postgresql/src/backend/utils/cache/catcache.c

2093 lines
54 KiB
C

/*-------------------------------------------------------------------------
*
* catcache.c
* System catalog cache for tuples matching a key.
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/utils/cache/catcache.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
#include "access/relscan.h"
#include "access/sysattr.h"
#include "access/table.h"
#include "access/tuptoaster.h"
#include "access/valid.h"
#include "access/xact.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_type.h"
#include "miscadmin.h"
#ifdef CATCACHE_STATS
#include "storage/ipc.h" /* for on_proc_exit */
#endif
#include "storage/lmgr.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/hashutils.h"
#include "utils/inval.h"
#include "utils/memutils.h"
#include "utils/rel.h"
#include "utils/resowner_private.h"
#include "utils/syscache.h"
/* #define CACHEDEBUG */ /* turns DEBUG elogs on */
/*
* Given a hash value and the size of the hash table, find the bucket
* in which the hash value belongs. Since the hash table must contain
* a power-of-2 number of elements, this is a simple bitmask.
*/
#define HASH_INDEX(h, sz) ((Index) ((h) & ((sz) - 1)))
/*
* variables, macros and other stuff
*/
#ifdef CACHEDEBUG
#define CACHE_elog(...) elog(__VA_ARGS__)
#else
#define CACHE_elog(...)
#endif
/* Cache management header --- pointer is NULL until created */
static CatCacheHeader *CacheHdr = NULL;
static inline HeapTuple SearchCatCacheInternal(CatCache *cache,
int nkeys,
Datum v1, Datum v2,
Datum v3, Datum v4);
static pg_noinline HeapTuple SearchCatCacheMiss(CatCache *cache,
int nkeys,
uint32 hashValue,
Index hashIndex,
Datum v1, Datum v2,
Datum v3, Datum v4);
static uint32 CatalogCacheComputeHashValue(CatCache *cache, int nkeys,
Datum v1, Datum v2, Datum v3, Datum v4);
static uint32 CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys,
HeapTuple tuple);
static inline bool CatalogCacheCompareTuple(const CatCache *cache, int nkeys,
const Datum *cachekeys,
const Datum *searchkeys);
#ifdef CATCACHE_STATS
static void CatCachePrintStats(int code, Datum arg);
#endif
static void CatCacheRemoveCTup(CatCache *cache, CatCTup *ct);
static void CatCacheRemoveCList(CatCache *cache, CatCList *cl);
static void CatalogCacheInitializeCache(CatCache *cache);
static CatCTup *CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp,
Datum *arguments,
uint32 hashValue, Index hashIndex,
bool negative);
static void CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos,
Datum *keys);
static void CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos,
Datum *srckeys, Datum *dstkeys);
/*
* internal support functions
*/
/*
* Hash and equality functions for system types that are used as cache key
* fields. In some cases, we just call the regular SQL-callable functions for
* the appropriate data type, but that tends to be a little slow, and the
* speed of these functions is performance-critical. Therefore, for data
* types that frequently occur as catcache keys, we hard-code the logic here.
* Avoiding the overhead of DirectFunctionCallN(...) is a substantial win, and
* in certain cases (like int4) we can adopt a faster hash algorithm as well.
*/
static bool
chareqfast(Datum a, Datum b)
{
return DatumGetChar(a) == DatumGetChar(b);
}
static uint32
charhashfast(Datum datum)
{
return murmurhash32((int32) DatumGetChar(datum));
}
static bool
nameeqfast(Datum a, Datum b)
{
char *ca = NameStr(*DatumGetName(a));
char *cb = NameStr(*DatumGetName(b));
return strncmp(ca, cb, NAMEDATALEN) == 0;
}
static uint32
namehashfast(Datum datum)
{
char *key = NameStr(*DatumGetName(datum));
return hash_any((unsigned char *) key, strlen(key));
}
static bool
int2eqfast(Datum a, Datum b)
{
return DatumGetInt16(a) == DatumGetInt16(b);
}
static uint32
int2hashfast(Datum datum)
{
return murmurhash32((int32) DatumGetInt16(datum));
}
static bool
int4eqfast(Datum a, Datum b)
{
return DatumGetInt32(a) == DatumGetInt32(b);
}
static uint32
int4hashfast(Datum datum)
{
return murmurhash32((int32) DatumGetInt32(datum));
}
static bool
texteqfast(Datum a, Datum b)
{
/*
* The use of DEFAULT_COLLATION_OID is fairly arbitrary here. We just
* want to take the fast "deterministic" path in texteq().
*/
return DatumGetBool(DirectFunctionCall2Coll(texteq, DEFAULT_COLLATION_OID, a, b));
}
static uint32
texthashfast(Datum datum)
{
/* analogously here as in texteqfast() */
return DatumGetInt32(DirectFunctionCall1Coll(hashtext, DEFAULT_COLLATION_OID, datum));
}
static bool
oidvectoreqfast(Datum a, Datum b)
{
return DatumGetBool(DirectFunctionCall2(oidvectoreq, a, b));
}
static uint32
oidvectorhashfast(Datum datum)
{
return DatumGetInt32(DirectFunctionCall1(hashoidvector, datum));
}
/* Lookup support functions for a type. */
static void
GetCCHashEqFuncs(Oid keytype, CCHashFN *hashfunc, RegProcedure *eqfunc, CCFastEqualFN *fasteqfunc)
{
switch (keytype)
{
case BOOLOID:
*hashfunc = charhashfast;
*fasteqfunc = chareqfast;
*eqfunc = F_BOOLEQ;
break;
case CHAROID:
*hashfunc = charhashfast;
*fasteqfunc = chareqfast;
*eqfunc = F_CHAREQ;
break;
case NAMEOID:
*hashfunc = namehashfast;
*fasteqfunc = nameeqfast;
*eqfunc = F_NAMEEQ;
break;
case INT2OID:
*hashfunc = int2hashfast;
*fasteqfunc = int2eqfast;
*eqfunc = F_INT2EQ;
break;
case INT4OID:
*hashfunc = int4hashfast;
*fasteqfunc = int4eqfast;
*eqfunc = F_INT4EQ;
break;
case TEXTOID:
*hashfunc = texthashfast;
*fasteqfunc = texteqfast;
*eqfunc = F_TEXTEQ;
break;
case OIDOID:
case REGPROCOID:
case REGPROCEDUREOID:
case REGOPEROID:
case REGOPERATOROID:
case REGCLASSOID:
case REGTYPEOID:
case REGCONFIGOID:
case REGDICTIONARYOID:
case REGROLEOID:
case REGNAMESPACEOID:
*hashfunc = int4hashfast;
*fasteqfunc = int4eqfast;
*eqfunc = F_OIDEQ;
break;
case OIDVECTOROID:
*hashfunc = oidvectorhashfast;
*fasteqfunc = oidvectoreqfast;
*eqfunc = F_OIDVECTOREQ;
break;
default:
elog(FATAL, "type %u not supported as catcache key", keytype);
*hashfunc = NULL; /* keep compiler quiet */
*eqfunc = InvalidOid;
break;
}
}
/*
* CatalogCacheComputeHashValue
*
* Compute the hash value associated with a given set of lookup keys
*/
static uint32
CatalogCacheComputeHashValue(CatCache *cache, int nkeys,
Datum v1, Datum v2, Datum v3, Datum v4)
{
uint32 hashValue = 0;
uint32 oneHash;
CCHashFN *cc_hashfunc = cache->cc_hashfunc;
CACHE_elog(DEBUG2, "CatalogCacheComputeHashValue %s %d %p",
cache->cc_relname, nkeys, cache);
switch (nkeys)
{
case 4:
oneHash = (cc_hashfunc[3]) (v4);
hashValue ^= oneHash << 24;
hashValue ^= oneHash >> 8;
/* FALLTHROUGH */
case 3:
oneHash = (cc_hashfunc[2]) (v3);
hashValue ^= oneHash << 16;
hashValue ^= oneHash >> 16;
/* FALLTHROUGH */
case 2:
oneHash = (cc_hashfunc[1]) (v2);
hashValue ^= oneHash << 8;
hashValue ^= oneHash >> 24;
/* FALLTHROUGH */
case 1:
oneHash = (cc_hashfunc[0]) (v1);
hashValue ^= oneHash;
break;
default:
elog(FATAL, "wrong number of hash keys: %d", nkeys);
break;
}
return hashValue;
}
/*
* CatalogCacheComputeTupleHashValue
*
* Compute the hash value associated with a given tuple to be cached
*/
static uint32
CatalogCacheComputeTupleHashValue(CatCache *cache, int nkeys, HeapTuple tuple)
{
Datum v1 = 0,
v2 = 0,
v3 = 0,
v4 = 0;
bool isNull = false;
int *cc_keyno = cache->cc_keyno;
TupleDesc cc_tupdesc = cache->cc_tupdesc;
/* Now extract key fields from tuple, insert into scankey */
switch (nkeys)
{
case 4:
v4 = fastgetattr(tuple,
cc_keyno[3],
cc_tupdesc,
&isNull);
Assert(!isNull);
/* FALLTHROUGH */
case 3:
v3 = fastgetattr(tuple,
cc_keyno[2],
cc_tupdesc,
&isNull);
Assert(!isNull);
/* FALLTHROUGH */
case 2:
v2 = fastgetattr(tuple,
cc_keyno[1],
cc_tupdesc,
&isNull);
Assert(!isNull);
/* FALLTHROUGH */
case 1:
v1 = fastgetattr(tuple,
cc_keyno[0],
cc_tupdesc,
&isNull);
Assert(!isNull);
break;
default:
elog(FATAL, "wrong number of hash keys: %d", nkeys);
break;
}
return CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
}
/*
* CatalogCacheCompareTuple
*
* Compare a tuple to the passed arguments.
*/
static inline bool
CatalogCacheCompareTuple(const CatCache *cache, int nkeys,
const Datum *cachekeys,
const Datum *searchkeys)
{
const CCFastEqualFN *cc_fastequal = cache->cc_fastequal;
int i;
for (i = 0; i < nkeys; i++)
{
if (!(cc_fastequal[i]) (cachekeys[i], searchkeys[i]))
return false;
}
return true;
}
#ifdef CATCACHE_STATS
static void
CatCachePrintStats(int code, Datum arg)
{
slist_iter iter;
long cc_searches = 0;
long cc_hits = 0;
long cc_neg_hits = 0;
long cc_newloads = 0;
long cc_invals = 0;
long cc_lsearches = 0;
long cc_lhits = 0;
slist_foreach(iter, &CacheHdr->ch_caches)
{
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
if (cache->cc_ntup == 0 && cache->cc_searches == 0)
continue; /* don't print unused caches */
elog(DEBUG2, "catcache %s/%u: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits",
cache->cc_relname,
cache->cc_indexoid,
cache->cc_ntup,
cache->cc_searches,
cache->cc_hits,
cache->cc_neg_hits,
cache->cc_hits + cache->cc_neg_hits,
cache->cc_newloads,
cache->cc_searches - cache->cc_hits - cache->cc_neg_hits - cache->cc_newloads,
cache->cc_searches - cache->cc_hits - cache->cc_neg_hits,
cache->cc_invals,
cache->cc_lsearches,
cache->cc_lhits);
cc_searches += cache->cc_searches;
cc_hits += cache->cc_hits;
cc_neg_hits += cache->cc_neg_hits;
cc_newloads += cache->cc_newloads;
cc_invals += cache->cc_invals;
cc_lsearches += cache->cc_lsearches;
cc_lhits += cache->cc_lhits;
}
elog(DEBUG2, "catcache totals: %d tup, %ld srch, %ld+%ld=%ld hits, %ld+%ld=%ld loads, %ld invals, %ld lsrch, %ld lhits",
CacheHdr->ch_ntup,
cc_searches,
cc_hits,
cc_neg_hits,
cc_hits + cc_neg_hits,
cc_newloads,
cc_searches - cc_hits - cc_neg_hits - cc_newloads,
cc_searches - cc_hits - cc_neg_hits,
cc_invals,
cc_lsearches,
cc_lhits);
}
#endif /* CATCACHE_STATS */
/*
* CatCacheRemoveCTup
*
* Unlink and delete the given cache entry
*
* NB: if it is a member of a CatCList, the CatCList is deleted too.
* Both the cache entry and the list had better have zero refcount.
*/
static void
CatCacheRemoveCTup(CatCache *cache, CatCTup *ct)
{
Assert(ct->refcount == 0);
Assert(ct->my_cache == cache);
if (ct->c_list)
{
/*
* The cleanest way to handle this is to call CatCacheRemoveCList,
* which will recurse back to me, and the recursive call will do the
* work. Set the "dead" flag to make sure it does recurse.
*/
ct->dead = true;
CatCacheRemoveCList(cache, ct->c_list);
return; /* nothing left to do */
}
/* delink from linked list */
dlist_delete(&ct->cache_elem);
/*
* Free keys when we're dealing with a negative entry, normal entries just
* point into tuple, allocated together with the CatCTup.
*/
if (ct->negative)
CatCacheFreeKeys(cache->cc_tupdesc, cache->cc_nkeys,
cache->cc_keyno, ct->keys);
pfree(ct);
--cache->cc_ntup;
--CacheHdr->ch_ntup;
}
/*
* CatCacheRemoveCList
*
* Unlink and delete the given cache list entry
*
* NB: any dead member entries that become unreferenced are deleted too.
*/
static void
CatCacheRemoveCList(CatCache *cache, CatCList *cl)
{
int i;
Assert(cl->refcount == 0);
Assert(cl->my_cache == cache);
/* delink from member tuples */
for (i = cl->n_members; --i >= 0;)
{
CatCTup *ct = cl->members[i];
Assert(ct->c_list == cl);
ct->c_list = NULL;
/* if the member is dead and now has no references, remove it */
if (
#ifndef CATCACHE_FORCE_RELEASE
ct->dead &&
#endif
ct->refcount == 0)
CatCacheRemoveCTup(cache, ct);
}
/* delink from linked list */
dlist_delete(&cl->cache_elem);
/* free associated column data */
CatCacheFreeKeys(cache->cc_tupdesc, cl->nkeys,
cache->cc_keyno, cl->keys);
pfree(cl);
}
/*
* CatCacheInvalidate
*
* Invalidate entries in the specified cache, given a hash value.
*
* We delete cache entries that match the hash value, whether positive
* or negative. We don't care whether the invalidation is the result
* of a tuple insertion or a deletion.
*
* We used to try to match positive cache entries by TID, but that is
* unsafe after a VACUUM FULL on a system catalog: an inval event could
* be queued before VACUUM FULL, and then processed afterwards, when the
* target tuple that has to be invalidated has a different TID than it
* did when the event was created. So now we just compare hash values and
* accept the small risk of unnecessary invalidations due to false matches.
*
* This routine is only quasi-public: it should only be used by inval.c.
*/
void
CatCacheInvalidate(CatCache *cache, uint32 hashValue)
{
Index hashIndex;
dlist_mutable_iter iter;
CACHE_elog(DEBUG2, "CatCacheInvalidate: called");
/*
* We don't bother to check whether the cache has finished initialization
* yet; if not, there will be no entries in it so no problem.
*/
/*
* Invalidate *all* CatCLists in this cache; it's too hard to tell which
* searches might still be correct, so just zap 'em all.
*/
dlist_foreach_modify(iter, &cache->cc_lists)
{
CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur);
if (cl->refcount > 0)
cl->dead = true;
else
CatCacheRemoveCList(cache, cl);
}
/*
* inspect the proper hash bucket for tuple matches
*/
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
dlist_foreach_modify(iter, &cache->cc_bucket[hashIndex])
{
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
if (hashValue == ct->hash_value)
{
if (ct->refcount > 0 ||
(ct->c_list && ct->c_list->refcount > 0))
{
ct->dead = true;
/* list, if any, was marked dead above */
Assert(ct->c_list == NULL || ct->c_list->dead);
}
else
CatCacheRemoveCTup(cache, ct);
CACHE_elog(DEBUG2, "CatCacheInvalidate: invalidated");
#ifdef CATCACHE_STATS
cache->cc_invals++;
#endif
/* could be multiple matches, so keep looking! */
}
}
}
/* ----------------------------------------------------------------
* public functions
* ----------------------------------------------------------------
*/
/*
* Standard routine for creating cache context if it doesn't exist yet
*
* There are a lot of places (probably far more than necessary) that check
* whether CacheMemoryContext exists yet and want to create it if not.
* We centralize knowledge of exactly how to create it here.
*/
void
CreateCacheMemoryContext(void)
{
/*
* Purely for paranoia, check that context doesn't exist; caller probably
* did so already.
*/
if (!CacheMemoryContext)
CacheMemoryContext = AllocSetContextCreate(TopMemoryContext,
"CacheMemoryContext",
ALLOCSET_DEFAULT_SIZES);
}
/*
* ResetCatalogCache
*
* Reset one catalog cache to empty.
*
* This is not very efficient if the target cache is nearly empty.
* However, it shouldn't need to be efficient; we don't invoke it often.
*/
static void
ResetCatalogCache(CatCache *cache)
{
dlist_mutable_iter iter;
int i;
/* Remove each list in this cache, or at least mark it dead */
dlist_foreach_modify(iter, &cache->cc_lists)
{
CatCList *cl = dlist_container(CatCList, cache_elem, iter.cur);
if (cl->refcount > 0)
cl->dead = true;
else
CatCacheRemoveCList(cache, cl);
}
/* Remove each tuple in this cache, or at least mark it dead */
for (i = 0; i < cache->cc_nbuckets; i++)
{
dlist_head *bucket = &cache->cc_bucket[i];
dlist_foreach_modify(iter, bucket)
{
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
if (ct->refcount > 0 ||
(ct->c_list && ct->c_list->refcount > 0))
{
ct->dead = true;
/* list, if any, was marked dead above */
Assert(ct->c_list == NULL || ct->c_list->dead);
}
else
CatCacheRemoveCTup(cache, ct);
#ifdef CATCACHE_STATS
cache->cc_invals++;
#endif
}
}
}
/*
* ResetCatalogCaches
*
* Reset all caches when a shared cache inval event forces it
*/
void
ResetCatalogCaches(void)
{
slist_iter iter;
CACHE_elog(DEBUG2, "ResetCatalogCaches called");
slist_foreach(iter, &CacheHdr->ch_caches)
{
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
ResetCatalogCache(cache);
}
CACHE_elog(DEBUG2, "end of ResetCatalogCaches call");
}
/*
* CatalogCacheFlushCatalog
*
* Flush all catcache entries that came from the specified system catalog.
* This is needed after VACUUM FULL/CLUSTER on the catalog, since the
* tuples very likely now have different TIDs than before. (At one point
* we also tried to force re-execution of CatalogCacheInitializeCache for
* the cache(s) on that catalog. This is a bad idea since it leads to all
* kinds of trouble if a cache flush occurs while loading cache entries.
* We now avoid the need to do it by copying cc_tupdesc out of the relcache,
* rather than relying on the relcache to keep a tupdesc for us. Of course
* this assumes the tupdesc of a cachable system table will not change...)
*/
void
CatalogCacheFlushCatalog(Oid catId)
{
slist_iter iter;
CACHE_elog(DEBUG2, "CatalogCacheFlushCatalog called for %u", catId);
slist_foreach(iter, &CacheHdr->ch_caches)
{
CatCache *cache = slist_container(CatCache, cc_next, iter.cur);
/* Does this cache store tuples of the target catalog? */
if (cache->cc_reloid == catId)
{
/* Yes, so flush all its contents */
ResetCatalogCache(cache);
/* Tell inval.c to call syscache callbacks for this cache */
CallSyscacheCallbacks(cache->id, 0);
}
}
CACHE_elog(DEBUG2, "end of CatalogCacheFlushCatalog call");
}
/*
* InitCatCache
*
* This allocates and initializes a cache for a system catalog relation.
* Actually, the cache is only partially initialized to avoid opening the
* relation. The relation will be opened and the rest of the cache
* structure initialized on the first access.
*/
#ifdef CACHEDEBUG
#define InitCatCache_DEBUG2 \
do { \
elog(DEBUG2, "InitCatCache: rel=%u ind=%u id=%d nkeys=%d size=%d", \
cp->cc_reloid, cp->cc_indexoid, cp->id, \
cp->cc_nkeys, cp->cc_nbuckets); \
} while(0)
#else
#define InitCatCache_DEBUG2
#endif
CatCache *
InitCatCache(int id,
Oid reloid,
Oid indexoid,
int nkeys,
const int *key,
int nbuckets)
{
CatCache *cp;
MemoryContext oldcxt;
size_t sz;
int i;
/*
* nbuckets is the initial number of hash buckets to use in this catcache.
* It will be enlarged later if it becomes too full.
*
* nbuckets must be a power of two. We check this via Assert rather than
* a full runtime check because the values will be coming from constant
* tables.
*
* If you're confused by the power-of-two check, see comments in
* bitmapset.c for an explanation.
*/
Assert(nbuckets > 0 && (nbuckets & -nbuckets) == nbuckets);
/*
* first switch to the cache context so our allocations do not vanish at
* the end of a transaction
*/
if (!CacheMemoryContext)
CreateCacheMemoryContext();
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
/*
* if first time through, initialize the cache group header
*/
if (CacheHdr == NULL)
{
CacheHdr = (CatCacheHeader *) palloc(sizeof(CatCacheHeader));
slist_init(&CacheHdr->ch_caches);
CacheHdr->ch_ntup = 0;
#ifdef CATCACHE_STATS
/* set up to dump stats at backend exit */
on_proc_exit(CatCachePrintStats, 0);
#endif
}
/*
* Allocate a new cache structure, aligning to a cacheline boundary
*
* Note: we rely on zeroing to initialize all the dlist headers correctly
*/
sz = sizeof(CatCache) + PG_CACHE_LINE_SIZE;
cp = (CatCache *) CACHELINEALIGN(palloc0(sz));
cp->cc_bucket = palloc0(nbuckets * sizeof(dlist_head));
/*
* initialize the cache's relation information for the relation
* corresponding to this cache, and initialize some of the new cache's
* other internal fields. But don't open the relation yet.
*/
cp->id = id;
cp->cc_relname = "(not known yet)";
cp->cc_reloid = reloid;
cp->cc_indexoid = indexoid;
cp->cc_relisshared = false; /* temporary */
cp->cc_tupdesc = (TupleDesc) NULL;
cp->cc_ntup = 0;
cp->cc_nbuckets = nbuckets;
cp->cc_nkeys = nkeys;
for (i = 0; i < nkeys; ++i)
cp->cc_keyno[i] = key[i];
/*
* new cache is initialized as far as we can go for now. print some
* debugging information, if appropriate.
*/
InitCatCache_DEBUG2;
/*
* add completed cache to top of group header's list
*/
slist_push_head(&CacheHdr->ch_caches, &cp->cc_next);
/*
* back to the old context before we return...
*/
MemoryContextSwitchTo(oldcxt);
return cp;
}
/*
* Enlarge a catcache, doubling the number of buckets.
*/
static void
RehashCatCache(CatCache *cp)
{
dlist_head *newbucket;
int newnbuckets;
int i;
elog(DEBUG1, "rehashing catalog cache id %d for %s; %d tups, %d buckets",
cp->id, cp->cc_relname, cp->cc_ntup, cp->cc_nbuckets);
/* Allocate a new, larger, hash table. */
newnbuckets = cp->cc_nbuckets * 2;
newbucket = (dlist_head *) MemoryContextAllocZero(CacheMemoryContext, newnbuckets * sizeof(dlist_head));
/* Move all entries from old hash table to new. */
for (i = 0; i < cp->cc_nbuckets; i++)
{
dlist_mutable_iter iter;
dlist_foreach_modify(iter, &cp->cc_bucket[i])
{
CatCTup *ct = dlist_container(CatCTup, cache_elem, iter.cur);
int hashIndex = HASH_INDEX(ct->hash_value, newnbuckets);
dlist_delete(iter.cur);
dlist_push_head(&newbucket[hashIndex], &ct->cache_elem);
}
}
/* Switch to the new array. */
pfree(cp->cc_bucket);
cp->cc_nbuckets = newnbuckets;
cp->cc_bucket = newbucket;
}
/*
* CatalogCacheInitializeCache
*
* This function does final initialization of a catcache: obtain the tuple
* descriptor and set up the hash and equality function links. We assume
* that the relcache entry can be opened at this point!
*/
#ifdef CACHEDEBUG
#define CatalogCacheInitializeCache_DEBUG1 \
elog(DEBUG2, "CatalogCacheInitializeCache: cache @%p rel=%u", cache, \
cache->cc_reloid)
#define CatalogCacheInitializeCache_DEBUG2 \
do { \
if (cache->cc_keyno[i] > 0) { \
elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d, %u", \
i+1, cache->cc_nkeys, cache->cc_keyno[i], \
TupleDescAttr(tupdesc, cache->cc_keyno[i] - 1)->atttypid); \
} else { \
elog(DEBUG2, "CatalogCacheInitializeCache: load %d/%d w/%d", \
i+1, cache->cc_nkeys, cache->cc_keyno[i]); \
} \
} while(0)
#else
#define CatalogCacheInitializeCache_DEBUG1
#define CatalogCacheInitializeCache_DEBUG2
#endif
static void
CatalogCacheInitializeCache(CatCache *cache)
{
Relation relation;
MemoryContext oldcxt;
TupleDesc tupdesc;
int i;
CatalogCacheInitializeCache_DEBUG1;
relation = table_open(cache->cc_reloid, AccessShareLock);
/*
* switch to the cache context so our allocations do not vanish at the end
* of a transaction
*/
Assert(CacheMemoryContext != NULL);
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
/*
* copy the relcache's tuple descriptor to permanent cache storage
*/
tupdesc = CreateTupleDescCopyConstr(RelationGetDescr(relation));
/*
* save the relation's name and relisshared flag, too (cc_relname is used
* only for debugging purposes)
*/
cache->cc_relname = pstrdup(RelationGetRelationName(relation));
cache->cc_relisshared = RelationGetForm(relation)->relisshared;
/*
* return to the caller's memory context and close the rel
*/
MemoryContextSwitchTo(oldcxt);
table_close(relation, AccessShareLock);
CACHE_elog(DEBUG2, "CatalogCacheInitializeCache: %s, %d keys",
cache->cc_relname, cache->cc_nkeys);
/*
* initialize cache's key information
*/
for (i = 0; i < cache->cc_nkeys; ++i)
{
Oid keytype;
RegProcedure eqfunc;
CatalogCacheInitializeCache_DEBUG2;
if (cache->cc_keyno[i] > 0)
{
Form_pg_attribute attr = TupleDescAttr(tupdesc,
cache->cc_keyno[i] - 1);
keytype = attr->atttypid;
/* cache key columns should always be NOT NULL */
Assert(attr->attnotnull);
}
else
{
if (cache->cc_keyno[i] < 0)
elog(FATAL, "sys attributes are not supported in caches");
keytype = OIDOID;
}
GetCCHashEqFuncs(keytype,
&cache->cc_hashfunc[i],
&eqfunc,
&cache->cc_fastequal[i]);
/*
* Do equality-function lookup (we assume this won't need a catalog
* lookup for any supported type)
*/
fmgr_info_cxt(eqfunc,
&cache->cc_skey[i].sk_func,
CacheMemoryContext);
/* Initialize sk_attno suitably for HeapKeyTest() and heap scans */
cache->cc_skey[i].sk_attno = cache->cc_keyno[i];
/* Fill in sk_strategy as well --- always standard equality */
cache->cc_skey[i].sk_strategy = BTEqualStrategyNumber;
cache->cc_skey[i].sk_subtype = InvalidOid;
/* If a catcache key requires a collation, it must be C collation */
cache->cc_skey[i].sk_collation = C_COLLATION_OID;
CACHE_elog(DEBUG2, "CatalogCacheInitializeCache %s %d %p",
cache->cc_relname, i, cache);
}
/*
* mark this cache fully initialized
*/
cache->cc_tupdesc = tupdesc;
}
/*
* InitCatCachePhase2 -- external interface for CatalogCacheInitializeCache
*
* One reason to call this routine is to ensure that the relcache has
* created entries for all the catalogs and indexes referenced by catcaches.
* Therefore, provide an option to open the index as well as fixing the
* cache itself. An exception is the indexes on pg_am, which we don't use
* (cf. IndexScanOK).
*/
void
InitCatCachePhase2(CatCache *cache, bool touch_index)
{
if (cache->cc_tupdesc == NULL)
CatalogCacheInitializeCache(cache);
if (touch_index &&
cache->id != AMOID &&
cache->id != AMNAME)
{
Relation idesc;
/*
* We must lock the underlying catalog before opening the index to
* avoid deadlock, since index_open could possibly result in reading
* this same catalog, and if anyone else is exclusive-locking this
* catalog and index they'll be doing it in that order.
*/
LockRelationOid(cache->cc_reloid, AccessShareLock);
idesc = index_open(cache->cc_indexoid, AccessShareLock);
/*
* While we've got the index open, let's check that it's unique (and
* not just deferrable-unique, thank you very much). This is just to
* catch thinkos in definitions of new catcaches, so we don't worry
* about the pg_am indexes not getting tested.
*/
Assert(idesc->rd_index->indisunique &&
idesc->rd_index->indimmediate);
index_close(idesc, AccessShareLock);
UnlockRelationOid(cache->cc_reloid, AccessShareLock);
}
}
/*
* IndexScanOK
*
* This function checks for tuples that will be fetched by
* IndexSupportInitialize() during relcache initialization for
* certain system indexes that support critical syscaches.
* We can't use an indexscan to fetch these, else we'll get into
* infinite recursion. A plain heap scan will work, however.
* Once we have completed relcache initialization (signaled by
* criticalRelcachesBuilt), we don't have to worry anymore.
*
* Similarly, during backend startup we have to be able to use the
* pg_authid and pg_auth_members syscaches for authentication even if
* we don't yet have relcache entries for those catalogs' indexes.
*/
static bool
IndexScanOK(CatCache *cache, ScanKey cur_skey)
{
switch (cache->id)
{
case INDEXRELID:
/*
* Rather than tracking exactly which indexes have to be loaded
* before we can use indexscans (which changes from time to time),
* just force all pg_index searches to be heap scans until we've
* built the critical relcaches.
*/
if (!criticalRelcachesBuilt)
return false;
break;
case AMOID:
case AMNAME:
/*
* Always do heap scans in pg_am, because it's so small there's
* not much point in an indexscan anyway. We *must* do this when
* initially building critical relcache entries, but we might as
* well just always do it.
*/
return false;
case AUTHNAME:
case AUTHOID:
case AUTHMEMMEMROLE:
/*
* Protect authentication lookups occurring before relcache has
* collected entries for shared indexes.
*/
if (!criticalSharedRelcachesBuilt)
return false;
break;
default:
break;
}
/* Normal case, allow index scan */
return true;
}
/*
* SearchCatCacheInternal
*
* This call searches a system cache for a tuple, opening the relation
* if necessary (on the first access to a particular cache).
*
* The result is NULL if not found, or a pointer to a HeapTuple in
* the cache. The caller must not modify the tuple, and must call
* ReleaseCatCache() when done with it.
*
* The search key values should be expressed as Datums of the key columns'
* datatype(s). (Pass zeroes for any unused parameters.) As a special
* exception, the passed-in key for a NAME column can be just a C string;
* the caller need not go to the trouble of converting it to a fully
* null-padded NAME.
*/
HeapTuple
SearchCatCache(CatCache *cache,
Datum v1,
Datum v2,
Datum v3,
Datum v4)
{
return SearchCatCacheInternal(cache, cache->cc_nkeys, v1, v2, v3, v4);
}
/*
* SearchCatCacheN() are SearchCatCache() versions for a specific number of
* arguments. The compiler can inline the body and unroll loops, making them a
* bit faster than SearchCatCache().
*/
HeapTuple
SearchCatCache1(CatCache *cache,
Datum v1)
{
return SearchCatCacheInternal(cache, 1, v1, 0, 0, 0);
}
HeapTuple
SearchCatCache2(CatCache *cache,
Datum v1, Datum v2)
{
return SearchCatCacheInternal(cache, 2, v1, v2, 0, 0);
}
HeapTuple
SearchCatCache3(CatCache *cache,
Datum v1, Datum v2, Datum v3)
{
return SearchCatCacheInternal(cache, 3, v1, v2, v3, 0);
}
HeapTuple
SearchCatCache4(CatCache *cache,
Datum v1, Datum v2, Datum v3, Datum v4)
{
return SearchCatCacheInternal(cache, 4, v1, v2, v3, v4);
}
/*
* Work-horse for SearchCatCache/SearchCatCacheN.
*/
static inline HeapTuple
SearchCatCacheInternal(CatCache *cache,
int nkeys,
Datum v1,
Datum v2,
Datum v3,
Datum v4)
{
Datum arguments[CATCACHE_MAXKEYS];
uint32 hashValue;
Index hashIndex;
dlist_iter iter;
dlist_head *bucket;
CatCTup *ct;
/* Make sure we're in an xact, even if this ends up being a cache hit */
Assert(IsTransactionState());
Assert(cache->cc_nkeys == nkeys);
/*
* one-time startup overhead for each cache
*/
if (unlikely(cache->cc_tupdesc == NULL))
CatalogCacheInitializeCache(cache);
#ifdef CATCACHE_STATS
cache->cc_searches++;
#endif
/* Initialize local parameter array */
arguments[0] = v1;
arguments[1] = v2;
arguments[2] = v3;
arguments[3] = v4;
/*
* find the hash bucket in which to look for the tuple
*/
hashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
/*
* scan the hash bucket until we find a match or exhaust our tuples
*
* Note: it's okay to use dlist_foreach here, even though we modify the
* dlist within the loop, because we don't continue the loop afterwards.
*/
bucket = &cache->cc_bucket[hashIndex];
dlist_foreach(iter, bucket)
{
ct = dlist_container(CatCTup, cache_elem, iter.cur);
if (ct->dead)
continue; /* ignore dead entries */
if (ct->hash_value != hashValue)
continue; /* quickly skip entry if wrong hash val */
if (!CatalogCacheCompareTuple(cache, nkeys, ct->keys, arguments))
continue;
/*
* We found a match in the cache. Move it to the front of the list
* for its hashbucket, in order to speed subsequent searches. (The
* most frequently accessed elements in any hashbucket will tend to be
* near the front of the hashbucket's list.)
*/
dlist_move_head(bucket, &ct->cache_elem);
/*
* If it's a positive entry, bump its refcount and return it. If it's
* negative, we can report failure to the caller.
*/
if (!ct->negative)
{
ResourceOwnerEnlargeCatCacheRefs(CurrentResourceOwner);
ct->refcount++;
ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple);
CACHE_elog(DEBUG2, "SearchCatCache(%s): found in bucket %d",
cache->cc_relname, hashIndex);
#ifdef CATCACHE_STATS
cache->cc_hits++;
#endif
return &ct->tuple;
}
else
{
CACHE_elog(DEBUG2, "SearchCatCache(%s): found neg entry in bucket %d",
cache->cc_relname, hashIndex);
#ifdef CATCACHE_STATS
cache->cc_neg_hits++;
#endif
return NULL;
}
}
return SearchCatCacheMiss(cache, nkeys, hashValue, hashIndex, v1, v2, v3, v4);
}
/*
* Search the actual catalogs, rather than the cache.
*
* This is kept separate from SearchCatCacheInternal() to keep the fast-path
* as small as possible. To avoid that effort being undone by a helpful
* compiler, try to explicitly forbid inlining.
*/
static pg_noinline HeapTuple
SearchCatCacheMiss(CatCache *cache,
int nkeys,
uint32 hashValue,
Index hashIndex,
Datum v1,
Datum v2,
Datum v3,
Datum v4)
{
ScanKeyData cur_skey[CATCACHE_MAXKEYS];
Relation relation;
SysScanDesc scandesc;
HeapTuple ntp;
CatCTup *ct;
Datum arguments[CATCACHE_MAXKEYS];
/* Initialize local parameter array */
arguments[0] = v1;
arguments[1] = v2;
arguments[2] = v3;
arguments[3] = v4;
/*
* Ok, need to make a lookup in the relation, copy the scankey and fill
* out any per-call fields.
*/
memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * nkeys);
cur_skey[0].sk_argument = v1;
cur_skey[1].sk_argument = v2;
cur_skey[2].sk_argument = v3;
cur_skey[3].sk_argument = v4;
/*
* Tuple was not found in cache, so we have to try to retrieve it directly
* from the relation. If found, we will add it to the cache; if not
* found, we will add a negative cache entry instead.
*
* NOTE: it is possible for recursive cache lookups to occur while reading
* the relation --- for example, due to shared-cache-inval messages being
* processed during table_open(). This is OK. It's even possible for one
* of those lookups to find and enter the very same tuple we are trying to
* fetch here. If that happens, we will enter a second copy of the tuple
* into the cache. The first copy will never be referenced again, and
* will eventually age out of the cache, so there's no functional problem.
* This case is rare enough that it's not worth expending extra cycles to
* detect.
*/
relation = table_open(cache->cc_reloid, AccessShareLock);
scandesc = systable_beginscan(relation,
cache->cc_indexoid,
IndexScanOK(cache, cur_skey),
NULL,
nkeys,
cur_skey);
ct = NULL;
while (HeapTupleIsValid(ntp = systable_getnext(scandesc)))
{
ct = CatalogCacheCreateEntry(cache, ntp, arguments,
hashValue, hashIndex,
false);
/* immediately set the refcount to 1 */
ResourceOwnerEnlargeCatCacheRefs(CurrentResourceOwner);
ct->refcount++;
ResourceOwnerRememberCatCacheRef(CurrentResourceOwner, &ct->tuple);
break; /* assume only one match */
}
systable_endscan(scandesc);
table_close(relation, AccessShareLock);
/*
* If tuple was not found, we need to build a negative cache entry
* containing a fake tuple. The fake tuple has the correct key columns,
* but nulls everywhere else.
*
* In bootstrap mode, we don't build negative entries, because the cache
* invalidation mechanism isn't alive and can't clear them if the tuple
* gets created later. (Bootstrap doesn't do UPDATEs, so it doesn't need
* cache inval for that.)
*/
if (ct == NULL)
{
if (IsBootstrapProcessingMode())
return NULL;
ct = CatalogCacheCreateEntry(cache, NULL, arguments,
hashValue, hashIndex,
true);
CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples",
cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup);
CACHE_elog(DEBUG2, "SearchCatCache(%s): put neg entry in bucket %d",
cache->cc_relname, hashIndex);
/*
* We are not returning the negative entry to the caller, so leave its
* refcount zero.
*/
return NULL;
}
CACHE_elog(DEBUG2, "SearchCatCache(%s): Contains %d/%d tuples",
cache->cc_relname, cache->cc_ntup, CacheHdr->ch_ntup);
CACHE_elog(DEBUG2, "SearchCatCache(%s): put in bucket %d",
cache->cc_relname, hashIndex);
#ifdef CATCACHE_STATS
cache->cc_newloads++;
#endif
return &ct->tuple;
}
/*
* ReleaseCatCache
*
* Decrement the reference count of a catcache entry (releasing the
* hold grabbed by a successful SearchCatCache).
*
* NOTE: if compiled with -DCATCACHE_FORCE_RELEASE then catcache entries
* will be freed as soon as their refcount goes to zero. In combination
* with aset.c's CLOBBER_FREED_MEMORY option, this provides a good test
* to catch references to already-released catcache entries.
*/
void
ReleaseCatCache(HeapTuple tuple)
{
CatCTup *ct = (CatCTup *) (((char *) tuple) -
offsetof(CatCTup, tuple));
/* Safety checks to ensure we were handed a cache entry */
Assert(ct->ct_magic == CT_MAGIC);
Assert(ct->refcount > 0);
ct->refcount--;
ResourceOwnerForgetCatCacheRef(CurrentResourceOwner, &ct->tuple);
if (
#ifndef CATCACHE_FORCE_RELEASE
ct->dead &&
#endif
ct->refcount == 0 &&
(ct->c_list == NULL || ct->c_list->refcount == 0))
CatCacheRemoveCTup(ct->my_cache, ct);
}
/*
* GetCatCacheHashValue
*
* Compute the hash value for a given set of search keys.
*
* The reason for exposing this as part of the API is that the hash value is
* exposed in cache invalidation operations, so there are places outside the
* catcache code that need to be able to compute the hash values.
*/
uint32
GetCatCacheHashValue(CatCache *cache,
Datum v1,
Datum v2,
Datum v3,
Datum v4)
{
/*
* one-time startup overhead for each cache
*/
if (cache->cc_tupdesc == NULL)
CatalogCacheInitializeCache(cache);
/*
* calculate the hash value
*/
return CatalogCacheComputeHashValue(cache, cache->cc_nkeys, v1, v2, v3, v4);
}
/*
* SearchCatCacheList
*
* Generate a list of all tuples matching a partial key (that is,
* a key specifying just the first K of the cache's N key columns).
*
* It doesn't make any sense to specify all of the cache's key columns
* here: since the key is unique, there could be at most one match, so
* you ought to use SearchCatCache() instead. Hence this function takes
* one less Datum argument than SearchCatCache() does.
*
* The caller must not modify the list object or the pointed-to tuples,
* and must call ReleaseCatCacheList() when done with the list.
*/
CatCList *
SearchCatCacheList(CatCache *cache,
int nkeys,
Datum v1,
Datum v2,
Datum v3)
{
Datum v4 = 0; /* dummy last-column value */
Datum arguments[CATCACHE_MAXKEYS];
uint32 lHashValue;
dlist_iter iter;
CatCList *cl;
CatCTup *ct;
List *volatile ctlist;
ListCell *ctlist_item;
int nmembers;
bool ordered;
HeapTuple ntp;
MemoryContext oldcxt;
int i;
/*
* one-time startup overhead for each cache
*/
if (cache->cc_tupdesc == NULL)
CatalogCacheInitializeCache(cache);
Assert(nkeys > 0 && nkeys < cache->cc_nkeys);
#ifdef CATCACHE_STATS
cache->cc_lsearches++;
#endif
/* Initialize local parameter array */
arguments[0] = v1;
arguments[1] = v2;
arguments[2] = v3;
arguments[3] = v4;
/*
* compute a hash value of the given keys for faster search. We don't
* presently divide the CatCList items into buckets, but this still lets
* us skip non-matching items quickly most of the time.
*/
lHashValue = CatalogCacheComputeHashValue(cache, nkeys, v1, v2, v3, v4);
/*
* scan the items until we find a match or exhaust our list
*
* Note: it's okay to use dlist_foreach here, even though we modify the
* dlist within the loop, because we don't continue the loop afterwards.
*/
dlist_foreach(iter, &cache->cc_lists)
{
cl = dlist_container(CatCList, cache_elem, iter.cur);
if (cl->dead)
continue; /* ignore dead entries */
if (cl->hash_value != lHashValue)
continue; /* quickly skip entry if wrong hash val */
/*
* see if the cached list matches our key.
*/
if (cl->nkeys != nkeys)
continue;
if (!CatalogCacheCompareTuple(cache, nkeys, cl->keys, arguments))
continue;
/*
* We found a matching list. Move the list to the front of the
* cache's list-of-lists, to speed subsequent searches. (We do not
* move the members to the fronts of their hashbucket lists, however,
* since there's no point in that unless they are searched for
* individually.)
*/
dlist_move_head(&cache->cc_lists, &cl->cache_elem);
/* Bump the list's refcount and return it */
ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner);
cl->refcount++;
ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl);
CACHE_elog(DEBUG2, "SearchCatCacheList(%s): found list",
cache->cc_relname);
#ifdef CATCACHE_STATS
cache->cc_lhits++;
#endif
return cl;
}
/*
* List was not found in cache, so we have to build it by reading the
* relation. For each matching tuple found in the relation, use an
* existing cache entry if possible, else build a new one.
*
* We have to bump the member refcounts temporarily to ensure they won't
* get dropped from the cache while loading other members. We use a PG_TRY
* block to ensure we can undo those refcounts if we get an error before
* we finish constructing the CatCList.
*/
ResourceOwnerEnlargeCatCacheListRefs(CurrentResourceOwner);
ctlist = NIL;
PG_TRY();
{
ScanKeyData cur_skey[CATCACHE_MAXKEYS];
Relation relation;
SysScanDesc scandesc;
/*
* Ok, need to make a lookup in the relation, copy the scankey and
* fill out any per-call fields.
*/
memcpy(cur_skey, cache->cc_skey, sizeof(ScanKeyData) * cache->cc_nkeys);
cur_skey[0].sk_argument = v1;
cur_skey[1].sk_argument = v2;
cur_skey[2].sk_argument = v3;
cur_skey[3].sk_argument = v4;
relation = table_open(cache->cc_reloid, AccessShareLock);
scandesc = systable_beginscan(relation,
cache->cc_indexoid,
IndexScanOK(cache, cur_skey),
NULL,
nkeys,
cur_skey);
/* The list will be ordered iff we are doing an index scan */
ordered = (scandesc->irel != NULL);
while (HeapTupleIsValid(ntp = systable_getnext(scandesc)))
{
uint32 hashValue;
Index hashIndex;
bool found = false;
dlist_head *bucket;
/*
* See if there's an entry for this tuple already.
*/
ct = NULL;
hashValue = CatalogCacheComputeTupleHashValue(cache, cache->cc_nkeys, ntp);
hashIndex = HASH_INDEX(hashValue, cache->cc_nbuckets);
bucket = &cache->cc_bucket[hashIndex];
dlist_foreach(iter, bucket)
{
ct = dlist_container(CatCTup, cache_elem, iter.cur);
if (ct->dead || ct->negative)
continue; /* ignore dead and negative entries */
if (ct->hash_value != hashValue)
continue; /* quickly skip entry if wrong hash val */
if (!ItemPointerEquals(&(ct->tuple.t_self), &(ntp->t_self)))
continue; /* not same tuple */
/*
* Found a match, but can't use it if it belongs to another
* list already
*/
if (ct->c_list)
continue;
found = true;
break; /* A-OK */
}
if (!found)
{
/* We didn't find a usable entry, so make a new one */
ct = CatalogCacheCreateEntry(cache, ntp, arguments,
hashValue, hashIndex,
false);
}
/* Careful here: add entry to ctlist, then bump its refcount */
/* This way leaves state correct if lappend runs out of memory */
ctlist = lappend(ctlist, ct);
ct->refcount++;
}
systable_endscan(scandesc);
table_close(relation, AccessShareLock);
/* Now we can build the CatCList entry. */
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
nmembers = list_length(ctlist);
cl = (CatCList *)
palloc(offsetof(CatCList, members) + nmembers * sizeof(CatCTup *));
/* Extract key values */
CatCacheCopyKeys(cache->cc_tupdesc, nkeys, cache->cc_keyno,
arguments, cl->keys);
MemoryContextSwitchTo(oldcxt);
/*
* We are now past the last thing that could trigger an elog before we
* have finished building the CatCList and remembering it in the
* resource owner. So it's OK to fall out of the PG_TRY, and indeed
* we'd better do so before we start marking the members as belonging
* to the list.
*/
}
PG_CATCH();
{
foreach(ctlist_item, ctlist)
{
ct = (CatCTup *) lfirst(ctlist_item);
Assert(ct->c_list == NULL);
Assert(ct->refcount > 0);
ct->refcount--;
if (
#ifndef CATCACHE_FORCE_RELEASE
ct->dead &&
#endif
ct->refcount == 0 &&
(ct->c_list == NULL || ct->c_list->refcount == 0))
CatCacheRemoveCTup(cache, ct);
}
PG_RE_THROW();
}
PG_END_TRY();
cl->cl_magic = CL_MAGIC;
cl->my_cache = cache;
cl->refcount = 0; /* for the moment */
cl->dead = false;
cl->ordered = ordered;
cl->nkeys = nkeys;
cl->hash_value = lHashValue;
cl->n_members = nmembers;
i = 0;
foreach(ctlist_item, ctlist)
{
cl->members[i++] = ct = (CatCTup *) lfirst(ctlist_item);
Assert(ct->c_list == NULL);
ct->c_list = cl;
/* release the temporary refcount on the member */
Assert(ct->refcount > 0);
ct->refcount--;
/* mark list dead if any members already dead */
if (ct->dead)
cl->dead = true;
}
Assert(i == nmembers);
dlist_push_head(&cache->cc_lists, &cl->cache_elem);
/* Finally, bump the list's refcount and return it */
cl->refcount++;
ResourceOwnerRememberCatCacheListRef(CurrentResourceOwner, cl);
CACHE_elog(DEBUG2, "SearchCatCacheList(%s): made list of %d members",
cache->cc_relname, nmembers);
return cl;
}
/*
* ReleaseCatCacheList
*
* Decrement the reference count of a catcache list.
*/
void
ReleaseCatCacheList(CatCList *list)
{
/* Safety checks to ensure we were handed a cache entry */
Assert(list->cl_magic == CL_MAGIC);
Assert(list->refcount > 0);
list->refcount--;
ResourceOwnerForgetCatCacheListRef(CurrentResourceOwner, list);
if (
#ifndef CATCACHE_FORCE_RELEASE
list->dead &&
#endif
list->refcount == 0)
CatCacheRemoveCList(list->my_cache, list);
}
/*
* CatalogCacheCreateEntry
* Create a new CatCTup entry, copying the given HeapTuple and other
* supplied data into it. The new entry initially has refcount 0.
*/
static CatCTup *
CatalogCacheCreateEntry(CatCache *cache, HeapTuple ntp, Datum *arguments,
uint32 hashValue, Index hashIndex,
bool negative)
{
CatCTup *ct;
HeapTuple dtp;
MemoryContext oldcxt;
/* negative entries have no tuple associated */
if (ntp)
{
int i;
Assert(!negative);
/*
* If there are any out-of-line toasted fields in the tuple, expand
* them in-line. This saves cycles during later use of the catcache
* entry, and also protects us against the possibility of the toast
* tuples being freed before we attempt to fetch them, in case of
* something using a slightly stale catcache entry.
*/
if (HeapTupleHasExternal(ntp))
dtp = toast_flatten_tuple(ntp, cache->cc_tupdesc);
else
dtp = ntp;
/* Allocate memory for CatCTup and the cached tuple in one go */
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
ct = (CatCTup *) palloc(sizeof(CatCTup) +
MAXIMUM_ALIGNOF + dtp->t_len);
ct->tuple.t_len = dtp->t_len;
ct->tuple.t_self = dtp->t_self;
ct->tuple.t_tableOid = dtp->t_tableOid;
ct->tuple.t_data = (HeapTupleHeader)
MAXALIGN(((char *) ct) + sizeof(CatCTup));
/* copy tuple contents */
memcpy((char *) ct->tuple.t_data,
(const char *) dtp->t_data,
dtp->t_len);
MemoryContextSwitchTo(oldcxt);
if (dtp != ntp)
heap_freetuple(dtp);
/* extract keys - they'll point into the tuple if not by-value */
for (i = 0; i < cache->cc_nkeys; i++)
{
Datum atp;
bool isnull;
atp = heap_getattr(&ct->tuple,
cache->cc_keyno[i],
cache->cc_tupdesc,
&isnull);
Assert(!isnull);
ct->keys[i] = atp;
}
}
else
{
Assert(negative);
oldcxt = MemoryContextSwitchTo(CacheMemoryContext);
ct = (CatCTup *) palloc(sizeof(CatCTup));
/*
* Store keys - they'll point into separately allocated memory if not
* by-value.
*/
CatCacheCopyKeys(cache->cc_tupdesc, cache->cc_nkeys, cache->cc_keyno,
arguments, ct->keys);
MemoryContextSwitchTo(oldcxt);
}
/*
* Finish initializing the CatCTup header, and add it to the cache's
* linked list and counts.
*/
ct->ct_magic = CT_MAGIC;
ct->my_cache = cache;
ct->c_list = NULL;
ct->refcount = 0; /* for the moment */
ct->dead = false;
ct->negative = negative;
ct->hash_value = hashValue;
dlist_push_head(&cache->cc_bucket[hashIndex], &ct->cache_elem);
cache->cc_ntup++;
CacheHdr->ch_ntup++;
/*
* If the hash table has become too full, enlarge the buckets array. Quite
* arbitrarily, we enlarge when fill factor > 2.
*/
if (cache->cc_ntup > cache->cc_nbuckets * 2)
RehashCatCache(cache);
return ct;
}
/*
* Helper routine that frees keys stored in the keys array.
*/
static void
CatCacheFreeKeys(TupleDesc tupdesc, int nkeys, int *attnos, Datum *keys)
{
int i;
for (i = 0; i < nkeys; i++)
{
int attnum = attnos[i];
Form_pg_attribute att;
/* system attribute are not supported in caches */
Assert(attnum > 0);
att = TupleDescAttr(tupdesc, attnum - 1);
if (!att->attbyval)
pfree(DatumGetPointer(keys[i]));
}
}
/*
* Helper routine that copies the keys in the srckeys array into the dstkeys
* one, guaranteeing that the datums are fully allocated in the current memory
* context.
*/
static void
CatCacheCopyKeys(TupleDesc tupdesc, int nkeys, int *attnos,
Datum *srckeys, Datum *dstkeys)
{
int i;
/*
* XXX: memory and lookup performance could possibly be improved by
* storing all keys in one allocation.
*/
for (i = 0; i < nkeys; i++)
{
int attnum = attnos[i];
Form_pg_attribute att = TupleDescAttr(tupdesc, attnum - 1);
Datum src = srckeys[i];
NameData srcname;
/*
* Must be careful in case the caller passed a C string where a NAME
* is wanted: convert the given argument to a correctly padded NAME.
* Otherwise the memcpy() done by datumCopy() could fall off the end
* of memory.
*/
if (att->atttypid == NAMEOID)
{
namestrcpy(&srcname, DatumGetCString(src));
src = NameGetDatum(&srcname);
}
dstkeys[i] = datumCopy(src,
att->attbyval,
att->attlen);
}
}
/*
* PrepareToInvalidateCacheTuple()
*
* This is part of a rather subtle chain of events, so pay attention:
*
* When a tuple is inserted or deleted, it cannot be flushed from the
* catcaches immediately, for reasons explained at the top of cache/inval.c.
* Instead we have to add entry(s) for the tuple to a list of pending tuple
* invalidations that will be done at the end of the command or transaction.
*
* The lists of tuples that need to be flushed are kept by inval.c. This
* routine is a helper routine for inval.c. Given a tuple belonging to
* the specified relation, find all catcaches it could be in, compute the
* correct hash value for each such catcache, and call the specified
* function to record the cache id and hash value in inval.c's lists.
* SysCacheInvalidate will be called later, if appropriate,
* using the recorded information.
*
* For an insert or delete, tuple is the target tuple and newtuple is NULL.
* For an update, we are called just once, with tuple being the old tuple
* version and newtuple the new version. We should make two list entries
* if the tuple's hash value changed, but only one if it didn't.
*
* Note that it is irrelevant whether the given tuple is actually loaded
* into the catcache at the moment. Even if it's not there now, it might
* be by the end of the command, or there might be a matching negative entry
* to flush --- or other backends' caches might have such entries --- so
* we have to make list entries to flush it later.
*
* Also note that it's not an error if there are no catcaches for the
* specified relation. inval.c doesn't know exactly which rels have
* catcaches --- it will call this routine for any tuple that's in a
* system relation.
*/
void
PrepareToInvalidateCacheTuple(Relation relation,
HeapTuple tuple,
HeapTuple newtuple,
void (*function) (int, uint32, Oid))
{
slist_iter iter;
Oid reloid;
CACHE_elog(DEBUG2, "PrepareToInvalidateCacheTuple: called");
/*
* sanity checks
*/
Assert(RelationIsValid(relation));
Assert(HeapTupleIsValid(tuple));
Assert(PointerIsValid(function));
Assert(CacheHdr != NULL);
reloid = RelationGetRelid(relation);
/* ----------------
* for each cache
* if the cache contains tuples from the specified relation
* compute the tuple's hash value(s) in this cache,
* and call the passed function to register the information.
* ----------------
*/
slist_foreach(iter, &CacheHdr->ch_caches)
{
CatCache *ccp = slist_container(CatCache, cc_next, iter.cur);
uint32 hashvalue;
Oid dbid;
if (ccp->cc_reloid != reloid)
continue;
/* Just in case cache hasn't finished initialization yet... */
if (ccp->cc_tupdesc == NULL)
CatalogCacheInitializeCache(ccp);
hashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, tuple);
dbid = ccp->cc_relisshared ? (Oid) 0 : MyDatabaseId;
(*function) (ccp->id, hashvalue, dbid);
if (newtuple)
{
uint32 newhashvalue;
newhashvalue = CatalogCacheComputeTupleHashValue(ccp, ccp->cc_nkeys, newtuple);
if (newhashvalue != hashvalue)
(*function) (ccp->id, newhashvalue, dbid);
}
}
}
/*
* Subroutines for warning about reference leaks. These are exported so
* that resowner.c can call them.
*/
void
PrintCatCacheLeakWarning(HeapTuple tuple)
{
CatCTup *ct = (CatCTup *) (((char *) tuple) -
offsetof(CatCTup, tuple));
/* Safety check to ensure we were handed a cache entry */
Assert(ct->ct_magic == CT_MAGIC);
elog(WARNING, "cache reference leak: cache %s (%d), tuple %u/%u has count %d",
ct->my_cache->cc_relname, ct->my_cache->id,
ItemPointerGetBlockNumber(&(tuple->t_self)),
ItemPointerGetOffsetNumber(&(tuple->t_self)),
ct->refcount);
}
void
PrintCatCacheListLeakWarning(CatCList *list)
{
elog(WARNING, "cache reference leak: cache %s (%d), list %p has count %d",
list->my_cache->cc_relname, list->my_cache->id,
list, list->refcount);
}