visible tuple is either the end of its
* HOT-chain or the extension of the chain is HOT-safe for this index.
*/
/* Open and lock the parent heap relation */
rel = heap_openrv(stmt->relation, ShareUpdateExclusiveLock);
/* And the target index relation */
indexRelation = index_open(indexRelationId, RowExclusiveLock);
/* Set ActiveSnapshot since functions in the indexes may need it */
PushActiveSnapshot(GetTransactionSnapshot());
/* We have to re-build the IndexInfo struct, since it was lost in commit */
indexInfo = BuildIndexInfo(indexRelation);
Assert(!indexInfo->ii_ReadyForInserts);
indexInfo->ii_Concurrent = true;
indexInfo->ii_BrokenHotChain = false;
/* Now build the index */
index_build(rel, indexRelation, indexInfo, stmt->primary, false);
/* Close both the relations, but keep the locks */
heap_close(rel, NoLock);
index_close(indexRelation, NoLock);
/*
* Update the pg_index row to mark the index as ready for inserts. Once we
* commit this transaction, any new transactions that open the table must
* insert new entries into the index for insertions and non-HOT updates.
*/
index_set_state_flags(indexRelationId, INDEX_CREATE_SET_READY);
/* we can do away with our snapshot */
PopActiveSnapshot();
/*
* Commit this transaction to make the indisready update visible.
*/
CommitTransactionCommand();
StartTransactionCommand();
/*
* Phase 3 of concurrent index build
*
* We once again wait until no transaction can have the table open with
* the index marked as read-only for updates.
*/
WaitForLockers(heaplocktag, ShareLock);
/*
* Now take the "reference snapshot" that will be used by validate_index()
* to filter candidate tuples. Beware! There might still be snapshots in
* use that treat some transaction as in-progress that our reference
* snapshot treats as committed. If such a recently-committed transaction
* deleted tuples in the table, we will not include them in the index; yet
* those transactions which see the deleting one as still-in-progress will
* expect such tuples to be there once we mark the index as valid.
*
* We solve this by waiting for all endangered transactions to exit before
* we mark the index as valid.
*
* We also set ActiveSnapshot to this snap, since functions in indexes may
* need a snapshot.
*/
snapshot = RegisterSnapshot(GetTransactionSnapshot());
PushActiveSnapshot(snapshot);
/*
* Scan the index and the heap, insert any missing index entries.
*/
validate_index(relationId, indexRelationId, snapshot);
/*
* Drop the reference snapshot. We must do this before waiting out other
* snapshot holders, else we will deadlock against other processes also
* doing CREATE INDEX CONCURRENTLY, which would see our snapshot as one
* they must wait for. But first, save the snapshot's xmin to use as
* limitXmin for GetCurrentVirtualXIDs().
*/
limitXmin = snapshot->xmin;
PopActiveSnapshot();
UnregisterSnapshot(snapshot);
/*
* The index is now valid in the sense that it contains all currently
* interesting tuples. But since it might not contain tuples deleted just
* before the reference snap was taken, we have to wait out any
* transactions that might have older snapshots. Obtain a list of VXIDs
* of such transactions, and wait for them individually.
*
* We can exclude any running transactions that have xmin > the xmin of
* our reference snapshot; their oldest snapshot must be newer than ours.
* We can also exclude any transactions that have xmin = zero, since they
* evidently have no live snapshot at all (and any one they might be in
* process of taking is certainly newer than ours). Transactions in other
* DBs can be ignored too, since they'll never even be able to see this
* index.
*
* We can also exclude autovacuum processes and processes running manual
* lazy VACUUMs, because they won't be fazed by missing index entries
* either. (Manual ANALYZEs, however, can't be excluded because they
* might be within transactions that are going to do arbitrary operations
* later.)
*
* Also, GetCurrentVirtualXIDs never reports our own vxid, so we need not
* check for that.
*
* If a process goes idle-in-transaction with xmin zero, we do not need to
* wait for it anymore, per the above argument. We do not have the
* infrastructure right now to stop waiting if that happens, but we can at
* least avoid the folly of waiting when it is idle at the time we would
* begin to wait. We do this by repeatedly rechecking the output of
* GetCurrentVirtualXIDs. If, during any iteration, a particular vxid
* doesn't show up in the output, we know we can forget about it.
*/
old_snapshots = GetCurrentVirtualXIDs(limitXmin, true, false,
PROC_IS_AUTOVACUUM | PROC_IN_VACUUM,
&n_old_snapshots);
for (i = 0; i < n_old_snapshots; i++)
{
if (!VirtualTransactionIdIsValid(old_snapshots[i]))
continue; /* found uninteresting in previous cycle */
if (i > 0)
{
/* see if anything's changed ... */
VirtualTransactionId *newer_snapshots;
int n_newer_snapshots;
int j;
int k;
newer_snapshots = GetCurrentVirtualXIDs(limitXmin,
true, false,
PROC_IS_AUTOVACUUM | PROC_IN_VACUUM,
&n_newer_snapshots);
for (j = i; j < n_old_snapshots; j++)
{
if (!VirtualTransactionIdIsValid(old_snapshots[j]))
continue; /* found uninteresting in previous cycle */
for (k = 0; k < n_newer_snapshots; k++)
{
if (VirtualTransactionIdEquals(old_snapshots[j],
newer_snapshots[k]))
break;
}
if (k >= n_newer_snapshots) /* not there anymore */
SetInvalidVirtualTransactionId(old_snapshots[j]);
}
pfree(newer_snapshots);
}
if (VirtualTransactionIdIsValid(old_snapshots[i]))
VirtualXactLock(old_snapshots[i], true);
}
/*
* Index can now be marked valid -- update its pg_index entry
*/
index_set_state_flags(indexRelationId, INDEX_CREATE_SET_VALID);
/*
* The pg_index update will cause backends (including this one) to update
* relcache entries for the index itself, but we should also send a
* relcache inval on the parent table to force replanning of cached plans.
* Otherwise existing sessions might fail to use the new index where it
* would be useful. (Note that our earlier commits did not create reasons
* to replan; so relcache flush on the index itself was sufficient.)
*/
CacheInvalidateRelcacheByRelid(heaprelid.relId);
/*
* Last thing to do is release the session-level lock on the parent table.
*/
UnlockRelationIdForSession(&heaprelid, ShareUpdateExclusiveLock);
return address;
}
/*
* CheckMutability
* Test whether given expression is mutable
*/
static bool
CheckMutability(Expr *expr)
{
/*
* First run the expression through the planner. This has a couple of
* important consequences. First, function default arguments will get
* inserted, which may affect volatility (consider "default now()").
* Second, inline-able functions will get inlined, which may allow us to
* conclude that the function is really less volatile than it's marked. As
* an example, polymorphic functions must be marked with the most volatile
* behavior that they have for any input type, but once we inline the
* function we may be able to conclude that it's not so volatile for the
* particular input type we're dealing with.
*
* We assume here that expression_planner() won't scribble on its input.
*/
expr = expression_planner(expr);
/* Now we can search for non-immutable functions */
return contain_mutable_functions((Node *) expr);
}
/*
* CheckPredicate
* Checks that the given partial-index predicate is valid.
*
* This used to also constrain the form of the predicate to forms that
* indxpath.c could do something with. However, that seems overly
* restrictive. One useful application of partial indexes is to apply
* a UNIQUE constraint across a subset of a table, and in that scenario
* any evaluatable predicate will work. So accept any predicate here
* (except ones requiring a plan), and let indxpath.c fend for itself.
*/
static void
CheckPredicate(Expr *predicate)
{
/*
* transformExpr() should have already rejected subqueries, aggregates,
* and window functions, based on the EXPR_KIND_ for a predicate.
*/
/*
* A predicate using mutable functions is probably wrong, for the same
* reasons that we don't allow an index expression to use one.
*/
if (CheckMutability(predicate))
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("functions in index predicate must be marked IMMUTABLE")));
}
/*
* Compute per-index-column information, including indexed column numbers
* or index expressions, opclasses, and indoptions.
*/
static void
ComputeIndexAttrs(IndexInfo *indexInfo,
Oid *typeOidP,
Oid *collationOidP,
Oid *classOidP,
int16 *colOptionP,
List *attList, /* list of IndexElem's */
List *exclusionOpNames,
Oid relId,
char *accessMethodName,
Oid accessMethodId,
bool amcanorder,
bool isconstraint)
{
ListCell *nextExclOp;
ListCell *lc;
int attn;
/* Allocate space for exclusion operator info, if needed */
if (exclusionOpNames)
{
int ncols = list_length(attList);
Assert(list_length(exclusionOpNames) == ncols);
indexInfo->ii_ExclusionOps = (Oid *) palloc(sizeof(Oid) * ncols);
indexInfo->ii_ExclusionProcs = (Oid *) palloc(sizeof(Oid) * ncols);
indexInfo->ii_ExclusionStrats = (uint16 *) palloc(sizeof(uint16) * ncols);
nextExclOp = list_head(exclusionOpNames);
}
else
nextExclOp = NULL;
/*
* process attributeList
*/
attn = 0;
foreach(lc, attList)
{
IndexElem *attribute = (IndexElem *) lfirst(lc);
Oid atttype;
Oid attcollation;
/*
* Process the column-or-expression to be indexed.
*/
if (attribute->name != NULL)
{
/* Simple index attribute */
HeapTuple atttuple;
Form_pg_attribute attform;
Assert(attribute->expr == NULL);
atttuple = SearchSysCacheAttName(relId, attribute->name);
if (!HeapTupleIsValid(atttuple))
{
/* difference in error message spellings is historical */
if (isconstraint)
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" named in key does not exist",
attribute->name)));
else
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_COLUMN),
errmsg("column \"%s\" does not exist",
attribute->name)));
}
attform = (Form_pg_attribute) GETSTRUCT(atttuple);
indexInfo->ii_KeyAttrNumbers[attn] = attform->attnum;
atttype = attform->atttypid;
attcollation = attform->attcollation;
ReleaseSysCache(atttuple);
}
else
{
/* Index expression */
Node *expr = attribute->expr;
Assert(expr != NULL);
atttype = exprType(expr);
attcollation = exprCollation(expr);
/*
* Strip any top-level COLLATE clause. This ensures that we treat
* "x COLLATE y" and "(x COLLATE y)" alike.
*/
while (IsA(expr, CollateExpr))
expr = (Node *) ((CollateExpr *) expr)->arg;
if (IsA(expr, Var) &&
((Var *) expr)->varattno != InvalidAttrNumber)
{
/*
* User wrote "(column)" or "(column COLLATE something)".
* Treat it like simple attribute anyway.
*/
indexInfo->ii_KeyAttrNumbers[attn] = ((Var *) expr)->varattno;
}
else
{
indexInfo->ii_KeyAttrNumbers[attn] = 0; /* marks expression */
indexInfo->ii_Expressions = lappend(indexInfo->ii_Expressions,
expr);
/*
* transformExpr() should have already rejected subqueries,
* aggregates, and window functions, based on the EXPR_KIND_
* for an index expression.
*/
/*
* An expression using mutable functions is probably wrong,
* since if you aren't going to get the same result for the
* same data every time, it's not clear what the index entries
* mean at all.
*/
if (CheckMutability((Expr *) expr))
ereport(ERROR,
(errcode(ERRCODE_INVALID_OBJECT_DEFINITION),
errmsg("functions in index expression must be marked IMMUTABLE")));
}
}
typeOidP[attn] = atttype;
/*
* Apply collation override if any
*/
if (attribute->collation)
attcollation = get_collation_oid(attribute->collation, false);
/*
* Check we have a collation iff it's a collatable type. The only
* expected failures here are (1) COLLATE applied to a noncollatable
* type, or (2) index expression had an unresolved collation. But we
* might as well code this to be a complete consistency check.
*/
if (type_is_collatable(atttype))
{
if (!OidIsValid(attcollation))
ereport(ERROR,
(errcode(ERRCODE_INDETERMINATE_COLLATION),
errmsg("could not determine which collation to use for index expression"),
errhint("Use the COLLATE clause to set the collation explicitly.")));
}
else
{
if (OidIsValid(attcollation))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("collations are not supported by type %s",
format_type_be(atttype))));
}
collationOidP[attn] = attcollation;
/*
* Identify the opclass to use.
*/
classOidP[attn] = GetIndexOpClass(attribute->opclass,
atttype,
accessMethodName,
accessMethodId);
/*
* Identify the exclusion operator, if any.
*/
if (nextExclOp)
{
List *opname = (List *) lfirst(nextExclOp);
Oid opid;
Oid opfamily;
int strat;
/*
* Find the operator --- it must accept the column datatype
* without runtime coercion (but binary compatibility is OK)
*/
opid = compatible_oper_opid(opname, atttype, atttype, false);
/*
* Only allow commutative operators to be used in exclusion
* constraints. If X conflicts with Y, but Y does not conflict
* with X, bad things will happen.
*/
if (get_commutator(opid) != opid)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("operator %s is not commutative",
format_operator(opid)),
errdetail("Only commutative operators can be used in exclusion constraints.")));
/*
* Operator must be a member of the right opfamily, too
*/
opfamily = get_opclass_family(classOidP[attn]);
strat = get_op_opfamily_strategy(opid, opfamily);
if (strat == 0)
{
HeapTuple opftuple;
Form_pg_opfamily opfform;
/*
* attribute->opclass might not explicitly name the opfamily,
* so fetch the name of the selected opfamily for use in the
* error message.
*/
opftuple = SearchSysCache1(OPFAMILYOID,
ObjectIdGetDatum(opfamily));
if (!HeapTupleIsValid(opftuple))
elog(ERROR, "cache lookup failed for opfamily %u",
opfamily);
opfform = (Form_pg_opfamily) GETSTRUCT(opftuple);
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("operator %s is not a member of operator family \"%s\"",
format_operator(opid),
NameStr(opfform->opfname)),
errdetail("The exclusion operator must be related to the index operator class for the constraint.")));
}
indexInfo->ii_ExclusionOps[attn] = opid;
indexInfo->ii_ExclusionProcs[attn] = get_opcode(opid);
indexInfo->ii_ExclusionStrats[attn] = strat;
nextExclOp = lnext(nextExclOp);
}
/*
* Set up the per-column options (indoption field). For now, this is
* zero for any un-ordered index, while ordered indexes have DESC and
* NULLS FIRST/LAST options.
*/
colOptionP[attn] = 0;
if (amcanorder)
{
/* default ordering is ASC */
if (attribute->ordering == SORTBY_DESC)
colOptionP[attn] |= INDOPTION_DESC;
/* default null ordering is LAST for ASC, FIRST for DESC */
if (attribute->nulls_ordering == SORTBY_NULLS_DEFAULT)
{
if (attribute->ordering == SORTBY_DESC)
colOptionP[attn] |= INDOPTION_NULLS_FIRST;
}
else if (attribute->nulls_ordering == SORTBY_NULLS_FIRST)
colOptionP[attn] |= INDOPTION_NULLS_FIRST;
}
else
{
/* index AM does not support ordering */
if (attribute->ordering != SORTBY_DEFAULT)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support ASC/DESC options",
accessMethodName)));
if (attribute->nulls_ordering != SORTBY_NULLS_DEFAULT)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("access method \"%s\" does not support NULLS FIRST/LAST options",
accessMethodName)));
}
attn++;
}
}
/*
* Resolve possibly-defaulted operator class specification
*/
static Oid
GetIndexOpClass(List *opclass, Oid attrType,
char *accessMethodName, Oid accessMethodId)
{
char *schemaname;
char *opcname;
HeapTuple tuple;
Oid opClassId,
opInputType;
/*
* Release 7.0 removed network_ops, timespan_ops, and datetime_ops, so we
* ignore those opclass names so the default *_ops is used. This can be
* removed in some later release. bjm 2000/02/07
*
* Release 7.1 removes lztext_ops, so suppress that too for a while. tgl
* 2000/07/30
*
* Release 7.2 renames timestamp_ops to timestamptz_ops, so suppress that
* too for awhile. I'm starting to think we need a better approach. tgl
* 2000/10/01
*
* Release 8.0 removes bigbox_ops (which was dead code for a long while
* anyway). tgl 2003/11/11
*/
if (list_length(opclass) == 1)
{
char *claname = strVal(linitial(opclass));
if (strcmp(claname, "network_ops") == 0 ||
strcmp(claname, "timespan_ops") == 0 ||
strcmp(claname, "datetime_ops") == 0 ||
strcmp(claname, "lztext_ops") == 0 ||
strcmp(claname, "timestamp_ops") == 0 ||
strcmp(claname, "bigbox_ops") == 0)
opclass = NIL;
}
if (opclass == NIL)
{
/* no operator class specified, so find the default */
opClassId = GetDefaultOpClass(attrType, accessMethodId);
if (!OidIsValid(opClassId))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("data type %s has no default operator class for access method \"%s\"",
format_type_be(attrType), accessMethodName),
errhint("You must specify an operator class for the index or define a default operator class for the data type.")));
return opClassId;
}
/*
* Specific opclass name given, so look up the opclass.
*/
/* deconstruct the name list */
DeconstructQualifiedName(opclass, &schemaname, &opcname);
if (schemaname)
{
/* Look in specific schema only */
Oid namespaceId;
namespaceId = LookupExplicitNamespace(schemaname, false);
tuple = SearchSysCache3(CLAAMNAMENSP,
ObjectIdGetDatum(accessMethodId),
PointerGetDatum(opcname),
ObjectIdGetDatum(namespaceId));
}
else
{
/* Unqualified opclass name, so search the search path */
opClassId = OpclassnameGetOpcid(accessMethodId, opcname);
if (!OidIsValid(opClassId))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("operator class \"%s\" does not exist for access method \"%s\"",
opcname, accessMethodName)));
tuple = SearchSysCache1(CLAOID, ObjectIdGetDatum(opClassId));
}
if (!HeapTupleIsValid(tuple))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("operator class \"%s\" does not exist for access method \"%s\"",
NameListToString(opclass), accessMethodName)));
/*
* Verify that the index operator class accepts this datatype. Note we
* will accept binary compatibility.
*/
opClassId = HeapTupleGetOid(tuple);
opInputType = ((Form_pg_opclass) GETSTRUCT(tuple))->opcintype;
if (!IsBinaryCoercible(attrType, opInputType))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("operator class \"%s\" does not accept data type %s",
NameListToString(opclass), format_type_be(attrType))));
ReleaseSysCache(tuple);
return opClassId;
}
/*
* GetDefaultOpClass
*
* Given the OIDs of a datatype and an access method, find the default
* operator class, if any. Returns InvalidOid if there is none.
*/
Oid
GetDefaultOpClass(Oid type_id, Oid am_id)
{
Oid result = InvalidOid;
int nexact = 0;
int ncompatible = 0;
int ncompatiblepreferred = 0;
Relation rel;
ScanKeyData skey[1];
SysScanDesc scan;
HeapTuple tup;
TYPCATEGORY tcategory;
/* If it's a domain, look at the base type instead */
type_id = getBaseType(type_id);
tcategory = TypeCategory(type_id);
/*
* We scan through all the opclasses available for the access method,
* looking for one that is marked default and matches the target type
* (either exactly or binary-compatibly, but prefer an exact match).
*
* We could find more than one binary-compatible match. If just one is
* for a preferred type, use that one; otherwise we fail, forcing the user
* to specify which one he wants. (The preferred-type special case is a
* kluge for varchar: it's binary-compatible to both text and bpchar, so
* we need a tiebreaker.) If we find more than one exact match, then
* someone put bogus entries in pg_opclass.
*/
rel = heap_open(OperatorClassRelationId, AccessShareLock);
ScanKeyInit(&skey[0],
Anum_pg_opclass_opcmethod,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(am_id));
scan = systable_beginscan(rel, OpclassAmNameNspIndexId, true,
NULL, 1, skey);
while (HeapTupleIsValid(tup = systable_getnext(scan)))
{
Form_pg_opclass opclass = (Form_pg_opclass) GETSTRUCT(tup);
/* ignore altogether if not a default opclass */
if (!opclass->opcdefault)
continue;
if (opclass->opcintype == type_id)
{
nexact++;
result = HeapTupleGetOid(tup);
}
else if (nexact == 0 &&
IsBinaryCoercible(type_id, opclass->opcintype))
{
if (IsPreferredType(tcategory, opclass->opcintype))
{
ncompatiblepreferred++;
result = HeapTupleGetOid(tup);
}
else if (ncompatiblepreferred == 0)
{
ncompatible++;
result = HeapTupleGetOid(tup);
}
}
}
systable_endscan(scan);
heap_close(rel, AccessShareLock);
/* raise error if pg_opclass contains inconsistent data */
if (nexact > 1)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("there are multiple default operator classes for data type %s",
format_type_be(type_id))));
if (nexact == 1 ||
ncompatiblepreferred == 1 ||
(ncompatiblepreferred == 0 && ncompatible == 1))
return result;
return InvalidOid;
}
/*
* makeObjectName()
*
* Create a name for an implicitly created index, sequence, constraint, etc.
*
* The parameters are typically: the original table name, the original field
* name, and a "type" string (such as "seq" or "pkey"). The field name
* and/or type can be NULL if not relevant.
*
* The result is a palloc'd string.
*
* The basic result we want is "name1_name2_label", omitting "_name2" or
* "_label" when those parameters are NULL. However, we must generate
* a name with less than NAMEDATALEN characters! So, we truncate one or
* both names if necessary to make a short-enough string. The label part
* is never truncated (so it had better be reasonably short).
*
* The caller is responsible for checking uniqueness of the generated
* name and retrying as needed; retrying will be done by altering the
* "label" string (which is why we never truncate that part).
*/
char *
makeObjectName(const char *name1, const char *name2, const char *label)
{
char *name;
int overhead = 0; /* chars needed for label and underscores */
int availchars; /* chars available for name(s) */
int name1chars; /* chars allocated to name1 */
int name2chars; /* chars allocated to name2 */
int ndx;
name1chars = strlen(name1);
if (name2)
{
name2chars = strlen(name2);
overhead++; /* allow for separating underscore */
}
else
name2chars = 0;
if (label)
overhead += strlen(label) + 1;
availchars = NAMEDATALEN - 1 - overhead;
Assert(availchars > 0); /* else caller chose a bad label */
/*
* If we must truncate, preferentially truncate the longer name. This
* logic could be expressed without a loop, but it's simple and obvious as
* a loop.
*/
while (name1chars + name2chars > availchars)
{
if (name1chars > name2chars)
name1chars--;
else
name2chars--;
}
name1chars = pg_mbcliplen(name1, name1chars, name1chars);
if (name2)
name2chars = pg_mbcliplen(name2, name2chars, name2chars);
/* Now construct the string using the chosen lengths */
name = palloc(name1chars + name2chars + overhead + 1);
memcpy(name, name1, name1chars);
ndx = name1chars;
if (name2)
{
name[ndx++] = '_';
memcpy(name + ndx, name2, name2chars);
ndx += name2chars;
}
if (label)
{
name[ndx++] = '_';
strcpy(name + ndx, label);
}
else
name[ndx] = '\0';
return name;
}
/*
* Select a nonconflicting name for a new relation. This is ordinarily
* used to choose index names (which is why it's here) but it can also
* be used for sequences, or any autogenerated relation kind.
*
* name1, name2, and label are used the same way as for makeObjectName(),
* except that the label can't be NULL; digits will be appended to the label
* if needed to create a name that is unique within the specified namespace.
*
* Note: it is theoretically possible to get a collision anyway, if someone
* else chooses the same name concurrently. This is fairly unlikely to be
* a problem in practice, especially if one is holding an exclusive lock on
* the relation identified by name1. However, if choosing multiple names
* within a single command, you'd better create the new object and do
* CommandCounterIncrement before choosing the next one!
*
* Returns a palloc'd string.
*/
char *
ChooseRelationName(const char *name1, const char *name2,
const char *label, Oid namespaceid)
{
int pass = 0;
char *relname = NULL;
char modlabel[NAMEDATALEN];
/* try the unmodified label first */
StrNCpy(modlabel, label, sizeof(modlabel));
for (;;)
{
relname = makeObjectName(name1, name2, modlabel);
if (!OidIsValid(get_relname_relid(relname, namespaceid)))
break;
/* found a conflict, so try a new name component */
pfree(relname);
snprintf(modlabel, sizeof(modlabel), "%s%d", label, ++pass);
}
return relname;
}
/*
* Select the name to be used for an index.
*
* The argument list is pretty ad-hoc :-(
*/
static char *
ChooseIndexName(const char *tabname, Oid namespaceId,
List *colnames, List *exclusionOpNames,
bool primary, bool isconstraint)
{
char *indexname;
if (primary)
{
/* the primary key's name does not depend on the specific column(s) */
indexname = ChooseRelationName(tabname,
NULL,
"pkey",
namespaceId);
}
else if (exclusionOpNames != NIL)
{
indexname = ChooseRelationName(tabname,
ChooseIndexNameAddition(colnames),
"excl",
namespaceId);
}
else if (isconstraint)
{
indexname = ChooseRelationName(tabname,
ChooseIndexNameAddition(colnames),
"key",
namespaceId);
}
else
{
indexname = ChooseRelationName(tabname,
ChooseIndexNameAddition(colnames),
"idx",
namespaceId);
}
return indexname;
}
/*
* Generate "name2" for a new index given the list of column names for it
* (as produced by ChooseIndexColumnNames). This will be passed to
* ChooseRelationName along with the parent table name and a suitable label.
*
* We know that less than NAMEDATALEN characters will actually be used,
* so we can truncate the result once we've generated that many.
*/
static char *
ChooseIndexNameAddition(List *colnames)
{
char buf[NAMEDATALEN * 2];
int buflen = 0;
ListCell *lc;
buf[0] = '\0';
foreach(lc, colnames)
{
const char *name = (const char *) lfirst(lc);
if (buflen > 0)
buf[buflen++] = '_'; /* insert _ between names */
/*
* At this point we have buflen <= NAMEDATALEN. name should be less
* than NAMEDATALEN already, but use strlcpy for paranoia.
*/
strlcpy(buf + buflen, name, NAMEDATALEN);
buflen += strlen(buf + buflen);
if (buflen >= NAMEDATALEN)
break;
}
return pstrdup(buf);
}
/*
* Select the actual names to be used for the columns of an index, given the
* list of IndexElems for the columns. This is mostly about ensuring the
* names are unique so we don't get a conflicting-attribute-names error.
*
* Returns a List of plain strings (char *, not String nodes).
*/
static List *
ChooseIndexColumnNames(List *indexElems)
{
List *result = NIL;
ListCell *lc;
foreach(lc, indexElems)
{
IndexElem *ielem = (IndexElem *) lfirst(lc);
const char *origname;
const char *curname;
int i;
char buf[NAMEDATALEN];
/* Get the preliminary name from the IndexElem */
if (ielem->indexcolname)
origname = ielem->indexcolname; /* caller-specified name */
else if (ielem->name)
origname = ielem->name; /* simple column reference */
else
origname = "expr"; /* default name for expression */
/* If it conflicts with any previous column, tweak it */
curname = origname;
for (i = 1;; i++)
{
ListCell *lc2;
char nbuf[32];
int nlen;
foreach(lc2, result)
{
if (strcmp(curname, (char *) lfirst(lc2)) == 0)
break;
}
if (lc2 == NULL)
break; /* found nonconflicting name */
sprintf(nbuf, "%d", i);
/* Ensure generated names are shorter than NAMEDATALEN */
nlen = pg_mbcliplen(origname, strlen(origname),
NAMEDATALEN - 1 - strlen(nbuf));
memcpy(buf, origname, nlen);
strcpy(buf + nlen, nbuf);
curname = buf;
}
/* And attach to the result list */
result = lappend(result, pstrdup(curname));
}
return result;
}
/*
* ReindexIndex
* Recreate a specific index.
*/
Oid
ReindexIndex(RangeVar *indexRelation)
{
Oid indOid;
Oid heapOid = InvalidOid;
Relation irel;
char persistence;
/*
* Find and lock index, and check permissions on table; use callback to
* obtain lock on table first, to avoid deadlock hazard. The lock level
* used here must match the index lock obtained in reindex_index().
*/
indOid = RangeVarGetRelidExtended(indexRelation, AccessExclusiveLock,
false, false,
RangeVarCallbackForReindexIndex,
(void *) &heapOid);
/*
* Obtain the current persistence of the existing index. We already hold
* lock on the index.
*/
irel = index_open(indOid, NoLock);
persistence = irel->rd_rel->relpersistence;
index_close(irel, NoLock);
reindex_index(indOid, false, persistence);
return indOid;
}
/*
* Check permissions on table before acquiring relation lock; also lock
* the heap before the RangeVarGetRelidExtended takes the index lock, to avoid
* deadlocks.
*/
static void
RangeVarCallbackForReindexIndex(const RangeVar *relation,
Oid relId, Oid oldRelId, void *arg)
{
char relkind;
Oid *heapOid = (Oid *) arg;
/*
* If we previously locked some other index's heap, and the name we're
* looking up no longer refers to that relation, release the now-useless
* lock.
*/
if (relId != oldRelId && OidIsValid(oldRelId))
{
/* lock level here should match reindex_index() heap lock */
UnlockRelationOid(*heapOid, ShareLock);
*heapOid = InvalidOid;
}
/* If the relation does not exist, there's nothing more to do. */
if (!OidIsValid(relId))
return;
/*
* If the relation does exist, check whether it's an index. But note that
* the relation might have been dropped between the time we did the name
* lookup and now. In that case, there's nothing to do.
*/
relkind = get_rel_relkind(relId);
if (!relkind)
return;
if (relkind != RELKIND_INDEX)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not an index", relation->relname)));
/* Check permissions */
if (!pg_class_ownercheck(relId, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_CLASS, relation->relname);
/* Lock heap before index to avoid deadlock. */
if (relId != oldRelId)
{
/*
* Lock level here should match reindex_index() heap lock. If the OID
* isn't valid, it means the index as concurrently dropped, which is
* not a problem for us; just return normally.
*/
*heapOid = IndexGetRelation(relId, true);
if (OidIsValid(*heapOid))
LockRelationOid(*heapOid, ShareLock);
}
}
/*
* ReindexTable
* Recreate all indexes of a table (and of its toast table, if any)
*/
Oid
ReindexTable(RangeVar *relation)
{
Oid heapOid;
/* The lock level used here should match reindex_relation(). */
heapOid = RangeVarGetRelidExtended(relation, ShareLock, false, false,
RangeVarCallbackOwnsTable, NULL);
if (!reindex_relation(heapOid,
REINDEX_REL_PROCESS_TOAST |
REINDEX_REL_CHECK_CONSTRAINTS))
ereport(NOTICE,
(errmsg("table \"%s\" has no indexes",
relation->relname)));
return heapOid;
}
/*
* ReindexMultipleTables
* Recreate indexes of tables selected by objectName/objectKind.
*
* To reduce the probability of deadlocks, each table is reindexed in a
* separate transaction, so we can release the lock on it right away.
* That means this must not be called within a user transaction block!
*/
void
ReindexMultipleTables(const char *objectName, ReindexObjectType objectKind)
{
Oid objectOid;
Relation relationRelation;
HeapScanDesc scan;
ScanKeyData scan_keys[1];
HeapTuple tuple;
MemoryContext private_context;
MemoryContext old;
List *relids = NIL;
ListCell *l;
int num_keys;
AssertArg(objectName);
Assert(objectKind == REINDEX_OBJECT_SCHEMA ||
objectKind == REINDEX_OBJECT_SYSTEM ||
objectKind == REINDEX_OBJECT_DATABASE);
/*
* Get OID of object to reindex, being the database currently being used
* by session for a database or for system catalogs, or the schema defined
* by caller. At the same time do permission checks that need different
* processing depending on the object type.
*/
if (objectKind == REINDEX_OBJECT_SCHEMA)
{
objectOid = get_namespace_oid(objectName, false);
if (!pg_namespace_ownercheck(objectOid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_NAMESPACE,
objectName);
}
else
{
objectOid = MyDatabaseId;
if (strcmp(objectName, get_database_name(objectOid)) != 0)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("can only reindex the currently open database")));
if (!pg_database_ownercheck(objectOid, GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_DATABASE,
objectName);
}
/*
* Create a memory context that will survive forced transaction commits we
* do below. Since it is a child of PortalContext, it will go away
* eventually even if we suffer an error; there's no need for special
* abort cleanup logic.
*/
private_context = AllocSetContextCreate(PortalContext,
"ReindexMultipleTables",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
/*
* Define the search keys to find the objects to reindex. For a schema, we
* select target relations using relnamespace, something not necessary for
* a database-wide operation.
*/
if (objectKind == REINDEX_OBJECT_SCHEMA)
{
num_keys = 1;
ScanKeyInit(&scan_keys[0],
Anum_pg_class_relnamespace,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(objectOid));
}
else
num_keys = 0;
/*
* Scan pg_class to build a list of the relations we need to reindex.
*
* We only consider plain relations and materialized views here (toast
* rels will be processed indirectly by reindex_relation).
*/
relationRelation = heap_open(RelationRelationId, AccessShareLock);
scan = heap_beginscan_catalog(relationRelation, num_keys, scan_keys);
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
Form_pg_class classtuple = (Form_pg_class) GETSTRUCT(tuple);
Oid relid = HeapTupleGetOid(tuple);
/*
* Only regular tables and matviews can have indexes, so ignore any
* other kind of relation.
*/
if (classtuple->relkind != RELKIND_RELATION &&
classtuple->relkind != RELKIND_MATVIEW)
continue;
/* Skip temp tables of other backends; we can't reindex them at all */
if (classtuple->relpersistence == RELPERSISTENCE_TEMP &&
!isTempNamespace(classtuple->relnamespace))
continue;
/* Check user/system classification, and optionally skip */
if (objectKind == REINDEX_OBJECT_SYSTEM &&
!IsSystemClass(relid, classtuple))
continue;
/* Save the list of relation OIDs in private context */
old = MemoryContextSwitchTo(private_context);
/*
* We always want to reindex pg_class first if it's selected to be
* reindexed. This ensures that if there is any corruption in
* pg_class' indexes, they will be fixed before we process any other
* tables. This is critical because reindexing itself will try to
* update pg_class.
*/
if (relid == RelationRelationId)
relids = lcons_oid(relid, relids);
else
relids = lappend_oid(relids, relid);
MemoryContextSwitchTo(old);
}
heap_endscan(scan);
heap_close(relationRelation, AccessShareLock);
/* Now reindex each rel in a separate transaction */
PopActiveSnapshot();
CommitTransactionCommand();
foreach(l, relids)
{
Oid relid = lfirst_oid(l);
StartTransactionCommand();
/* functions in indexes may want a snapshot set */
PushActiveSnapshot(GetTransactionSnapshot());
if (reindex_relation(relid,
REINDEX_REL_PROCESS_TOAST |
REINDEX_REL_CHECK_CONSTRAINTS))
ereport(DEBUG1,
(errmsg("table \"%s.%s\" was reindexed",
get_namespace_name(get_rel_namespace(relid)),
get_rel_name(relid))));
PopActiveSnapshot();
CommitTransactionCommand();
}
StartTransactionCommand();
MemoryContextDelete(private_context);
}