postgresql/src/backend/parser/parse_agg.c

2093 lines
60 KiB
C

/*-------------------------------------------------------------------------
*
* parse_agg.c
* handle aggregates and window functions in parser
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/parser/parse_agg.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/optimizer.h"
#include "parser/parse_agg.h"
#include "parser/parse_clause.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
typedef struct
{
ParseState *pstate;
int min_varlevel;
int min_agglevel;
int sublevels_up;
} check_agg_arguments_context;
typedef struct
{
ParseState *pstate;
Query *qry;
bool hasJoinRTEs;
List *groupClauses;
List *groupClauseCommonVars;
bool have_non_var_grouping;
List **func_grouped_rels;
int sublevels_up;
bool in_agg_direct_args;
} check_ungrouped_columns_context;
static int check_agg_arguments(ParseState *pstate,
List *directargs,
List *args,
Expr *filter);
static bool check_agg_arguments_walker(Node *node,
check_agg_arguments_context *context);
static void check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
List *groupClauses, List *groupClauseCommonVars,
bool have_non_var_grouping,
List **func_grouped_rels);
static bool check_ungrouped_columns_walker(Node *node,
check_ungrouped_columns_context *context);
static void finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
List *groupClauses, bool hasJoinRTEs,
bool have_non_var_grouping);
static bool finalize_grouping_exprs_walker(Node *node,
check_ungrouped_columns_context *context);
static void check_agglevels_and_constraints(ParseState *pstate, Node *expr);
static List *expand_groupingset_node(GroupingSet *gs);
static Node *make_agg_arg(Oid argtype, Oid argcollation);
/*
* transformAggregateCall -
* Finish initial transformation of an aggregate call
*
* parse_func.c has recognized the function as an aggregate, and has set up
* all the fields of the Aggref except aggargtypes, aggdirectargs, args,
* aggorder, aggdistinct and agglevelsup. The passed-in args list has been
* through standard expression transformation and type coercion to match the
* agg's declared arg types, while the passed-in aggorder list hasn't been
* transformed at all.
*
* Here we separate the args list into direct and aggregated args, storing the
* former in agg->aggdirectargs and the latter in agg->args. The regular
* args, but not the direct args, are converted into a targetlist by inserting
* TargetEntry nodes. We then transform the aggorder and agg_distinct
* specifications to produce lists of SortGroupClause nodes for agg->aggorder
* and agg->aggdistinct. (For a regular aggregate, this might result in
* adding resjunk expressions to the targetlist; but for ordered-set
* aggregates the aggorder list will always be one-to-one with the aggregated
* args.)
*
* We must also determine which query level the aggregate actually belongs to,
* set agglevelsup accordingly, and mark p_hasAggs true in the corresponding
* pstate level.
*/
void
transformAggregateCall(ParseState *pstate, Aggref *agg,
List *args, List *aggorder, bool agg_distinct)
{
List *argtypes = NIL;
List *tlist = NIL;
List *torder = NIL;
List *tdistinct = NIL;
AttrNumber attno = 1;
int save_next_resno;
ListCell *lc;
/*
* Before separating the args into direct and aggregated args, make a list
* of their data type OIDs for use later.
*/
foreach(lc, args)
{
Expr *arg = (Expr *) lfirst(lc);
argtypes = lappend_oid(argtypes, exprType((Node *) arg));
}
agg->aggargtypes = argtypes;
if (AGGKIND_IS_ORDERED_SET(agg->aggkind))
{
/*
* For an ordered-set agg, the args list includes direct args and
* aggregated args; we must split them apart.
*/
int numDirectArgs = list_length(args) - list_length(aggorder);
List *aargs;
ListCell *lc2;
Assert(numDirectArgs >= 0);
aargs = list_copy_tail(args, numDirectArgs);
agg->aggdirectargs = list_truncate(args, numDirectArgs);
/*
* Build a tlist from the aggregated args, and make a sortlist entry
* for each one. Note that the expressions in the SortBy nodes are
* ignored (they are the raw versions of the transformed args); we are
* just looking at the sort information in the SortBy nodes.
*/
forboth(lc, aargs, lc2, aggorder)
{
Expr *arg = (Expr *) lfirst(lc);
SortBy *sortby = (SortBy *) lfirst(lc2);
TargetEntry *tle;
/* We don't bother to assign column names to the entries */
tle = makeTargetEntry(arg, attno++, NULL, false);
tlist = lappend(tlist, tle);
torder = addTargetToSortList(pstate, tle,
torder, tlist, sortby);
}
/* Never any DISTINCT in an ordered-set agg */
Assert(!agg_distinct);
}
else
{
/* Regular aggregate, so it has no direct args */
agg->aggdirectargs = NIL;
/*
* Transform the plain list of Exprs into a targetlist.
*/
foreach(lc, args)
{
Expr *arg = (Expr *) lfirst(lc);
TargetEntry *tle;
/* We don't bother to assign column names to the entries */
tle = makeTargetEntry(arg, attno++, NULL, false);
tlist = lappend(tlist, tle);
}
/*
* If we have an ORDER BY, transform it. This will add columns to the
* tlist if they appear in ORDER BY but weren't already in the arg
* list. They will be marked resjunk = true so we can tell them apart
* from regular aggregate arguments later.
*
* We need to mess with p_next_resno since it will be used to number
* any new targetlist entries.
*/
save_next_resno = pstate->p_next_resno;
pstate->p_next_resno = attno;
torder = transformSortClause(pstate,
aggorder,
&tlist,
EXPR_KIND_ORDER_BY,
true /* force SQL99 rules */ );
/*
* If we have DISTINCT, transform that to produce a distinctList.
*/
if (agg_distinct)
{
tdistinct = transformDistinctClause(pstate, &tlist, torder, true);
/*
* Remove this check if executor support for hashed distinct for
* aggregates is ever added.
*/
foreach(lc, tdistinct)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
if (!OidIsValid(sortcl->sortop))
{
Node *expr = get_sortgroupclause_expr(sortcl, tlist);
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not identify an ordering operator for type %s",
format_type_be(exprType(expr))),
errdetail("Aggregates with DISTINCT must be able to sort their inputs."),
parser_errposition(pstate, exprLocation(expr))));
}
}
}
pstate->p_next_resno = save_next_resno;
}
/* Update the Aggref with the transformation results */
agg->args = tlist;
agg->aggorder = torder;
agg->aggdistinct = tdistinct;
check_agglevels_and_constraints(pstate, (Node *) agg);
}
/*
* transformGroupingFunc
* Transform a GROUPING expression
*
* GROUPING() behaves very like an aggregate. Processing of levels and nesting
* is done as for aggregates. We set p_hasAggs for these expressions too.
*/
Node *
transformGroupingFunc(ParseState *pstate, GroupingFunc *p)
{
ListCell *lc;
List *args = p->args;
List *result_list = NIL;
GroupingFunc *result = makeNode(GroupingFunc);
if (list_length(args) > 31)
ereport(ERROR,
(errcode(ERRCODE_TOO_MANY_ARGUMENTS),
errmsg("GROUPING must have fewer than 32 arguments"),
parser_errposition(pstate, p->location)));
foreach(lc, args)
{
Node *current_result;
current_result = transformExpr(pstate, (Node *) lfirst(lc), pstate->p_expr_kind);
/* acceptability of expressions is checked later */
result_list = lappend(result_list, current_result);
}
result->args = result_list;
result->location = p->location;
check_agglevels_and_constraints(pstate, (Node *) result);
return (Node *) result;
}
/*
* Aggregate functions and grouping operations (which are combined in the spec
* as <set function specification>) are very similar with regard to level and
* nesting restrictions (though we allow a lot more things than the spec does).
* Centralise those restrictions here.
*/
static void
check_agglevels_and_constraints(ParseState *pstate, Node *expr)
{
List *directargs = NIL;
List *args = NIL;
Expr *filter = NULL;
int min_varlevel;
int location = -1;
Index *p_levelsup;
const char *err;
bool errkind;
bool isAgg = IsA(expr, Aggref);
if (isAgg)
{
Aggref *agg = (Aggref *) expr;
directargs = agg->aggdirectargs;
args = agg->args;
filter = agg->aggfilter;
location = agg->location;
p_levelsup = &agg->agglevelsup;
}
else
{
GroupingFunc *grp = (GroupingFunc *) expr;
args = grp->args;
location = grp->location;
p_levelsup = &grp->agglevelsup;
}
/*
* Check the arguments to compute the aggregate's level and detect
* improper nesting.
*/
min_varlevel = check_agg_arguments(pstate,
directargs,
args,
filter);
*p_levelsup = min_varlevel;
/* Mark the correct pstate level as having aggregates */
while (min_varlevel-- > 0)
pstate = pstate->parentParseState;
pstate->p_hasAggs = true;
/*
* Check to see if the aggregate function is in an invalid place within
* its aggregation query.
*
* For brevity we support two schemes for reporting an error here: set
* "err" to a custom message, or set "errkind" true if the error context
* is sufficiently identified by what ParseExprKindName will return, *and*
* what it will return is just a SQL keyword. (Otherwise, use a custom
* message to avoid creating translation problems.)
*/
err = NULL;
errkind = false;
switch (pstate->p_expr_kind)
{
case EXPR_KIND_NONE:
Assert(false); /* can't happen */
break;
case EXPR_KIND_OTHER:
/*
* Accept aggregate/grouping here; caller must throw error if
* wanted
*/
break;
case EXPR_KIND_JOIN_ON:
case EXPR_KIND_JOIN_USING:
if (isAgg)
err = _("aggregate functions are not allowed in JOIN conditions");
else
err = _("grouping operations are not allowed in JOIN conditions");
break;
case EXPR_KIND_FROM_SUBSELECT:
/* Should only be possible in a LATERAL subquery */
Assert(pstate->p_lateral_active);
/*
* Aggregate/grouping scope rules make it worth being explicit
* here
*/
if (isAgg)
err = _("aggregate functions are not allowed in FROM clause of their own query level");
else
err = _("grouping operations are not allowed in FROM clause of their own query level");
break;
case EXPR_KIND_FROM_FUNCTION:
if (isAgg)
err = _("aggregate functions are not allowed in functions in FROM");
else
err = _("grouping operations are not allowed in functions in FROM");
break;
case EXPR_KIND_WHERE:
errkind = true;
break;
case EXPR_KIND_POLICY:
if (isAgg)
err = _("aggregate functions are not allowed in policy expressions");
else
err = _("grouping operations are not allowed in policy expressions");
break;
case EXPR_KIND_HAVING:
/* okay */
break;
case EXPR_KIND_FILTER:
errkind = true;
break;
case EXPR_KIND_WINDOW_PARTITION:
/* okay */
break;
case EXPR_KIND_WINDOW_ORDER:
/* okay */
break;
case EXPR_KIND_WINDOW_FRAME_RANGE:
if (isAgg)
err = _("aggregate functions are not allowed in window RANGE");
else
err = _("grouping operations are not allowed in window RANGE");
break;
case EXPR_KIND_WINDOW_FRAME_ROWS:
if (isAgg)
err = _("aggregate functions are not allowed in window ROWS");
else
err = _("grouping operations are not allowed in window ROWS");
break;
case EXPR_KIND_WINDOW_FRAME_GROUPS:
if (isAgg)
err = _("aggregate functions are not allowed in window GROUPS");
else
err = _("grouping operations are not allowed in window GROUPS");
break;
case EXPR_KIND_SELECT_TARGET:
/* okay */
break;
case EXPR_KIND_INSERT_TARGET:
case EXPR_KIND_UPDATE_SOURCE:
case EXPR_KIND_UPDATE_TARGET:
errkind = true;
break;
case EXPR_KIND_GROUP_BY:
errkind = true;
break;
case EXPR_KIND_ORDER_BY:
/* okay */
break;
case EXPR_KIND_DISTINCT_ON:
/* okay */
break;
case EXPR_KIND_LIMIT:
case EXPR_KIND_OFFSET:
errkind = true;
break;
case EXPR_KIND_RETURNING:
errkind = true;
break;
case EXPR_KIND_VALUES:
case EXPR_KIND_VALUES_SINGLE:
errkind = true;
break;
case EXPR_KIND_CHECK_CONSTRAINT:
case EXPR_KIND_DOMAIN_CHECK:
if (isAgg)
err = _("aggregate functions are not allowed in check constraints");
else
err = _("grouping operations are not allowed in check constraints");
break;
case EXPR_KIND_COLUMN_DEFAULT:
case EXPR_KIND_FUNCTION_DEFAULT:
if (isAgg)
err = _("aggregate functions are not allowed in DEFAULT expressions");
else
err = _("grouping operations are not allowed in DEFAULT expressions");
break;
case EXPR_KIND_INDEX_EXPRESSION:
if (isAgg)
err = _("aggregate functions are not allowed in index expressions");
else
err = _("grouping operations are not allowed in index expressions");
break;
case EXPR_KIND_INDEX_PREDICATE:
if (isAgg)
err = _("aggregate functions are not allowed in index predicates");
else
err = _("grouping operations are not allowed in index predicates");
break;
case EXPR_KIND_ALTER_COL_TRANSFORM:
if (isAgg)
err = _("aggregate functions are not allowed in transform expressions");
else
err = _("grouping operations are not allowed in transform expressions");
break;
case EXPR_KIND_EXECUTE_PARAMETER:
if (isAgg)
err = _("aggregate functions are not allowed in EXECUTE parameters");
else
err = _("grouping operations are not allowed in EXECUTE parameters");
break;
case EXPR_KIND_TRIGGER_WHEN:
if (isAgg)
err = _("aggregate functions are not allowed in trigger WHEN conditions");
else
err = _("grouping operations are not allowed in trigger WHEN conditions");
break;
case EXPR_KIND_PARTITION_BOUND:
if (isAgg)
err = _("aggregate functions are not allowed in partition bound");
else
err = _("grouping operations are not allowed in partition bound");
break;
case EXPR_KIND_PARTITION_EXPRESSION:
if (isAgg)
err = _("aggregate functions are not allowed in partition key expressions");
else
err = _("grouping operations are not allowed in partition key expressions");
break;
case EXPR_KIND_GENERATED_COLUMN:
if (isAgg)
err = _("aggregate functions are not allowed in column generation expressions");
else
err = _("grouping operations are not allowed in column generation expressions");
break;
case EXPR_KIND_CALL_ARGUMENT:
if (isAgg)
err = _("aggregate functions are not allowed in CALL arguments");
else
err = _("grouping operations are not allowed in CALL arguments");
break;
case EXPR_KIND_COPY_WHERE:
if (isAgg)
err = _("aggregate functions are not allowed in COPY FROM WHERE conditions");
else
err = _("grouping operations are not allowed in COPY FROM WHERE conditions");
break;
/*
* There is intentionally no default: case here, so that the
* compiler will warn if we add a new ParseExprKind without
* extending this switch. If we do see an unrecognized value at
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
* which is sane anyway.
*/
}
if (err)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg_internal("%s", err),
parser_errposition(pstate, location)));
if (errkind)
{
if (isAgg)
/* translator: %s is name of a SQL construct, eg GROUP BY */
err = _("aggregate functions are not allowed in %s");
else
/* translator: %s is name of a SQL construct, eg GROUP BY */
err = _("grouping operations are not allowed in %s");
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg_internal(err,
ParseExprKindName(pstate->p_expr_kind)),
parser_errposition(pstate, location)));
}
}
/*
* check_agg_arguments
* Scan the arguments of an aggregate function to determine the
* aggregate's semantic level (zero is the current select's level,
* one is its parent, etc).
*
* The aggregate's level is the same as the level of the lowest-level variable
* or aggregate in its aggregated arguments (including any ORDER BY columns)
* or filter expression; or if it contains no variables at all, we presume it
* to be local.
*
* Vars/Aggs in direct arguments are *not* counted towards determining the
* agg's level, as those arguments aren't evaluated per-row but only
* per-group, and so in some sense aren't really agg arguments. However,
* this can mean that we decide an agg is upper-level even when its direct
* args contain lower-level Vars/Aggs, and that case has to be disallowed.
* (This is a little strange, but the SQL standard seems pretty definite that
* direct args are not to be considered when setting the agg's level.)
*
* We also take this opportunity to detect any aggregates or window functions
* nested within the arguments. We can throw error immediately if we find
* a window function. Aggregates are a bit trickier because it's only an
* error if the inner aggregate is of the same semantic level as the outer,
* which we can't know until we finish scanning the arguments.
*/
static int
check_agg_arguments(ParseState *pstate,
List *directargs,
List *args,
Expr *filter)
{
int agglevel;
check_agg_arguments_context context;
context.pstate = pstate;
context.min_varlevel = -1; /* signifies nothing found yet */
context.min_agglevel = -1;
context.sublevels_up = 0;
(void) expression_tree_walker((Node *) args,
check_agg_arguments_walker,
(void *) &context);
(void) expression_tree_walker((Node *) filter,
check_agg_arguments_walker,
(void *) &context);
/*
* If we found no vars nor aggs at all, it's a level-zero aggregate;
* otherwise, its level is the minimum of vars or aggs.
*/
if (context.min_varlevel < 0)
{
if (context.min_agglevel < 0)
agglevel = 0;
else
agglevel = context.min_agglevel;
}
else if (context.min_agglevel < 0)
agglevel = context.min_varlevel;
else
agglevel = Min(context.min_varlevel, context.min_agglevel);
/*
* If there's a nested aggregate of the same semantic level, complain.
*/
if (agglevel == context.min_agglevel)
{
int aggloc;
aggloc = locate_agg_of_level((Node *) args, agglevel);
if (aggloc < 0)
aggloc = locate_agg_of_level((Node *) filter, agglevel);
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot be nested"),
parser_errposition(pstate, aggloc)));
}
/*
* Now check for vars/aggs in the direct arguments, and throw error if
* needed. Note that we allow a Var of the agg's semantic level, but not
* an Agg of that level. In principle such Aggs could probably be
* supported, but it would create an ordering dependency among the
* aggregates at execution time. Since the case appears neither to be
* required by spec nor particularly useful, we just treat it as a
* nested-aggregate situation.
*/
if (directargs)
{
context.min_varlevel = -1;
context.min_agglevel = -1;
(void) expression_tree_walker((Node *) directargs,
check_agg_arguments_walker,
(void *) &context);
if (context.min_varlevel >= 0 && context.min_varlevel < agglevel)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("outer-level aggregate cannot contain a lower-level variable in its direct arguments"),
parser_errposition(pstate,
locate_var_of_level((Node *) directargs,
context.min_varlevel))));
if (context.min_agglevel >= 0 && context.min_agglevel <= agglevel)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot be nested"),
parser_errposition(pstate,
locate_agg_of_level((Node *) directargs,
context.min_agglevel))));
}
return agglevel;
}
static bool
check_agg_arguments_walker(Node *node,
check_agg_arguments_context *context)
{
if (node == NULL)
return false;
if (IsA(node, Var))
{
int varlevelsup = ((Var *) node)->varlevelsup;
/* convert levelsup to frame of reference of original query */
varlevelsup -= context->sublevels_up;
/* ignore local vars of subqueries */
if (varlevelsup >= 0)
{
if (context->min_varlevel < 0 ||
context->min_varlevel > varlevelsup)
context->min_varlevel = varlevelsup;
}
return false;
}
if (IsA(node, Aggref))
{
int agglevelsup = ((Aggref *) node)->agglevelsup;
/* convert levelsup to frame of reference of original query */
agglevelsup -= context->sublevels_up;
/* ignore local aggs of subqueries */
if (agglevelsup >= 0)
{
if (context->min_agglevel < 0 ||
context->min_agglevel > agglevelsup)
context->min_agglevel = agglevelsup;
}
/* no need to examine args of the inner aggregate */
return false;
}
if (IsA(node, GroupingFunc))
{
int agglevelsup = ((GroupingFunc *) node)->agglevelsup;
/* convert levelsup to frame of reference of original query */
agglevelsup -= context->sublevels_up;
/* ignore local aggs of subqueries */
if (agglevelsup >= 0)
{
if (context->min_agglevel < 0 ||
context->min_agglevel > agglevelsup)
context->min_agglevel = agglevelsup;
}
/* Continue and descend into subtree */
}
/*
* SRFs and window functions can be rejected immediately, unless we are
* within a sub-select within the aggregate's arguments; in that case
* they're OK.
*/
if (context->sublevels_up == 0)
{
if ((IsA(node, FuncExpr) &&((FuncExpr *) node)->funcretset) ||
(IsA(node, OpExpr) &&((OpExpr *) node)->opretset))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("aggregate function calls cannot contain set-returning function calls"),
errhint("You might be able to move the set-returning function into a LATERAL FROM item."),
parser_errposition(context->pstate, exprLocation(node))));
if (IsA(node, WindowFunc))
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot contain window function calls"),
parser_errposition(context->pstate,
((WindowFunc *) node)->location)));
}
if (IsA(node, Query))
{
/* Recurse into subselects */
bool result;
context->sublevels_up++;
result = query_tree_walker((Query *) node,
check_agg_arguments_walker,
(void *) context,
0);
context->sublevels_up--;
return result;
}
return expression_tree_walker(node,
check_agg_arguments_walker,
(void *) context);
}
/*
* transformWindowFuncCall -
* Finish initial transformation of a window function call
*
* parse_func.c has recognized the function as a window function, and has set
* up all the fields of the WindowFunc except winref. Here we must (1) add
* the WindowDef to the pstate (if not a duplicate of one already present) and
* set winref to link to it; and (2) mark p_hasWindowFuncs true in the pstate.
* Unlike aggregates, only the most closely nested pstate level need be
* considered --- there are no "outer window functions" per SQL spec.
*/
void
transformWindowFuncCall(ParseState *pstate, WindowFunc *wfunc,
WindowDef *windef)
{
const char *err;
bool errkind;
/*
* A window function call can't contain another one (but aggs are OK). XXX
* is this required by spec, or just an unimplemented feature?
*
* Note: we don't need to check the filter expression here, because the
* context checks done below and in transformAggregateCall would have
* already rejected any window funcs or aggs within the filter.
*/
if (pstate->p_hasWindowFuncs &&
contain_windowfuncs((Node *) wfunc->args))
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
errmsg("window function calls cannot be nested"),
parser_errposition(pstate,
locate_windowfunc((Node *) wfunc->args))));
/*
* Check to see if the window function is in an invalid place within the
* query.
*
* For brevity we support two schemes for reporting an error here: set
* "err" to a custom message, or set "errkind" true if the error context
* is sufficiently identified by what ParseExprKindName will return, *and*
* what it will return is just a SQL keyword. (Otherwise, use a custom
* message to avoid creating translation problems.)
*/
err = NULL;
errkind = false;
switch (pstate->p_expr_kind)
{
case EXPR_KIND_NONE:
Assert(false); /* can't happen */
break;
case EXPR_KIND_OTHER:
/* Accept window func here; caller must throw error if wanted */
break;
case EXPR_KIND_JOIN_ON:
case EXPR_KIND_JOIN_USING:
err = _("window functions are not allowed in JOIN conditions");
break;
case EXPR_KIND_FROM_SUBSELECT:
/* can't get here, but just in case, throw an error */
errkind = true;
break;
case EXPR_KIND_FROM_FUNCTION:
err = _("window functions are not allowed in functions in FROM");
break;
case EXPR_KIND_WHERE:
errkind = true;
break;
case EXPR_KIND_POLICY:
err = _("window functions are not allowed in policy expressions");
break;
case EXPR_KIND_HAVING:
errkind = true;
break;
case EXPR_KIND_FILTER:
errkind = true;
break;
case EXPR_KIND_WINDOW_PARTITION:
case EXPR_KIND_WINDOW_ORDER:
case EXPR_KIND_WINDOW_FRAME_RANGE:
case EXPR_KIND_WINDOW_FRAME_ROWS:
case EXPR_KIND_WINDOW_FRAME_GROUPS:
err = _("window functions are not allowed in window definitions");
break;
case EXPR_KIND_SELECT_TARGET:
/* okay */
break;
case EXPR_KIND_INSERT_TARGET:
case EXPR_KIND_UPDATE_SOURCE:
case EXPR_KIND_UPDATE_TARGET:
errkind = true;
break;
case EXPR_KIND_GROUP_BY:
errkind = true;
break;
case EXPR_KIND_ORDER_BY:
/* okay */
break;
case EXPR_KIND_DISTINCT_ON:
/* okay */
break;
case EXPR_KIND_LIMIT:
case EXPR_KIND_OFFSET:
errkind = true;
break;
case EXPR_KIND_RETURNING:
errkind = true;
break;
case EXPR_KIND_VALUES:
case EXPR_KIND_VALUES_SINGLE:
errkind = true;
break;
case EXPR_KIND_CHECK_CONSTRAINT:
case EXPR_KIND_DOMAIN_CHECK:
err = _("window functions are not allowed in check constraints");
break;
case EXPR_KIND_COLUMN_DEFAULT:
case EXPR_KIND_FUNCTION_DEFAULT:
err = _("window functions are not allowed in DEFAULT expressions");
break;
case EXPR_KIND_INDEX_EXPRESSION:
err = _("window functions are not allowed in index expressions");
break;
case EXPR_KIND_INDEX_PREDICATE:
err = _("window functions are not allowed in index predicates");
break;
case EXPR_KIND_ALTER_COL_TRANSFORM:
err = _("window functions are not allowed in transform expressions");
break;
case EXPR_KIND_EXECUTE_PARAMETER:
err = _("window functions are not allowed in EXECUTE parameters");
break;
case EXPR_KIND_TRIGGER_WHEN:
err = _("window functions are not allowed in trigger WHEN conditions");
break;
case EXPR_KIND_PARTITION_BOUND:
err = _("window functions are not allowed in partition bound");
break;
case EXPR_KIND_PARTITION_EXPRESSION:
err = _("window functions are not allowed in partition key expressions");
break;
case EXPR_KIND_CALL_ARGUMENT:
err = _("window functions are not allowed in CALL arguments");
break;
case EXPR_KIND_COPY_WHERE:
err = _("window functions are not allowed in COPY FROM WHERE conditions");
break;
case EXPR_KIND_GENERATED_COLUMN:
err = _("window functions are not allowed in column generation expressions");
break;
/*
* There is intentionally no default: case here, so that the
* compiler will warn if we add a new ParseExprKind without
* extending this switch. If we do see an unrecognized value at
* runtime, the behavior will be the same as for EXPR_KIND_OTHER,
* which is sane anyway.
*/
}
if (err)
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
errmsg_internal("%s", err),
parser_errposition(pstate, wfunc->location)));
if (errkind)
ereport(ERROR,
(errcode(ERRCODE_WINDOWING_ERROR),
/* translator: %s is name of a SQL construct, eg GROUP BY */
errmsg("window functions are not allowed in %s",
ParseExprKindName(pstate->p_expr_kind)),
parser_errposition(pstate, wfunc->location)));
/*
* If the OVER clause just specifies a window name, find that WINDOW
* clause (which had better be present). Otherwise, try to match all the
* properties of the OVER clause, and make a new entry in the p_windowdefs
* list if no luck.
*/
if (windef->name)
{
Index winref = 0;
ListCell *lc;
Assert(windef->refname == NULL &&
windef->partitionClause == NIL &&
windef->orderClause == NIL &&
windef->frameOptions == FRAMEOPTION_DEFAULTS);
foreach(lc, pstate->p_windowdefs)
{
WindowDef *refwin = (WindowDef *) lfirst(lc);
winref++;
if (refwin->name && strcmp(refwin->name, windef->name) == 0)
{
wfunc->winref = winref;
break;
}
}
if (lc == NULL) /* didn't find it? */
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("window \"%s\" does not exist", windef->name),
parser_errposition(pstate, windef->location)));
}
else
{
Index winref = 0;
ListCell *lc;
foreach(lc, pstate->p_windowdefs)
{
WindowDef *refwin = (WindowDef *) lfirst(lc);
winref++;
if (refwin->refname && windef->refname &&
strcmp(refwin->refname, windef->refname) == 0)
/* matched on refname */ ;
else if (!refwin->refname && !windef->refname)
/* matched, no refname */ ;
else
continue;
if (equal(refwin->partitionClause, windef->partitionClause) &&
equal(refwin->orderClause, windef->orderClause) &&
refwin->frameOptions == windef->frameOptions &&
equal(refwin->startOffset, windef->startOffset) &&
equal(refwin->endOffset, windef->endOffset))
{
/* found a duplicate window specification */
wfunc->winref = winref;
break;
}
}
if (lc == NULL) /* didn't find it? */
{
pstate->p_windowdefs = lappend(pstate->p_windowdefs, windef);
wfunc->winref = list_length(pstate->p_windowdefs);
}
}
pstate->p_hasWindowFuncs = true;
}
/*
* parseCheckAggregates
* Check for aggregates where they shouldn't be and improper grouping.
* This function should be called after the target list and qualifications
* are finalized.
*
* Misplaced aggregates are now mostly detected in transformAggregateCall,
* but it seems more robust to check for aggregates in recursive queries
* only after everything is finalized. In any case it's hard to detect
* improper grouping on-the-fly, so we have to make another pass over the
* query for that.
*/
void
parseCheckAggregates(ParseState *pstate, Query *qry)
{
List *gset_common = NIL;
List *groupClauses = NIL;
List *groupClauseCommonVars = NIL;
bool have_non_var_grouping;
List *func_grouped_rels = NIL;
ListCell *l;
bool hasJoinRTEs;
bool hasSelfRefRTEs;
Node *clause;
/* This should only be called if we found aggregates or grouping */
Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual || qry->groupingSets);
/*
* If we have grouping sets, expand them and find the intersection of all
* sets.
*/
if (qry->groupingSets)
{
/*
* The limit of 4096 is arbitrary and exists simply to avoid resource
* issues from pathological constructs.
*/
List *gsets = expand_grouping_sets(qry->groupingSets, 4096);
if (!gsets)
ereport(ERROR,
(errcode(ERRCODE_STATEMENT_TOO_COMPLEX),
errmsg("too many grouping sets present (maximum 4096)"),
parser_errposition(pstate,
qry->groupClause
? exprLocation((Node *) qry->groupClause)
: exprLocation((Node *) qry->groupingSets))));
/*
* The intersection will often be empty, so help things along by
* seeding the intersect with the smallest set.
*/
gset_common = linitial(gsets);
if (gset_common)
{
for_each_cell(l, gsets, list_second_cell(gsets))
{
gset_common = list_intersection_int(gset_common, lfirst(l));
if (!gset_common)
break;
}
}
/*
* If there was only one grouping set in the expansion, AND if the
* groupClause is non-empty (meaning that the grouping set is not
* empty either), then we can ditch the grouping set and pretend we
* just had a normal GROUP BY.
*/
if (list_length(gsets) == 1 && qry->groupClause)
qry->groupingSets = NIL;
}
/*
* Scan the range table to see if there are JOIN or self-reference CTE
* entries. We'll need this info below.
*/
hasJoinRTEs = hasSelfRefRTEs = false;
foreach(l, pstate->p_rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
if (rte->rtekind == RTE_JOIN)
hasJoinRTEs = true;
else if (rte->rtekind == RTE_CTE && rte->self_reference)
hasSelfRefRTEs = true;
}
/*
* Build a list of the acceptable GROUP BY expressions for use by
* check_ungrouped_columns().
*
* We get the TLE, not just the expr, because GROUPING wants to know the
* sortgroupref.
*/
foreach(l, qry->groupClause)
{
SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
TargetEntry *expr;
expr = get_sortgroupclause_tle(grpcl, qry->targetList);
if (expr == NULL)
continue; /* probably cannot happen */
groupClauses = lcons(expr, groupClauses);
}
/*
* If there are join alias vars involved, we have to flatten them to the
* underlying vars, so that aliased and unaliased vars will be correctly
* taken as equal. We can skip the expense of doing this if no rangetable
* entries are RTE_JOIN kind.
*/
if (hasJoinRTEs)
groupClauses = (List *) flatten_join_alias_vars(qry,
(Node *) groupClauses);
/*
* Detect whether any of the grouping expressions aren't simple Vars; if
* they're all Vars then we don't have to work so hard in the recursive
* scans. (Note we have to flatten aliases before this.)
*
* Track Vars that are included in all grouping sets separately in
* groupClauseCommonVars, since these are the only ones we can use to
* check for functional dependencies.
*/
have_non_var_grouping = false;
foreach(l, groupClauses)
{
TargetEntry *tle = lfirst(l);
if (!IsA(tle->expr, Var))
{
have_non_var_grouping = true;
}
else if (!qry->groupingSets ||
list_member_int(gset_common, tle->ressortgroupref))
{
groupClauseCommonVars = lappend(groupClauseCommonVars, tle->expr);
}
}
/*
* Check the targetlist and HAVING clause for ungrouped variables.
*
* Note: because we check resjunk tlist elements as well as regular ones,
* this will also find ungrouped variables that came from ORDER BY and
* WINDOW clauses. For that matter, it's also going to examine the
* grouping expressions themselves --- but they'll all pass the test ...
*
* We also finalize GROUPING expressions, but for that we need to traverse
* the original (unflattened) clause in order to modify nodes.
*/
clause = (Node *) qry->targetList;
finalize_grouping_exprs(clause, pstate, qry,
groupClauses, hasJoinRTEs,
have_non_var_grouping);
if (hasJoinRTEs)
clause = flatten_join_alias_vars(qry, clause);
check_ungrouped_columns(clause, pstate, qry,
groupClauses, groupClauseCommonVars,
have_non_var_grouping,
&func_grouped_rels);
clause = (Node *) qry->havingQual;
finalize_grouping_exprs(clause, pstate, qry,
groupClauses, hasJoinRTEs,
have_non_var_grouping);
if (hasJoinRTEs)
clause = flatten_join_alias_vars(qry, clause);
check_ungrouped_columns(clause, pstate, qry,
groupClauses, groupClauseCommonVars,
have_non_var_grouping,
&func_grouped_rels);
/*
* Per spec, aggregates can't appear in a recursive term.
*/
if (pstate->p_hasAggs && hasSelfRefRTEs)
ereport(ERROR,
(errcode(ERRCODE_INVALID_RECURSION),
errmsg("aggregate functions are not allowed in a recursive query's recursive term"),
parser_errposition(pstate,
locate_agg_of_level((Node *) qry, 0))));
}
/*
* check_ungrouped_columns -
* Scan the given expression tree for ungrouped variables (variables
* that are not listed in the groupClauses list and are not within
* the arguments of aggregate functions). Emit a suitable error message
* if any are found.
*
* NOTE: we assume that the given clause has been transformed suitably for
* parser output. This means we can use expression_tree_walker.
*
* NOTE: we recognize grouping expressions in the main query, but only
* grouping Vars in subqueries. For example, this will be rejected,
* although it could be allowed:
* SELECT
* (SELECT x FROM bar where y = (foo.a + foo.b))
* FROM foo
* GROUP BY a + b;
* The difficulty is the need to account for different sublevels_up.
* This appears to require a whole custom version of equal(), which is
* way more pain than the feature seems worth.
*/
static void
check_ungrouped_columns(Node *node, ParseState *pstate, Query *qry,
List *groupClauses, List *groupClauseCommonVars,
bool have_non_var_grouping,
List **func_grouped_rels)
{
check_ungrouped_columns_context context;
context.pstate = pstate;
context.qry = qry;
context.hasJoinRTEs = false; /* assume caller flattened join Vars */
context.groupClauses = groupClauses;
context.groupClauseCommonVars = groupClauseCommonVars;
context.have_non_var_grouping = have_non_var_grouping;
context.func_grouped_rels = func_grouped_rels;
context.sublevels_up = 0;
context.in_agg_direct_args = false;
check_ungrouped_columns_walker(node, &context);
}
static bool
check_ungrouped_columns_walker(Node *node,
check_ungrouped_columns_context *context)
{
ListCell *gl;
if (node == NULL)
return false;
if (IsA(node, Const) ||
IsA(node, Param))
return false; /* constants are always acceptable */
if (IsA(node, Aggref))
{
Aggref *agg = (Aggref *) node;
if ((int) agg->agglevelsup == context->sublevels_up)
{
/*
* If we find an aggregate call of the original level, do not
* recurse into its normal arguments, ORDER BY arguments, or
* filter; ungrouped vars there are not an error. But we should
* check direct arguments as though they weren't in an aggregate.
* We set a special flag in the context to help produce a useful
* error message for ungrouped vars in direct arguments.
*/
bool result;
Assert(!context->in_agg_direct_args);
context->in_agg_direct_args = true;
result = check_ungrouped_columns_walker((Node *) agg->aggdirectargs,
context);
context->in_agg_direct_args = false;
return result;
}
/*
* We can skip recursing into aggregates of higher levels altogether,
* since they could not possibly contain Vars of concern to us (see
* transformAggregateCall). We do need to look at aggregates of lower
* levels, however.
*/
if ((int) agg->agglevelsup > context->sublevels_up)
return false;
}
if (IsA(node, GroupingFunc))
{
GroupingFunc *grp = (GroupingFunc *) node;
/* handled GroupingFunc separately, no need to recheck at this level */
if ((int) grp->agglevelsup >= context->sublevels_up)
return false;
}
/*
* If we have any GROUP BY items that are not simple Vars, check to see if
* subexpression as a whole matches any GROUP BY item. We need to do this
* at every recursion level so that we recognize GROUPed-BY expressions
* before reaching variables within them. But this only works at the outer
* query level, as noted above.
*/
if (context->have_non_var_grouping && context->sublevels_up == 0)
{
foreach(gl, context->groupClauses)
{
TargetEntry *tle = lfirst(gl);
if (equal(node, tle->expr))
return false; /* acceptable, do not descend more */
}
}
/*
* If we have an ungrouped Var of the original query level, we have a
* failure. Vars below the original query level are not a problem, and
* neither are Vars from above it. (If such Vars are ungrouped as far as
* their own query level is concerned, that's someone else's problem...)
*/
if (IsA(node, Var))
{
Var *var = (Var *) node;
RangeTblEntry *rte;
char *attname;
if (var->varlevelsup != context->sublevels_up)
return false; /* it's not local to my query, ignore */
/*
* Check for a match, if we didn't do it above.
*/
if (!context->have_non_var_grouping || context->sublevels_up != 0)
{
foreach(gl, context->groupClauses)
{
Var *gvar = (Var *) ((TargetEntry *) lfirst(gl))->expr;
if (IsA(gvar, Var) &&
gvar->varno == var->varno &&
gvar->varattno == var->varattno &&
gvar->varlevelsup == 0)
return false; /* acceptable, we're okay */
}
}
/*
* Check whether the Var is known functionally dependent on the GROUP
* BY columns. If so, we can allow the Var to be used, because the
* grouping is really a no-op for this table. However, this deduction
* depends on one or more constraints of the table, so we have to add
* those constraints to the query's constraintDeps list, because it's
* not semantically valid anymore if the constraint(s) get dropped.
* (Therefore, this check must be the last-ditch effort before raising
* error: we don't want to add dependencies unnecessarily.)
*
* Because this is a pretty expensive check, and will have the same
* outcome for all columns of a table, we remember which RTEs we've
* already proven functional dependency for in the func_grouped_rels
* list. This test also prevents us from adding duplicate entries to
* the constraintDeps list.
*/
if (list_member_int(*context->func_grouped_rels, var->varno))
return false; /* previously proven acceptable */
Assert(var->varno > 0 &&
(int) var->varno <= list_length(context->pstate->p_rtable));
rte = rt_fetch(var->varno, context->pstate->p_rtable);
if (rte->rtekind == RTE_RELATION)
{
if (check_functional_grouping(rte->relid,
var->varno,
0,
context->groupClauseCommonVars,
&context->qry->constraintDeps))
{
*context->func_grouped_rels =
lappend_int(*context->func_grouped_rels, var->varno);
return false; /* acceptable */
}
}
/* Found an ungrouped local variable; generate error message */
attname = get_rte_attribute_name(rte, var->varattno);
if (context->sublevels_up == 0)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
rte->eref->aliasname, attname),
context->in_agg_direct_args ?
errdetail("Direct arguments of an ordered-set aggregate must use only grouped columns.") : 0,
parser_errposition(context->pstate, var->location)));
else
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
rte->eref->aliasname, attname),
parser_errposition(context->pstate, var->location)));
}
if (IsA(node, Query))
{
/* Recurse into subselects */
bool result;
context->sublevels_up++;
result = query_tree_walker((Query *) node,
check_ungrouped_columns_walker,
(void *) context,
0);
context->sublevels_up--;
return result;
}
return expression_tree_walker(node, check_ungrouped_columns_walker,
(void *) context);
}
/*
* finalize_grouping_exprs -
* Scan the given expression tree for GROUPING() and related calls,
* and validate and process their arguments.
*
* This is split out from check_ungrouped_columns above because it needs
* to modify the nodes (which it does in-place, not via a mutator) while
* check_ungrouped_columns may see only a copy of the original thanks to
* flattening of join alias vars. So here, we flatten each individual
* GROUPING argument as we see it before comparing it.
*/
static void
finalize_grouping_exprs(Node *node, ParseState *pstate, Query *qry,
List *groupClauses, bool hasJoinRTEs,
bool have_non_var_grouping)
{
check_ungrouped_columns_context context;
context.pstate = pstate;
context.qry = qry;
context.hasJoinRTEs = hasJoinRTEs;
context.groupClauses = groupClauses;
context.groupClauseCommonVars = NIL;
context.have_non_var_grouping = have_non_var_grouping;
context.func_grouped_rels = NULL;
context.sublevels_up = 0;
context.in_agg_direct_args = false;
finalize_grouping_exprs_walker(node, &context);
}
static bool
finalize_grouping_exprs_walker(Node *node,
check_ungrouped_columns_context *context)
{
ListCell *gl;
if (node == NULL)
return false;
if (IsA(node, Const) ||
IsA(node, Param))
return false; /* constants are always acceptable */
if (IsA(node, Aggref))
{
Aggref *agg = (Aggref *) node;
if ((int) agg->agglevelsup == context->sublevels_up)
{
/*
* If we find an aggregate call of the original level, do not
* recurse into its normal arguments, ORDER BY arguments, or
* filter; GROUPING exprs of this level are not allowed there. But
* check direct arguments as though they weren't in an aggregate.
*/
bool result;
Assert(!context->in_agg_direct_args);
context->in_agg_direct_args = true;
result = finalize_grouping_exprs_walker((Node *) agg->aggdirectargs,
context);
context->in_agg_direct_args = false;
return result;
}
/*
* We can skip recursing into aggregates of higher levels altogether,
* since they could not possibly contain exprs of concern to us (see
* transformAggregateCall). We do need to look at aggregates of lower
* levels, however.
*/
if ((int) agg->agglevelsup > context->sublevels_up)
return false;
}
if (IsA(node, GroupingFunc))
{
GroupingFunc *grp = (GroupingFunc *) node;
/*
* We only need to check GroupingFunc nodes at the exact level to
* which they belong, since they cannot mix levels in arguments.
*/
if ((int) grp->agglevelsup == context->sublevels_up)
{
ListCell *lc;
List *ref_list = NIL;
foreach(lc, grp->args)
{
Node *expr = lfirst(lc);
Index ref = 0;
if (context->hasJoinRTEs)
expr = flatten_join_alias_vars(context->qry, expr);
/*
* Each expression must match a grouping entry at the current
* query level. Unlike the general expression case, we don't
* allow functional dependencies or outer references.
*/
if (IsA(expr, Var))
{
Var *var = (Var *) expr;
if (var->varlevelsup == context->sublevels_up)
{
foreach(gl, context->groupClauses)
{
TargetEntry *tle = lfirst(gl);
Var *gvar = (Var *) tle->expr;
if (IsA(gvar, Var) &&
gvar->varno == var->varno &&
gvar->varattno == var->varattno &&
gvar->varlevelsup == 0)
{
ref = tle->ressortgroupref;
break;
}
}
}
}
else if (context->have_non_var_grouping &&
context->sublevels_up == 0)
{
foreach(gl, context->groupClauses)
{
TargetEntry *tle = lfirst(gl);
if (equal(expr, tle->expr))
{
ref = tle->ressortgroupref;
break;
}
}
}
if (ref == 0)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("arguments to GROUPING must be grouping expressions of the associated query level"),
parser_errposition(context->pstate,
exprLocation(expr))));
ref_list = lappend_int(ref_list, ref);
}
grp->refs = ref_list;
}
if ((int) grp->agglevelsup > context->sublevels_up)
return false;
}
if (IsA(node, Query))
{
/* Recurse into subselects */
bool result;
context->sublevels_up++;
result = query_tree_walker((Query *) node,
finalize_grouping_exprs_walker,
(void *) context,
0);
context->sublevels_up--;
return result;
}
return expression_tree_walker(node, finalize_grouping_exprs_walker,
(void *) context);
}
/*
* Given a GroupingSet node, expand it and return a list of lists.
*
* For EMPTY nodes, return a list of one empty list.
*
* For SIMPLE nodes, return a list of one list, which is the node content.
*
* For CUBE and ROLLUP nodes, return a list of the expansions.
*
* For SET nodes, recursively expand contained CUBE and ROLLUP.
*/
static List *
expand_groupingset_node(GroupingSet *gs)
{
List *result = NIL;
switch (gs->kind)
{
case GROUPING_SET_EMPTY:
result = list_make1(NIL);
break;
case GROUPING_SET_SIMPLE:
result = list_make1(gs->content);
break;
case GROUPING_SET_ROLLUP:
{
List *rollup_val = gs->content;
ListCell *lc;
int curgroup_size = list_length(gs->content);
while (curgroup_size > 0)
{
List *current_result = NIL;
int i = curgroup_size;
foreach(lc, rollup_val)
{
GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
Assert(gs_current->kind == GROUPING_SET_SIMPLE);
current_result
= list_concat(current_result,
list_copy(gs_current->content));
/* If we are done with making the current group, break */
if (--i == 0)
break;
}
result = lappend(result, current_result);
--curgroup_size;
}
result = lappend(result, NIL);
}
break;
case GROUPING_SET_CUBE:
{
List *cube_list = gs->content;
int number_bits = list_length(cube_list);
uint32 num_sets;
uint32 i;
/* parser should cap this much lower */
Assert(number_bits < 31);
num_sets = (1U << number_bits);
for (i = 0; i < num_sets; i++)
{
List *current_result = NIL;
ListCell *lc;
uint32 mask = 1U;
foreach(lc, cube_list)
{
GroupingSet *gs_current = (GroupingSet *) lfirst(lc);
Assert(gs_current->kind == GROUPING_SET_SIMPLE);
if (mask & i)
{
current_result
= list_concat(current_result,
list_copy(gs_current->content));
}
mask <<= 1;
}
result = lappend(result, current_result);
}
}
break;
case GROUPING_SET_SETS:
{
ListCell *lc;
foreach(lc, gs->content)
{
List *current_result = expand_groupingset_node(lfirst(lc));
result = list_concat(result, current_result);
}
}
break;
}
return result;
}
/* list_sort comparator to sort sub-lists by length */
static int
cmp_list_len_asc(const ListCell *a, const ListCell *b)
{
int la = list_length((const List *) lfirst(a));
int lb = list_length((const List *) lfirst(b));
return (la > lb) ? 1 : (la == lb) ? 0 : -1;
}
/*
* Expand a groupingSets clause to a flat list of grouping sets.
* The returned list is sorted by length, shortest sets first.
*
* This is mainly for the planner, but we use it here too to do
* some consistency checks.
*/
List *
expand_grouping_sets(List *groupingSets, int limit)
{
List *expanded_groups = NIL;
List *result = NIL;
double numsets = 1;
ListCell *lc;
if (groupingSets == NIL)
return NIL;
foreach(lc, groupingSets)
{
List *current_result = NIL;
GroupingSet *gs = lfirst(lc);
current_result = expand_groupingset_node(gs);
Assert(current_result != NIL);
numsets *= list_length(current_result);
if (limit >= 0 && numsets > limit)
return NIL;
expanded_groups = lappend(expanded_groups, current_result);
}
/*
* Do cartesian product between sublists of expanded_groups. While at it,
* remove any duplicate elements from individual grouping sets (we must
* NOT change the number of sets though)
*/
foreach(lc, (List *) linitial(expanded_groups))
{
result = lappend(result, list_union_int(NIL, (List *) lfirst(lc)));
}
for_each_cell(lc, expanded_groups, list_second_cell(expanded_groups))
{
List *p = lfirst(lc);
List *new_result = NIL;
ListCell *lc2;
foreach(lc2, result)
{
List *q = lfirst(lc2);
ListCell *lc3;
foreach(lc3, p)
{
new_result = lappend(new_result,
list_union_int(q, (List *) lfirst(lc3)));
}
}
result = new_result;
}
/* Now sort the lists by length */
list_sort(result, cmp_list_len_asc);
return result;
}
/*
* get_aggregate_argtypes
* Identify the specific datatypes passed to an aggregate call.
*
* Given an Aggref, extract the actual datatypes of the input arguments.
* The input datatypes are reported in a way that matches up with the
* aggregate's declaration, ie, any ORDER BY columns attached to a plain
* aggregate are ignored, but we report both direct and aggregated args of
* an ordered-set aggregate.
*
* Datatypes are returned into inputTypes[], which must reference an array
* of length FUNC_MAX_ARGS.
*
* The function result is the number of actual arguments.
*/
int
get_aggregate_argtypes(Aggref *aggref, Oid *inputTypes)
{
int numArguments = 0;
ListCell *lc;
Assert(list_length(aggref->aggargtypes) <= FUNC_MAX_ARGS);
foreach(lc, aggref->aggargtypes)
{
inputTypes[numArguments++] = lfirst_oid(lc);
}
return numArguments;
}
/*
* resolve_aggregate_transtype
* Identify the transition state value's datatype for an aggregate call.
*
* This function resolves a polymorphic aggregate's state datatype.
* It must be passed the aggtranstype from the aggregate's catalog entry,
* as well as the actual argument types extracted by get_aggregate_argtypes.
* (We could fetch pg_aggregate.aggtranstype internally, but all existing
* callers already have the value at hand, so we make them pass it.)
*/
Oid
resolve_aggregate_transtype(Oid aggfuncid,
Oid aggtranstype,
Oid *inputTypes,
int numArguments)
{
/* resolve actual type of transition state, if polymorphic */
if (IsPolymorphicType(aggtranstype))
{
/* have to fetch the agg's declared input types... */
Oid *declaredArgTypes;
int agg_nargs;
(void) get_func_signature(aggfuncid, &declaredArgTypes, &agg_nargs);
/*
* VARIADIC ANY aggs could have more actual than declared args, but
* such extra args can't affect polymorphic type resolution.
*/
Assert(agg_nargs <= numArguments);
aggtranstype = enforce_generic_type_consistency(inputTypes,
declaredArgTypes,
agg_nargs,
aggtranstype,
false);
pfree(declaredArgTypes);
}
return aggtranstype;
}
/*
* Create an expression tree for the transition function of an aggregate.
* This is needed so that polymorphic functions can be used within an
* aggregate --- without the expression tree, such functions would not know
* the datatypes they are supposed to use. (The trees will never actually
* be executed, however, so we can skimp a bit on correctness.)
*
* agg_input_types and agg_state_type identifies the input types of the
* aggregate. These should be resolved to actual types (ie, none should
* ever be ANYELEMENT etc).
* agg_input_collation is the aggregate function's input collation.
*
* For an ordered-set aggregate, remember that agg_input_types describes
* the direct arguments followed by the aggregated arguments.
*
* transfn_oid and invtransfn_oid identify the funcs to be called; the
* latter may be InvalidOid, however if invtransfn_oid is set then
* transfn_oid must also be set.
*
* Pointers to the constructed trees are returned into *transfnexpr,
* *invtransfnexpr. If there is no invtransfn, the respective pointer is set
* to NULL. Since use of the invtransfn is optional, NULL may be passed for
* invtransfnexpr.
*/
void
build_aggregate_transfn_expr(Oid *agg_input_types,
int agg_num_inputs,
int agg_num_direct_inputs,
bool agg_variadic,
Oid agg_state_type,
Oid agg_input_collation,
Oid transfn_oid,
Oid invtransfn_oid,
Expr **transfnexpr,
Expr **invtransfnexpr)
{
List *args;
FuncExpr *fexpr;
int i;
/*
* Build arg list to use in the transfn FuncExpr node.
*/
args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
for (i = agg_num_direct_inputs; i < agg_num_inputs; i++)
{
args = lappend(args,
make_agg_arg(agg_input_types[i], agg_input_collation));
}
fexpr = makeFuncExpr(transfn_oid,
agg_state_type,
args,
InvalidOid,
agg_input_collation,
COERCE_EXPLICIT_CALL);
fexpr->funcvariadic = agg_variadic;
*transfnexpr = (Expr *) fexpr;
/*
* Build invtransfn expression if requested, with same args as transfn
*/
if (invtransfnexpr != NULL)
{
if (OidIsValid(invtransfn_oid))
{
fexpr = makeFuncExpr(invtransfn_oid,
agg_state_type,
args,
InvalidOid,
agg_input_collation,
COERCE_EXPLICIT_CALL);
fexpr->funcvariadic = agg_variadic;
*invtransfnexpr = (Expr *) fexpr;
}
else
*invtransfnexpr = NULL;
}
}
/*
* Like build_aggregate_transfn_expr, but creates an expression tree for the
* combine function of an aggregate, rather than the transition function.
*/
void
build_aggregate_combinefn_expr(Oid agg_state_type,
Oid agg_input_collation,
Oid combinefn_oid,
Expr **combinefnexpr)
{
Node *argp;
List *args;
FuncExpr *fexpr;
/* combinefn takes two arguments of the aggregate state type */
argp = make_agg_arg(agg_state_type, agg_input_collation);
args = list_make2(argp, argp);
fexpr = makeFuncExpr(combinefn_oid,
agg_state_type,
args,
InvalidOid,
agg_input_collation,
COERCE_EXPLICIT_CALL);
/* combinefn is currently never treated as variadic */
*combinefnexpr = (Expr *) fexpr;
}
/*
* Like build_aggregate_transfn_expr, but creates an expression tree for the
* serialization function of an aggregate.
*/
void
build_aggregate_serialfn_expr(Oid serialfn_oid,
Expr **serialfnexpr)
{
List *args;
FuncExpr *fexpr;
/* serialfn always takes INTERNAL and returns BYTEA */
args = list_make1(make_agg_arg(INTERNALOID, InvalidOid));
fexpr = makeFuncExpr(serialfn_oid,
BYTEAOID,
args,
InvalidOid,
InvalidOid,
COERCE_EXPLICIT_CALL);
*serialfnexpr = (Expr *) fexpr;
}
/*
* Like build_aggregate_transfn_expr, but creates an expression tree for the
* deserialization function of an aggregate.
*/
void
build_aggregate_deserialfn_expr(Oid deserialfn_oid,
Expr **deserialfnexpr)
{
List *args;
FuncExpr *fexpr;
/* deserialfn always takes BYTEA, INTERNAL and returns INTERNAL */
args = list_make2(make_agg_arg(BYTEAOID, InvalidOid),
make_agg_arg(INTERNALOID, InvalidOid));
fexpr = makeFuncExpr(deserialfn_oid,
INTERNALOID,
args,
InvalidOid,
InvalidOid,
COERCE_EXPLICIT_CALL);
*deserialfnexpr = (Expr *) fexpr;
}
/*
* Like build_aggregate_transfn_expr, but creates an expression tree for the
* final function of an aggregate, rather than the transition function.
*/
void
build_aggregate_finalfn_expr(Oid *agg_input_types,
int num_finalfn_inputs,
Oid agg_state_type,
Oid agg_result_type,
Oid agg_input_collation,
Oid finalfn_oid,
Expr **finalfnexpr)
{
List *args;
int i;
/*
* Build expr tree for final function
*/
args = list_make1(make_agg_arg(agg_state_type, agg_input_collation));
/* finalfn may take additional args, which match agg's input types */
for (i = 0; i < num_finalfn_inputs - 1; i++)
{
args = lappend(args,
make_agg_arg(agg_input_types[i], agg_input_collation));
}
*finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
agg_result_type,
args,
InvalidOid,
agg_input_collation,
COERCE_EXPLICIT_CALL);
/* finalfn is currently never treated as variadic */
}
/*
* Convenience function to build dummy argument expressions for aggregates.
*
* We really only care that an aggregate support function can discover its
* actual argument types at runtime using get_fn_expr_argtype(), so it's okay
* to use Param nodes that don't correspond to any real Param.
*/
static Node *
make_agg_arg(Oid argtype, Oid argcollation)
{
Param *argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = argtype;
argp->paramtypmod = -1;
argp->paramcollid = argcollation;
argp->location = -1;
return (Node *) argp;
}