postgresql/src/backend/access/transam/twophase.c

2441 lines
70 KiB
C

/*-------------------------------------------------------------------------
*
* twophase.c
* Two-phase commit support functions.
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/transam/twophase.c
*
* NOTES
* Each global transaction is associated with a global transaction
* identifier (GID). The client assigns a GID to a postgres
* transaction with the PREPARE TRANSACTION command.
*
* We keep all active global transactions in a shared memory array.
* When the PREPARE TRANSACTION command is issued, the GID is
* reserved for the transaction in the array. This is done before
* a WAL entry is made, because the reservation checks for duplicate
* GIDs and aborts the transaction if there already is a global
* transaction in prepared state with the same GID.
*
* A global transaction (gxact) also has dummy PGXACT and PGPROC; this is
* what keeps the XID considered running by TransactionIdIsInProgress.
* It is also convenient as a PGPROC to hook the gxact's locks to.
*
* Information to recover prepared transactions in case of crash is
* now stored in WAL for the common case. In some cases there will be
* an extended period between preparing a GXACT and commit/abort, in
* which case we need to separately record prepared transaction data
* in permanent storage. This includes locking information, pending
* notifications etc. All that state information is written to the
* per-transaction state file in the pg_twophase directory.
* All prepared transactions will be written prior to shutdown.
*
* Life track of state data is following:
*
* * On PREPARE TRANSACTION backend writes state data only to the WAL and
* stores pointer to the start of the WAL record in
* gxact->prepare_start_lsn.
* * If COMMIT occurs before checkpoint then backend reads data from WAL
* using prepare_start_lsn.
* * On checkpoint state data copied to files in pg_twophase directory and
* fsynced
* * If COMMIT happens after checkpoint then backend reads state data from
* files
*
* During replay and replication, TwoPhaseState also holds information
* about active prepared transactions that haven't been moved to disk yet.
*
* Replay of twophase records happens by the following rules:
*
* * At the beginning of recovery, pg_twophase is scanned once, filling
* TwoPhaseState with entries marked with gxact->inredo and
* gxact->ondisk. Two-phase file data older than the XID horizon of
* the redo position are discarded.
* * On PREPARE redo, the transaction is added to TwoPhaseState->prepXacts.
* gxact->inredo is set to true for such entries.
* * On Checkpoint we iterate through TwoPhaseState->prepXacts entries
* that have gxact->inredo set and are behind the redo_horizon. We
* save them to disk and then switch gxact->ondisk to true.
* * On COMMIT/ABORT we delete the entry from TwoPhaseState->prepXacts.
* If gxact->ondisk is true, the corresponding entry from the disk
* is additionally deleted.
* * RecoverPreparedTransactions(), StandbyRecoverPreparedTransactions()
* and PrescanPreparedTransactions() have been modified to go through
* gxact->inredo entries that have not made it to disk.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <fcntl.h>
#include <sys/stat.h>
#include <time.h>
#include <unistd.h>
#include "access/commit_ts.h"
#include "access/htup_details.h"
#include "access/subtrans.h"
#include "access/transam.h"
#include "access/twophase.h"
#include "access/twophase_rmgr.h"
#include "access/xact.h"
#include "access/xlog.h"
#include "access/xloginsert.h"
#include "access/xlogreader.h"
#include "access/xlogutils.h"
#include "catalog/pg_type.h"
#include "catalog/storage.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "pg_trace.h"
#include "pgstat.h"
#include "replication/origin.h"
#include "replication/syncrep.h"
#include "replication/walsender.h"
#include "storage/fd.h"
#include "storage/ipc.h"
#include "storage/md.h"
#include "storage/predicate.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "storage/sinvaladt.h"
#include "storage/smgr.h"
#include "utils/builtins.h"
#include "utils/memutils.h"
#include "utils/timestamp.h"
/*
* Directory where Two-phase commit files reside within PGDATA
*/
#define TWOPHASE_DIR "pg_twophase"
/* GUC variable, can't be changed after startup */
int max_prepared_xacts = 0;
/*
* This struct describes one global transaction that is in prepared state
* or attempting to become prepared.
*
* The lifecycle of a global transaction is:
*
* 1. After checking that the requested GID is not in use, set up an entry in
* the TwoPhaseState->prepXacts array with the correct GID and valid = false,
* and mark it as locked by my backend.
*
* 2. After successfully completing prepare, set valid = true and enter the
* referenced PGPROC into the global ProcArray.
*
* 3. To begin COMMIT PREPARED or ROLLBACK PREPARED, check that the entry is
* valid and not locked, then mark the entry as locked by storing my current
* backend ID into locking_backend. This prevents concurrent attempts to
* commit or rollback the same prepared xact.
*
* 4. On completion of COMMIT PREPARED or ROLLBACK PREPARED, remove the entry
* from the ProcArray and the TwoPhaseState->prepXacts array and return it to
* the freelist.
*
* Note that if the preparing transaction fails between steps 1 and 2, the
* entry must be removed so that the GID and the GlobalTransaction struct
* can be reused. See AtAbort_Twophase().
*
* typedef struct GlobalTransactionData *GlobalTransaction appears in
* twophase.h
*/
typedef struct GlobalTransactionData
{
GlobalTransaction next; /* list link for free list */
int pgprocno; /* ID of associated dummy PGPROC */
BackendId dummyBackendId; /* similar to backend id for backends */
TimestampTz prepared_at; /* time of preparation */
/*
* Note that we need to keep track of two LSNs for each GXACT. We keep
* track of the start LSN because this is the address we must use to read
* state data back from WAL when committing a prepared GXACT. We keep
* track of the end LSN because that is the LSN we need to wait for prior
* to commit.
*/
XLogRecPtr prepare_start_lsn; /* XLOG offset of prepare record start */
XLogRecPtr prepare_end_lsn; /* XLOG offset of prepare record end */
TransactionId xid; /* The GXACT id */
Oid owner; /* ID of user that executed the xact */
BackendId locking_backend; /* backend currently working on the xact */
bool valid; /* true if PGPROC entry is in proc array */
bool ondisk; /* true if prepare state file is on disk */
bool inredo; /* true if entry was added via xlog_redo */
char gid[GIDSIZE]; /* The GID assigned to the prepared xact */
} GlobalTransactionData;
/*
* Two Phase Commit shared state. Access to this struct is protected
* by TwoPhaseStateLock.
*/
typedef struct TwoPhaseStateData
{
/* Head of linked list of free GlobalTransactionData structs */
GlobalTransaction freeGXacts;
/* Number of valid prepXacts entries. */
int numPrepXacts;
/* There are max_prepared_xacts items in this array */
GlobalTransaction prepXacts[FLEXIBLE_ARRAY_MEMBER];
} TwoPhaseStateData;
static TwoPhaseStateData *TwoPhaseState;
/*
* Global transaction entry currently locked by us, if any. Note that any
* access to the entry pointed to by this variable must be protected by
* TwoPhaseStateLock, though obviously the pointer itself doesn't need to be
* (since it's just local memory).
*/
static GlobalTransaction MyLockedGxact = NULL;
static bool twophaseExitRegistered = false;
static void RecordTransactionCommitPrepared(TransactionId xid,
int nchildren,
TransactionId *children,
int nrels,
RelFileNode *rels,
int ninvalmsgs,
SharedInvalidationMessage *invalmsgs,
bool initfileinval,
const char *gid);
static void RecordTransactionAbortPrepared(TransactionId xid,
int nchildren,
TransactionId *children,
int nrels,
RelFileNode *rels,
const char *gid);
static void ProcessRecords(char *bufptr, TransactionId xid,
const TwoPhaseCallback callbacks[]);
static void RemoveGXact(GlobalTransaction gxact);
static void XlogReadTwoPhaseData(XLogRecPtr lsn, char **buf, int *len);
static char *ProcessTwoPhaseBuffer(TransactionId xid,
XLogRecPtr prepare_start_lsn,
bool fromdisk, bool setParent, bool setNextXid);
static void MarkAsPreparingGuts(GlobalTransaction gxact, TransactionId xid,
const char *gid, TimestampTz prepared_at, Oid owner,
Oid databaseid);
static void RemoveTwoPhaseFile(TransactionId xid, bool giveWarning);
static void RecreateTwoPhaseFile(TransactionId xid, void *content, int len);
/*
* Initialization of shared memory
*/
Size
TwoPhaseShmemSize(void)
{
Size size;
/* Need the fixed struct, the array of pointers, and the GTD structs */
size = offsetof(TwoPhaseStateData, prepXacts);
size = add_size(size, mul_size(max_prepared_xacts,
sizeof(GlobalTransaction)));
size = MAXALIGN(size);
size = add_size(size, mul_size(max_prepared_xacts,
sizeof(GlobalTransactionData)));
return size;
}
void
TwoPhaseShmemInit(void)
{
bool found;
TwoPhaseState = ShmemInitStruct("Prepared Transaction Table",
TwoPhaseShmemSize(),
&found);
if (!IsUnderPostmaster)
{
GlobalTransaction gxacts;
int i;
Assert(!found);
TwoPhaseState->freeGXacts = NULL;
TwoPhaseState->numPrepXacts = 0;
/*
* Initialize the linked list of free GlobalTransactionData structs
*/
gxacts = (GlobalTransaction)
((char *) TwoPhaseState +
MAXALIGN(offsetof(TwoPhaseStateData, prepXacts) +
sizeof(GlobalTransaction) * max_prepared_xacts));
for (i = 0; i < max_prepared_xacts; i++)
{
/* insert into linked list */
gxacts[i].next = TwoPhaseState->freeGXacts;
TwoPhaseState->freeGXacts = &gxacts[i];
/* associate it with a PGPROC assigned by InitProcGlobal */
gxacts[i].pgprocno = PreparedXactProcs[i].pgprocno;
/*
* Assign a unique ID for each dummy proc, so that the range of
* dummy backend IDs immediately follows the range of normal
* backend IDs. We don't dare to assign a real backend ID to dummy
* procs, because prepared transactions don't take part in cache
* invalidation like a real backend ID would imply, but having a
* unique ID for them is nevertheless handy. This arrangement
* allows you to allocate an array of size (MaxBackends +
* max_prepared_xacts + 1), and have a slot for every backend and
* prepared transaction. Currently multixact.c uses that
* technique.
*/
gxacts[i].dummyBackendId = MaxBackends + 1 + i;
}
}
else
Assert(found);
}
/*
* Exit hook to unlock the global transaction entry we're working on.
*/
static void
AtProcExit_Twophase(int code, Datum arg)
{
/* same logic as abort */
AtAbort_Twophase();
}
/*
* Abort hook to unlock the global transaction entry we're working on.
*/
void
AtAbort_Twophase(void)
{
if (MyLockedGxact == NULL)
return;
/*
* What to do with the locked global transaction entry? If we were in the
* process of preparing the transaction, but haven't written the WAL
* record and state file yet, the transaction must not be considered as
* prepared. Likewise, if we are in the process of finishing an
* already-prepared transaction, and fail after having already written the
* 2nd phase commit or rollback record to the WAL, the transaction should
* not be considered as prepared anymore. In those cases, just remove the
* entry from shared memory.
*
* Otherwise, the entry must be left in place so that the transaction can
* be finished later, so just unlock it.
*
* If we abort during prepare, after having written the WAL record, we
* might not have transferred all locks and other state to the prepared
* transaction yet. Likewise, if we abort during commit or rollback,
* after having written the WAL record, we might not have released all the
* resources held by the transaction yet. In those cases, the in-memory
* state can be wrong, but it's too late to back out.
*/
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
if (!MyLockedGxact->valid)
RemoveGXact(MyLockedGxact);
else
MyLockedGxact->locking_backend = InvalidBackendId;
LWLockRelease(TwoPhaseStateLock);
MyLockedGxact = NULL;
}
/*
* This is called after we have finished transferring state to the prepared
* PGXACT entry.
*/
void
PostPrepare_Twophase(void)
{
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
MyLockedGxact->locking_backend = InvalidBackendId;
LWLockRelease(TwoPhaseStateLock);
MyLockedGxact = NULL;
}
/*
* MarkAsPreparing
* Reserve the GID for the given transaction.
*/
GlobalTransaction
MarkAsPreparing(TransactionId xid, const char *gid,
TimestampTz prepared_at, Oid owner, Oid databaseid)
{
GlobalTransaction gxact;
int i;
if (strlen(gid) >= GIDSIZE)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("transaction identifier \"%s\" is too long",
gid)));
/* fail immediately if feature is disabled */
if (max_prepared_xacts == 0)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("prepared transactions are disabled"),
errhint("Set max_prepared_transactions to a nonzero value.")));
/* on first call, register the exit hook */
if (!twophaseExitRegistered)
{
before_shmem_exit(AtProcExit_Twophase, 0);
twophaseExitRegistered = true;
}
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
/* Check for conflicting GID */
for (i = 0; i < TwoPhaseState->numPrepXacts; i++)
{
gxact = TwoPhaseState->prepXacts[i];
if (strcmp(gxact->gid, gid) == 0)
{
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_OBJECT),
errmsg("transaction identifier \"%s\" is already in use",
gid)));
}
}
/* Get a free gxact from the freelist */
if (TwoPhaseState->freeGXacts == NULL)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("maximum number of prepared transactions reached"),
errhint("Increase max_prepared_transactions (currently %d).",
max_prepared_xacts)));
gxact = TwoPhaseState->freeGXacts;
TwoPhaseState->freeGXacts = gxact->next;
MarkAsPreparingGuts(gxact, xid, gid, prepared_at, owner, databaseid);
gxact->ondisk = false;
/* And insert it into the active array */
Assert(TwoPhaseState->numPrepXacts < max_prepared_xacts);
TwoPhaseState->prepXacts[TwoPhaseState->numPrepXacts++] = gxact;
LWLockRelease(TwoPhaseStateLock);
return gxact;
}
/*
* MarkAsPreparingGuts
*
* This uses a gxact struct and puts it into the active array.
* NOTE: this is also used when reloading a gxact after a crash; so avoid
* assuming that we can use very much backend context.
*
* Note: This function should be called with appropriate locks held.
*/
static void
MarkAsPreparingGuts(GlobalTransaction gxact, TransactionId xid, const char *gid,
TimestampTz prepared_at, Oid owner, Oid databaseid)
{
PGPROC *proc;
PGXACT *pgxact;
int i;
Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE));
Assert(gxact != NULL);
proc = &ProcGlobal->allProcs[gxact->pgprocno];
pgxact = &ProcGlobal->allPgXact[gxact->pgprocno];
/* Initialize the PGPROC entry */
MemSet(proc, 0, sizeof(PGPROC));
proc->pgprocno = gxact->pgprocno;
SHMQueueElemInit(&(proc->links));
proc->waitStatus = STATUS_OK;
/* We set up the gxact's VXID as InvalidBackendId/XID */
proc->lxid = (LocalTransactionId) xid;
pgxact->xid = xid;
pgxact->xmin = InvalidTransactionId;
pgxact->delayChkpt = false;
pgxact->vacuumFlags = 0;
proc->pid = 0;
proc->backendId = InvalidBackendId;
proc->databaseId = databaseid;
proc->roleId = owner;
proc->tempNamespaceId = InvalidOid;
proc->isBackgroundWorker = false;
proc->lwWaiting = false;
proc->lwWaitMode = 0;
proc->waitLock = NULL;
proc->waitProcLock = NULL;
for (i = 0; i < NUM_LOCK_PARTITIONS; i++)
SHMQueueInit(&(proc->myProcLocks[i]));
/* subxid data must be filled later by GXactLoadSubxactData */
pgxact->overflowed = false;
pgxact->nxids = 0;
gxact->prepared_at = prepared_at;
gxact->xid = xid;
gxact->owner = owner;
gxact->locking_backend = MyBackendId;
gxact->valid = false;
gxact->inredo = false;
strcpy(gxact->gid, gid);
/*
* Remember that we have this GlobalTransaction entry locked for us. If we
* abort after this, we must release it.
*/
MyLockedGxact = gxact;
}
/*
* GXactLoadSubxactData
*
* If the transaction being persisted had any subtransactions, this must
* be called before MarkAsPrepared() to load information into the dummy
* PGPROC.
*/
static void
GXactLoadSubxactData(GlobalTransaction gxact, int nsubxacts,
TransactionId *children)
{
PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno];
PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno];
/* We need no extra lock since the GXACT isn't valid yet */
if (nsubxacts > PGPROC_MAX_CACHED_SUBXIDS)
{
pgxact->overflowed = true;
nsubxacts = PGPROC_MAX_CACHED_SUBXIDS;
}
if (nsubxacts > 0)
{
memcpy(proc->subxids.xids, children,
nsubxacts * sizeof(TransactionId));
pgxact->nxids = nsubxacts;
}
}
/*
* MarkAsPrepared
* Mark the GXACT as fully valid, and enter it into the global ProcArray.
*
* lock_held indicates whether caller already holds TwoPhaseStateLock.
*/
static void
MarkAsPrepared(GlobalTransaction gxact, bool lock_held)
{
/* Lock here may be overkill, but I'm not convinced of that ... */
if (!lock_held)
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
Assert(!gxact->valid);
gxact->valid = true;
if (!lock_held)
LWLockRelease(TwoPhaseStateLock);
/*
* Put it into the global ProcArray so TransactionIdIsInProgress considers
* the XID as still running.
*/
ProcArrayAdd(&ProcGlobal->allProcs[gxact->pgprocno]);
}
/*
* LockGXact
* Locate the prepared transaction and mark it busy for COMMIT or PREPARE.
*/
static GlobalTransaction
LockGXact(const char *gid, Oid user)
{
int i;
/* on first call, register the exit hook */
if (!twophaseExitRegistered)
{
before_shmem_exit(AtProcExit_Twophase, 0);
twophaseExitRegistered = true;
}
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
for (i = 0; i < TwoPhaseState->numPrepXacts; i++)
{
GlobalTransaction gxact = TwoPhaseState->prepXacts[i];
PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno];
/* Ignore not-yet-valid GIDs */
if (!gxact->valid)
continue;
if (strcmp(gxact->gid, gid) != 0)
continue;
/* Found it, but has someone else got it locked? */
if (gxact->locking_backend != InvalidBackendId)
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("prepared transaction with identifier \"%s\" is busy",
gid)));
if (user != gxact->owner && !superuser_arg(user))
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("permission denied to finish prepared transaction"),
errhint("Must be superuser or the user that prepared the transaction.")));
/*
* Note: it probably would be possible to allow committing from
* another database; but at the moment NOTIFY is known not to work and
* there may be some other issues as well. Hence disallow until
* someone gets motivated to make it work.
*/
if (MyDatabaseId != proc->databaseId)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("prepared transaction belongs to another database"),
errhint("Connect to the database where the transaction was prepared to finish it.")));
/* OK for me to lock it */
gxact->locking_backend = MyBackendId;
MyLockedGxact = gxact;
LWLockRelease(TwoPhaseStateLock);
return gxact;
}
LWLockRelease(TwoPhaseStateLock);
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_OBJECT),
errmsg("prepared transaction with identifier \"%s\" does not exist",
gid)));
/* NOTREACHED */
return NULL;
}
/*
* RemoveGXact
* Remove the prepared transaction from the shared memory array.
*
* NB: caller should have already removed it from ProcArray
*/
static void
RemoveGXact(GlobalTransaction gxact)
{
int i;
Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE));
for (i = 0; i < TwoPhaseState->numPrepXacts; i++)
{
if (gxact == TwoPhaseState->prepXacts[i])
{
/* remove from the active array */
TwoPhaseState->numPrepXacts--;
TwoPhaseState->prepXacts[i] = TwoPhaseState->prepXacts[TwoPhaseState->numPrepXacts];
/* and put it back in the freelist */
gxact->next = TwoPhaseState->freeGXacts;
TwoPhaseState->freeGXacts = gxact;
return;
}
}
elog(ERROR, "failed to find %p in GlobalTransaction array", gxact);
}
/*
* Returns an array of all prepared transactions for the user-level
* function pg_prepared_xact.
*
* The returned array and all its elements are copies of internal data
* structures, to minimize the time we need to hold the TwoPhaseStateLock.
*
* WARNING -- we return even those transactions that are not fully prepared
* yet. The caller should filter them out if he doesn't want them.
*
* The returned array is palloc'd.
*/
static int
GetPreparedTransactionList(GlobalTransaction *gxacts)
{
GlobalTransaction array;
int num;
int i;
LWLockAcquire(TwoPhaseStateLock, LW_SHARED);
if (TwoPhaseState->numPrepXacts == 0)
{
LWLockRelease(TwoPhaseStateLock);
*gxacts = NULL;
return 0;
}
num = TwoPhaseState->numPrepXacts;
array = (GlobalTransaction) palloc(sizeof(GlobalTransactionData) * num);
*gxacts = array;
for (i = 0; i < num; i++)
memcpy(array + i, TwoPhaseState->prepXacts[i],
sizeof(GlobalTransactionData));
LWLockRelease(TwoPhaseStateLock);
return num;
}
/* Working status for pg_prepared_xact */
typedef struct
{
GlobalTransaction array;
int ngxacts;
int currIdx;
} Working_State;
/*
* pg_prepared_xact
* Produce a view with one row per prepared transaction.
*
* This function is here so we don't have to export the
* GlobalTransactionData struct definition.
*/
Datum
pg_prepared_xact(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
Working_State *status;
if (SRF_IS_FIRSTCALL())
{
TupleDesc tupdesc;
MemoryContext oldcontext;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* Switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* build tupdesc for result tuples */
/* this had better match pg_prepared_xacts view in system_views.sql */
tupdesc = CreateTemplateTupleDesc(5);
TupleDescInitEntry(tupdesc, (AttrNumber) 1, "transaction",
XIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 2, "gid",
TEXTOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 3, "prepared",
TIMESTAMPTZOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 4, "ownerid",
OIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 5, "dbid",
OIDOID, -1, 0);
funcctx->tuple_desc = BlessTupleDesc(tupdesc);
/*
* Collect all the 2PC status information that we will format and send
* out as a result set.
*/
status = (Working_State *) palloc(sizeof(Working_State));
funcctx->user_fctx = (void *) status;
status->ngxacts = GetPreparedTransactionList(&status->array);
status->currIdx = 0;
MemoryContextSwitchTo(oldcontext);
}
funcctx = SRF_PERCALL_SETUP();
status = (Working_State *) funcctx->user_fctx;
while (status->array != NULL && status->currIdx < status->ngxacts)
{
GlobalTransaction gxact = &status->array[status->currIdx++];
PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno];
PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno];
Datum values[5];
bool nulls[5];
HeapTuple tuple;
Datum result;
if (!gxact->valid)
continue;
/*
* Form tuple with appropriate data.
*/
MemSet(values, 0, sizeof(values));
MemSet(nulls, 0, sizeof(nulls));
values[0] = TransactionIdGetDatum(pgxact->xid);
values[1] = CStringGetTextDatum(gxact->gid);
values[2] = TimestampTzGetDatum(gxact->prepared_at);
values[3] = ObjectIdGetDatum(gxact->owner);
values[4] = ObjectIdGetDatum(proc->databaseId);
tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}
SRF_RETURN_DONE(funcctx);
}
/*
* TwoPhaseGetGXact
* Get the GlobalTransaction struct for a prepared transaction
* specified by XID
*
* If lock_held is set to true, TwoPhaseStateLock will not be taken, so the
* caller had better hold it.
*/
static GlobalTransaction
TwoPhaseGetGXact(TransactionId xid, bool lock_held)
{
GlobalTransaction result = NULL;
int i;
static TransactionId cached_xid = InvalidTransactionId;
static GlobalTransaction cached_gxact = NULL;
Assert(!lock_held || LWLockHeldByMe(TwoPhaseStateLock));
/*
* During a recovery, COMMIT PREPARED, or ABORT PREPARED, we'll be called
* repeatedly for the same XID. We can save work with a simple cache.
*/
if (xid == cached_xid)
return cached_gxact;
if (!lock_held)
LWLockAcquire(TwoPhaseStateLock, LW_SHARED);
for (i = 0; i < TwoPhaseState->numPrepXacts; i++)
{
GlobalTransaction gxact = TwoPhaseState->prepXacts[i];
PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno];
if (pgxact->xid == xid)
{
result = gxact;
break;
}
}
if (!lock_held)
LWLockRelease(TwoPhaseStateLock);
if (result == NULL) /* should not happen */
elog(ERROR, "failed to find GlobalTransaction for xid %u", xid);
cached_xid = xid;
cached_gxact = result;
return result;
}
/*
* TwoPhaseGetDummyBackendId
* Get the dummy backend ID for prepared transaction specified by XID
*
* Dummy backend IDs are similar to real backend IDs of real backends.
* They start at MaxBackends + 1, and are unique across all currently active
* real backends and prepared transactions. If lock_held is set to true,
* TwoPhaseStateLock will not be taken, so the caller had better hold it.
*/
BackendId
TwoPhaseGetDummyBackendId(TransactionId xid, bool lock_held)
{
GlobalTransaction gxact = TwoPhaseGetGXact(xid, lock_held);
return gxact->dummyBackendId;
}
/*
* TwoPhaseGetDummyProc
* Get the PGPROC that represents a prepared transaction specified by XID
*
* If lock_held is set to true, TwoPhaseStateLock will not be taken, so the
* caller had better hold it.
*/
PGPROC *
TwoPhaseGetDummyProc(TransactionId xid, bool lock_held)
{
GlobalTransaction gxact = TwoPhaseGetGXact(xid, lock_held);
return &ProcGlobal->allProcs[gxact->pgprocno];
}
/************************************************************************/
/* State file support */
/************************************************************************/
#define TwoPhaseFilePath(path, xid) \
snprintf(path, MAXPGPATH, TWOPHASE_DIR "/%08X", xid)
/*
* 2PC state file format:
*
* 1. TwoPhaseFileHeader
* 2. TransactionId[] (subtransactions)
* 3. RelFileNode[] (files to be deleted at commit)
* 4. RelFileNode[] (files to be deleted at abort)
* 5. SharedInvalidationMessage[] (inval messages to be sent at commit)
* 6. TwoPhaseRecordOnDisk
* 7. ...
* 8. TwoPhaseRecordOnDisk (end sentinel, rmid == TWOPHASE_RM_END_ID)
* 9. checksum (CRC-32C)
*
* Each segment except the final checksum is MAXALIGN'd.
*/
/*
* Header for a 2PC state file
*/
#define TWOPHASE_MAGIC 0x57F94534 /* format identifier */
typedef xl_xact_prepare TwoPhaseFileHeader;
/*
* Header for each record in a state file
*
* NOTE: len counts only the rmgr data, not the TwoPhaseRecordOnDisk header.
* The rmgr data will be stored starting on a MAXALIGN boundary.
*/
typedef struct TwoPhaseRecordOnDisk
{
uint32 len; /* length of rmgr data */
TwoPhaseRmgrId rmid; /* resource manager for this record */
uint16 info; /* flag bits for use by rmgr */
} TwoPhaseRecordOnDisk;
/*
* During prepare, the state file is assembled in memory before writing it
* to WAL and the actual state file. We use a chain of StateFileChunk blocks
* for that.
*/
typedef struct StateFileChunk
{
char *data;
uint32 len;
struct StateFileChunk *next;
} StateFileChunk;
static struct xllist
{
StateFileChunk *head; /* first data block in the chain */
StateFileChunk *tail; /* last block in chain */
uint32 num_chunks;
uint32 bytes_free; /* free bytes left in tail block */
uint32 total_len; /* total data bytes in chain */
} records;
/*
* Append a block of data to records data structure.
*
* NB: each block is padded to a MAXALIGN multiple. This must be
* accounted for when the file is later read!
*
* The data is copied, so the caller is free to modify it afterwards.
*/
static void
save_state_data(const void *data, uint32 len)
{
uint32 padlen = MAXALIGN(len);
if (padlen > records.bytes_free)
{
records.tail->next = palloc0(sizeof(StateFileChunk));
records.tail = records.tail->next;
records.tail->len = 0;
records.tail->next = NULL;
records.num_chunks++;
records.bytes_free = Max(padlen, 512);
records.tail->data = palloc(records.bytes_free);
}
memcpy(((char *) records.tail->data) + records.tail->len, data, len);
records.tail->len += padlen;
records.bytes_free -= padlen;
records.total_len += padlen;
}
/*
* Start preparing a state file.
*
* Initializes data structure and inserts the 2PC file header record.
*/
void
StartPrepare(GlobalTransaction gxact)
{
PGPROC *proc = &ProcGlobal->allProcs[gxact->pgprocno];
PGXACT *pgxact = &ProcGlobal->allPgXact[gxact->pgprocno];
TransactionId xid = pgxact->xid;
TwoPhaseFileHeader hdr;
TransactionId *children;
RelFileNode *commitrels;
RelFileNode *abortrels;
SharedInvalidationMessage *invalmsgs;
/* Initialize linked list */
records.head = palloc0(sizeof(StateFileChunk));
records.head->len = 0;
records.head->next = NULL;
records.bytes_free = Max(sizeof(TwoPhaseFileHeader), 512);
records.head->data = palloc(records.bytes_free);
records.tail = records.head;
records.num_chunks = 1;
records.total_len = 0;
/* Create header */
hdr.magic = TWOPHASE_MAGIC;
hdr.total_len = 0; /* EndPrepare will fill this in */
hdr.xid = xid;
hdr.database = proc->databaseId;
hdr.prepared_at = gxact->prepared_at;
hdr.owner = gxact->owner;
hdr.nsubxacts = xactGetCommittedChildren(&children);
hdr.ncommitrels = smgrGetPendingDeletes(true, &commitrels);
hdr.nabortrels = smgrGetPendingDeletes(false, &abortrels);
hdr.ninvalmsgs = xactGetCommittedInvalidationMessages(&invalmsgs,
&hdr.initfileinval);
hdr.gidlen = strlen(gxact->gid) + 1; /* Include '\0' */
save_state_data(&hdr, sizeof(TwoPhaseFileHeader));
save_state_data(gxact->gid, hdr.gidlen);
/*
* Add the additional info about subxacts, deletable files and cache
* invalidation messages.
*/
if (hdr.nsubxacts > 0)
{
save_state_data(children, hdr.nsubxacts * sizeof(TransactionId));
/* While we have the child-xact data, stuff it in the gxact too */
GXactLoadSubxactData(gxact, hdr.nsubxacts, children);
}
if (hdr.ncommitrels > 0)
{
save_state_data(commitrels, hdr.ncommitrels * sizeof(RelFileNode));
pfree(commitrels);
}
if (hdr.nabortrels > 0)
{
save_state_data(abortrels, hdr.nabortrels * sizeof(RelFileNode));
pfree(abortrels);
}
if (hdr.ninvalmsgs > 0)
{
save_state_data(invalmsgs,
hdr.ninvalmsgs * sizeof(SharedInvalidationMessage));
pfree(invalmsgs);
}
}
/*
* Finish preparing state data and writing it to WAL.
*/
void
EndPrepare(GlobalTransaction gxact)
{
TwoPhaseFileHeader *hdr;
StateFileChunk *record;
bool replorigin;
/* Add the end sentinel to the list of 2PC records */
RegisterTwoPhaseRecord(TWOPHASE_RM_END_ID, 0,
NULL, 0);
/* Go back and fill in total_len in the file header record */
hdr = (TwoPhaseFileHeader *) records.head->data;
Assert(hdr->magic == TWOPHASE_MAGIC);
hdr->total_len = records.total_len + sizeof(pg_crc32c);
replorigin = (replorigin_session_origin != InvalidRepOriginId &&
replorigin_session_origin != DoNotReplicateId);
if (replorigin)
{
Assert(replorigin_session_origin_lsn != InvalidXLogRecPtr);
hdr->origin_lsn = replorigin_session_origin_lsn;
hdr->origin_timestamp = replorigin_session_origin_timestamp;
}
else
{
hdr->origin_lsn = InvalidXLogRecPtr;
hdr->origin_timestamp = 0;
}
/*
* If the data size exceeds MaxAllocSize, we won't be able to read it in
* ReadTwoPhaseFile. Check for that now, rather than fail in the case
* where we write data to file and then re-read at commit time.
*/
if (hdr->total_len > MaxAllocSize)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("two-phase state file maximum length exceeded")));
/*
* Now writing 2PC state data to WAL. We let the WAL's CRC protection
* cover us, so no need to calculate a separate CRC.
*
* We have to set delayChkpt here, too; otherwise a checkpoint starting
* immediately after the WAL record is inserted could complete without
* fsync'ing our state file. (This is essentially the same kind of race
* condition as the COMMIT-to-clog-write case that RecordTransactionCommit
* uses delayChkpt for; see notes there.)
*
* We save the PREPARE record's location in the gxact for later use by
* CheckPointTwoPhase.
*/
XLogEnsureRecordSpace(0, records.num_chunks);
START_CRIT_SECTION();
MyPgXact->delayChkpt = true;
XLogBeginInsert();
for (record = records.head; record != NULL; record = record->next)
XLogRegisterData(record->data, record->len);
XLogSetRecordFlags(XLOG_INCLUDE_ORIGIN);
gxact->prepare_end_lsn = XLogInsert(RM_XACT_ID, XLOG_XACT_PREPARE);
if (replorigin)
{
/* Move LSNs forward for this replication origin */
replorigin_session_advance(replorigin_session_origin_lsn,
gxact->prepare_end_lsn);
}
XLogFlush(gxact->prepare_end_lsn);
/* If we crash now, we have prepared: WAL replay will fix things */
/* Store record's start location to read that later on Commit */
gxact->prepare_start_lsn = ProcLastRecPtr;
/*
* Mark the prepared transaction as valid. As soon as xact.c marks
* MyPgXact as not running our XID (which it will do immediately after
* this function returns), others can commit/rollback the xact.
*
* NB: a side effect of this is to make a dummy ProcArray entry for the
* prepared XID. This must happen before we clear the XID from MyPgXact,
* else there is a window where the XID is not running according to
* TransactionIdIsInProgress, and onlookers would be entitled to assume
* the xact crashed. Instead we have a window where the same XID appears
* twice in ProcArray, which is OK.
*/
MarkAsPrepared(gxact, false);
/*
* Now we can mark ourselves as out of the commit critical section: a
* checkpoint starting after this will certainly see the gxact as a
* candidate for fsyncing.
*/
MyPgXact->delayChkpt = false;
/*
* Remember that we have this GlobalTransaction entry locked for us. If
* we crash after this point, it's too late to abort, but we must unlock
* it so that the prepared transaction can be committed or rolled back.
*/
MyLockedGxact = gxact;
END_CRIT_SECTION();
/*
* Wait for synchronous replication, if required.
*
* Note that at this stage we have marked the prepare, but still show as
* running in the procarray (twice!) and continue to hold locks.
*/
SyncRepWaitForLSN(gxact->prepare_end_lsn, false);
records.tail = records.head = NULL;
records.num_chunks = 0;
}
/*
* Register a 2PC record to be written to state file.
*/
void
RegisterTwoPhaseRecord(TwoPhaseRmgrId rmid, uint16 info,
const void *data, uint32 len)
{
TwoPhaseRecordOnDisk record;
record.rmid = rmid;
record.info = info;
record.len = len;
save_state_data(&record, sizeof(TwoPhaseRecordOnDisk));
if (len > 0)
save_state_data(data, len);
}
/*
* Read and validate the state file for xid.
*
* If it looks OK (has a valid magic number and CRC), return the palloc'd
* contents of the file, issuing an error when finding corrupted data. If
* missing_ok is true, which indicates that missing files can be safely
* ignored, then return NULL. This state can be reached when doing recovery.
*/
static char *
ReadTwoPhaseFile(TransactionId xid, bool missing_ok)
{
char path[MAXPGPATH];
char *buf;
TwoPhaseFileHeader *hdr;
int fd;
struct stat stat;
uint32 crc_offset;
pg_crc32c calc_crc,
file_crc;
int r;
TwoPhaseFilePath(path, xid);
fd = OpenTransientFile(path, O_RDONLY | PG_BINARY);
if (fd < 0)
{
if (missing_ok && errno == ENOENT)
return NULL;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not open file \"%s\": %m", path)));
}
/*
* Check file length. We can determine a lower bound pretty easily. We
* set an upper bound to avoid palloc() failure on a corrupt file, though
* we can't guarantee that we won't get an out of memory error anyway,
* even on a valid file.
*/
if (fstat(fd, &stat))
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not stat file \"%s\": %m", path)));
if (stat.st_size < (MAXALIGN(sizeof(TwoPhaseFileHeader)) +
MAXALIGN(sizeof(TwoPhaseRecordOnDisk)) +
sizeof(pg_crc32c)) ||
stat.st_size > MaxAllocSize)
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg_plural("incorrect size of file \"%s\": %zu byte",
"incorrect size of file \"%s\": %zu bytes",
(Size) stat.st_size, path,
(Size) stat.st_size)));
crc_offset = stat.st_size - sizeof(pg_crc32c);
if (crc_offset != MAXALIGN(crc_offset))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("incorrect alignment of CRC offset for file \"%s\"",
path)));
/*
* OK, slurp in the file.
*/
buf = (char *) palloc(stat.st_size);
pgstat_report_wait_start(WAIT_EVENT_TWOPHASE_FILE_READ);
r = read(fd, buf, stat.st_size);
if (r != stat.st_size)
{
if (r < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read file \"%s\": %m", path)));
else
ereport(ERROR,
(errmsg("could not read file \"%s\": read %d of %zu",
path, r, (Size) stat.st_size)));
}
pgstat_report_wait_end();
if (CloseTransientFile(fd) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", path)));
hdr = (TwoPhaseFileHeader *) buf;
if (hdr->magic != TWOPHASE_MAGIC)
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("invalid magic number stored in file \"%s\"",
path)));
if (hdr->total_len != stat.st_size)
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("invalid size stored in file \"%s\"",
path)));
INIT_CRC32C(calc_crc);
COMP_CRC32C(calc_crc, buf, crc_offset);
FIN_CRC32C(calc_crc);
file_crc = *((pg_crc32c *) (buf + crc_offset));
if (!EQ_CRC32C(calc_crc, file_crc))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("calculated CRC checksum does not match value stored in file \"%s\"",
path)));
return buf;
}
/*
* Reads 2PC data from xlog. During checkpoint this data will be moved to
* twophase files and ReadTwoPhaseFile should be used instead.
*
* Note clearly that this function can access WAL during normal operation,
* similarly to the way WALSender or Logical Decoding would do.
*/
static void
XlogReadTwoPhaseData(XLogRecPtr lsn, char **buf, int *len)
{
XLogRecord *record;
XLogReaderState *xlogreader;
char *errormsg;
xlogreader = XLogReaderAllocate(wal_segment_size, NULL,
&read_local_xlog_page, NULL);
if (!xlogreader)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed while allocating a WAL reading processor.")));
XLogBeginRead(xlogreader, lsn);
record = XLogReadRecord(xlogreader, &errormsg);
if (record == NULL)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not read two-phase state from WAL at %X/%X",
(uint32) (lsn >> 32),
(uint32) lsn)));
if (XLogRecGetRmid(xlogreader) != RM_XACT_ID ||
(XLogRecGetInfo(xlogreader) & XLOG_XACT_OPMASK) != XLOG_XACT_PREPARE)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("expected two-phase state data is not present in WAL at %X/%X",
(uint32) (lsn >> 32),
(uint32) lsn)));
if (len != NULL)
*len = XLogRecGetDataLen(xlogreader);
*buf = palloc(sizeof(char) * XLogRecGetDataLen(xlogreader));
memcpy(*buf, XLogRecGetData(xlogreader), sizeof(char) * XLogRecGetDataLen(xlogreader));
XLogReaderFree(xlogreader);
}
/*
* Confirms an xid is prepared, during recovery
*/
bool
StandbyTransactionIdIsPrepared(TransactionId xid)
{
char *buf;
TwoPhaseFileHeader *hdr;
bool result;
Assert(TransactionIdIsValid(xid));
if (max_prepared_xacts <= 0)
return false; /* nothing to do */
/* Read and validate file */
buf = ReadTwoPhaseFile(xid, true);
if (buf == NULL)
return false;
/* Check header also */
hdr = (TwoPhaseFileHeader *) buf;
result = TransactionIdEquals(hdr->xid, xid);
pfree(buf);
return result;
}
/*
* FinishPreparedTransaction: execute COMMIT PREPARED or ROLLBACK PREPARED
*/
void
FinishPreparedTransaction(const char *gid, bool isCommit)
{
GlobalTransaction gxact;
PGPROC *proc;
PGXACT *pgxact;
TransactionId xid;
char *buf;
char *bufptr;
TwoPhaseFileHeader *hdr;
TransactionId latestXid;
TransactionId *children;
RelFileNode *commitrels;
RelFileNode *abortrels;
RelFileNode *delrels;
int ndelrels;
SharedInvalidationMessage *invalmsgs;
/*
* Validate the GID, and lock the GXACT to ensure that two backends do not
* try to commit the same GID at once.
*/
gxact = LockGXact(gid, GetUserId());
proc = &ProcGlobal->allProcs[gxact->pgprocno];
pgxact = &ProcGlobal->allPgXact[gxact->pgprocno];
xid = pgxact->xid;
/*
* Read and validate 2PC state data. State data will typically be stored
* in WAL files if the LSN is after the last checkpoint record, or moved
* to disk if for some reason they have lived for a long time.
*/
if (gxact->ondisk)
buf = ReadTwoPhaseFile(xid, false);
else
XlogReadTwoPhaseData(gxact->prepare_start_lsn, &buf, NULL);
/*
* Disassemble the header area
*/
hdr = (TwoPhaseFileHeader *) buf;
Assert(TransactionIdEquals(hdr->xid, xid));
bufptr = buf + MAXALIGN(sizeof(TwoPhaseFileHeader));
bufptr += MAXALIGN(hdr->gidlen);
children = (TransactionId *) bufptr;
bufptr += MAXALIGN(hdr->nsubxacts * sizeof(TransactionId));
commitrels = (RelFileNode *) bufptr;
bufptr += MAXALIGN(hdr->ncommitrels * sizeof(RelFileNode));
abortrels = (RelFileNode *) bufptr;
bufptr += MAXALIGN(hdr->nabortrels * sizeof(RelFileNode));
invalmsgs = (SharedInvalidationMessage *) bufptr;
bufptr += MAXALIGN(hdr->ninvalmsgs * sizeof(SharedInvalidationMessage));
/* compute latestXid among all children */
latestXid = TransactionIdLatest(xid, hdr->nsubxacts, children);
/* Prevent cancel/die interrupt while cleaning up */
HOLD_INTERRUPTS();
/*
* The order of operations here is critical: make the XLOG entry for
* commit or abort, then mark the transaction committed or aborted in
* pg_xact, then remove its PGPROC from the global ProcArray (which means
* TransactionIdIsInProgress will stop saying the prepared xact is in
* progress), then run the post-commit or post-abort callbacks. The
* callbacks will release the locks the transaction held.
*/
if (isCommit)
RecordTransactionCommitPrepared(xid,
hdr->nsubxacts, children,
hdr->ncommitrels, commitrels,
hdr->ninvalmsgs, invalmsgs,
hdr->initfileinval, gid);
else
RecordTransactionAbortPrepared(xid,
hdr->nsubxacts, children,
hdr->nabortrels, abortrels,
gid);
ProcArrayRemove(proc, latestXid);
/*
* In case we fail while running the callbacks, mark the gxact invalid so
* no one else will try to commit/rollback, and so it will be recycled if
* we fail after this point. It is still locked by our backend so it
* won't go away yet.
*
* (We assume it's safe to do this without taking TwoPhaseStateLock.)
*/
gxact->valid = false;
/*
* We have to remove any files that were supposed to be dropped. For
* consistency with the regular xact.c code paths, must do this before
* releasing locks, so do it before running the callbacks.
*
* NB: this code knows that we couldn't be dropping any temp rels ...
*/
if (isCommit)
{
delrels = commitrels;
ndelrels = hdr->ncommitrels;
}
else
{
delrels = abortrels;
ndelrels = hdr->nabortrels;
}
/* Make sure files supposed to be dropped are dropped */
DropRelationFiles(delrels, ndelrels, false);
/*
* Handle cache invalidation messages.
*
* Relcache init file invalidation requires processing both before and
* after we send the SI messages. See AtEOXact_Inval()
*/
if (hdr->initfileinval)
RelationCacheInitFilePreInvalidate();
SendSharedInvalidMessages(invalmsgs, hdr->ninvalmsgs);
if (hdr->initfileinval)
RelationCacheInitFilePostInvalidate();
/*
* Acquire the two-phase lock. We want to work on the two-phase callbacks
* while holding it to avoid potential conflicts with other transactions
* attempting to use the same GID, so the lock is released once the shared
* memory state is cleared.
*/
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
/* And now do the callbacks */
if (isCommit)
ProcessRecords(bufptr, xid, twophase_postcommit_callbacks);
else
ProcessRecords(bufptr, xid, twophase_postabort_callbacks);
PredicateLockTwoPhaseFinish(xid, isCommit);
/* Clear shared memory state */
RemoveGXact(gxact);
/*
* Release the lock as all callbacks are called and shared memory cleanup
* is done.
*/
LWLockRelease(TwoPhaseStateLock);
/* Count the prepared xact as committed or aborted */
AtEOXact_PgStat(isCommit, false);
/*
* And now we can clean up any files we may have left.
*/
if (gxact->ondisk)
RemoveTwoPhaseFile(xid, true);
MyLockedGxact = NULL;
RESUME_INTERRUPTS();
pfree(buf);
}
/*
* Scan 2PC state data in memory and call the indicated callbacks for each 2PC record.
*/
static void
ProcessRecords(char *bufptr, TransactionId xid,
const TwoPhaseCallback callbacks[])
{
for (;;)
{
TwoPhaseRecordOnDisk *record = (TwoPhaseRecordOnDisk *) bufptr;
Assert(record->rmid <= TWOPHASE_RM_MAX_ID);
if (record->rmid == TWOPHASE_RM_END_ID)
break;
bufptr += MAXALIGN(sizeof(TwoPhaseRecordOnDisk));
if (callbacks[record->rmid] != NULL)
callbacks[record->rmid] (xid, record->info,
(void *) bufptr, record->len);
bufptr += MAXALIGN(record->len);
}
}
/*
* Remove the 2PC file for the specified XID.
*
* If giveWarning is false, do not complain about file-not-present;
* this is an expected case during WAL replay.
*/
static void
RemoveTwoPhaseFile(TransactionId xid, bool giveWarning)
{
char path[MAXPGPATH];
TwoPhaseFilePath(path, xid);
if (unlink(path))
if (errno != ENOENT || giveWarning)
ereport(WARNING,
(errcode_for_file_access(),
errmsg("could not remove file \"%s\": %m", path)));
}
/*
* Recreates a state file. This is used in WAL replay and during
* checkpoint creation.
*
* Note: content and len don't include CRC.
*/
static void
RecreateTwoPhaseFile(TransactionId xid, void *content, int len)
{
char path[MAXPGPATH];
pg_crc32c statefile_crc;
int fd;
/* Recompute CRC */
INIT_CRC32C(statefile_crc);
COMP_CRC32C(statefile_crc, content, len);
FIN_CRC32C(statefile_crc);
TwoPhaseFilePath(path, xid);
fd = OpenTransientFile(path,
O_CREAT | O_TRUNC | O_WRONLY | PG_BINARY);
if (fd < 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not recreate file \"%s\": %m", path)));
/* Write content and CRC */
errno = 0;
pgstat_report_wait_start(WAIT_EVENT_TWOPHASE_FILE_WRITE);
if (write(fd, content, len) != len)
{
/* if write didn't set errno, assume problem is no disk space */
if (errno == 0)
errno = ENOSPC;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not write file \"%s\": %m", path)));
}
if (write(fd, &statefile_crc, sizeof(pg_crc32c)) != sizeof(pg_crc32c))
{
/* if write didn't set errno, assume problem is no disk space */
if (errno == 0)
errno = ENOSPC;
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not write file \"%s\": %m", path)));
}
pgstat_report_wait_end();
/*
* We must fsync the file because the end-of-replay checkpoint will not do
* so, there being no GXACT in shared memory yet to tell it to.
*/
pgstat_report_wait_start(WAIT_EVENT_TWOPHASE_FILE_SYNC);
if (pg_fsync(fd) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not fsync file \"%s\": %m", path)));
pgstat_report_wait_end();
if (CloseTransientFile(fd) != 0)
ereport(ERROR,
(errcode_for_file_access(),
errmsg("could not close file \"%s\": %m", path)));
}
/*
* CheckPointTwoPhase -- handle 2PC component of checkpointing.
*
* We must fsync the state file of any GXACT that is valid or has been
* generated during redo and has a PREPARE LSN <= the checkpoint's redo
* horizon. (If the gxact isn't valid yet, has not been generated in
* redo, or has a later LSN, this checkpoint is not responsible for
* fsyncing it.)
*
* This is deliberately run as late as possible in the checkpoint sequence,
* because GXACTs ordinarily have short lifespans, and so it is quite
* possible that GXACTs that were valid at checkpoint start will no longer
* exist if we wait a little bit. With typical checkpoint settings this
* will be about 3 minutes for an online checkpoint, so as a result we
* expect that there will be no GXACTs that need to be copied to disk.
*
* If a GXACT remains valid across multiple checkpoints, it will already
* be on disk so we don't bother to repeat that write.
*/
void
CheckPointTwoPhase(XLogRecPtr redo_horizon)
{
int i;
int serialized_xacts = 0;
if (max_prepared_xacts <= 0)
return; /* nothing to do */
TRACE_POSTGRESQL_TWOPHASE_CHECKPOINT_START();
/*
* We are expecting there to be zero GXACTs that need to be copied to
* disk, so we perform all I/O while holding TwoPhaseStateLock for
* simplicity. This prevents any new xacts from preparing while this
* occurs, which shouldn't be a problem since the presence of long-lived
* prepared xacts indicates the transaction manager isn't active.
*
* It's also possible to move I/O out of the lock, but on every error we
* should check whether somebody committed our transaction in different
* backend. Let's leave this optimization for future, if somebody will
* spot that this place cause bottleneck.
*
* Note that it isn't possible for there to be a GXACT with a
* prepare_end_lsn set prior to the last checkpoint yet is marked invalid,
* because of the efforts with delayChkpt.
*/
LWLockAcquire(TwoPhaseStateLock, LW_SHARED);
for (i = 0; i < TwoPhaseState->numPrepXacts; i++)
{
/*
* Note that we are using gxact not pgxact so this works in recovery
* also
*/
GlobalTransaction gxact = TwoPhaseState->prepXacts[i];
if ((gxact->valid || gxact->inredo) &&
!gxact->ondisk &&
gxact->prepare_end_lsn <= redo_horizon)
{
char *buf;
int len;
XlogReadTwoPhaseData(gxact->prepare_start_lsn, &buf, &len);
RecreateTwoPhaseFile(gxact->xid, buf, len);
gxact->ondisk = true;
gxact->prepare_start_lsn = InvalidXLogRecPtr;
gxact->prepare_end_lsn = InvalidXLogRecPtr;
pfree(buf);
serialized_xacts++;
}
}
LWLockRelease(TwoPhaseStateLock);
/*
* Flush unconditionally the parent directory to make any information
* durable on disk. Two-phase files could have been removed and those
* removals need to be made persistent as well as any files newly created
* previously since the last checkpoint.
*/
fsync_fname(TWOPHASE_DIR, true);
TRACE_POSTGRESQL_TWOPHASE_CHECKPOINT_DONE();
if (log_checkpoints && serialized_xacts > 0)
ereport(LOG,
(errmsg_plural("%u two-phase state file was written "
"for a long-running prepared transaction",
"%u two-phase state files were written "
"for long-running prepared transactions",
serialized_xacts,
serialized_xacts)));
}
/*
* restoreTwoPhaseData
*
* Scan pg_twophase and fill TwoPhaseState depending on the on-disk data.
* This is called once at the beginning of recovery, saving any extra
* lookups in the future. Two-phase files that are newer than the
* minimum XID horizon are discarded on the way.
*/
void
restoreTwoPhaseData(void)
{
DIR *cldir;
struct dirent *clde;
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
cldir = AllocateDir(TWOPHASE_DIR);
while ((clde = ReadDir(cldir, TWOPHASE_DIR)) != NULL)
{
if (strlen(clde->d_name) == 8 &&
strspn(clde->d_name, "0123456789ABCDEF") == 8)
{
TransactionId xid;
char *buf;
xid = (TransactionId) strtoul(clde->d_name, NULL, 16);
buf = ProcessTwoPhaseBuffer(xid, InvalidXLogRecPtr,
true, false, false);
if (buf == NULL)
continue;
PrepareRedoAdd(buf, InvalidXLogRecPtr,
InvalidXLogRecPtr, InvalidRepOriginId);
}
}
LWLockRelease(TwoPhaseStateLock);
FreeDir(cldir);
}
/*
* PrescanPreparedTransactions
*
* Scan the shared memory entries of TwoPhaseState and determine the range
* of valid XIDs present. This is run during database startup, after we
* have completed reading WAL. ShmemVariableCache->nextFullXid has been set to
* one more than the highest XID for which evidence exists in WAL.
*
* We throw away any prepared xacts with main XID beyond nextFullXid --- if any
* are present, it suggests that the DBA has done a PITR recovery to an
* earlier point in time without cleaning out pg_twophase. We dare not
* try to recover such prepared xacts since they likely depend on database
* state that doesn't exist now.
*
* However, we will advance nextFullXid beyond any subxact XIDs belonging to
* valid prepared xacts. We need to do this since subxact commit doesn't
* write a WAL entry, and so there might be no evidence in WAL of those
* subxact XIDs.
*
* On corrupted two-phase files, fail immediately. Keeping around broken
* entries and let replay continue causes harm on the system, and a new
* backup should be rolled in.
*
* Our other responsibility is to determine and return the oldest valid XID
* among the prepared xacts (if none, return ShmemVariableCache->nextFullXid).
* This is needed to synchronize pg_subtrans startup properly.
*
* If xids_p and nxids_p are not NULL, pointer to a palloc'd array of all
* top-level xids is stored in *xids_p. The number of entries in the array
* is returned in *nxids_p.
*/
TransactionId
PrescanPreparedTransactions(TransactionId **xids_p, int *nxids_p)
{
FullTransactionId nextFullXid = ShmemVariableCache->nextFullXid;
TransactionId origNextXid = XidFromFullTransactionId(nextFullXid);
TransactionId result = origNextXid;
TransactionId *xids = NULL;
int nxids = 0;
int allocsize = 0;
int i;
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
for (i = 0; i < TwoPhaseState->numPrepXacts; i++)
{
TransactionId xid;
char *buf;
GlobalTransaction gxact = TwoPhaseState->prepXacts[i];
Assert(gxact->inredo);
xid = gxact->xid;
buf = ProcessTwoPhaseBuffer(xid,
gxact->prepare_start_lsn,
gxact->ondisk, false, true);
if (buf == NULL)
continue;
/*
* OK, we think this file is valid. Incorporate xid into the
* running-minimum result.
*/
if (TransactionIdPrecedes(xid, result))
result = xid;
if (xids_p)
{
if (nxids == allocsize)
{
if (nxids == 0)
{
allocsize = 10;
xids = palloc(allocsize * sizeof(TransactionId));
}
else
{
allocsize = allocsize * 2;
xids = repalloc(xids, allocsize * sizeof(TransactionId));
}
}
xids[nxids++] = xid;
}
pfree(buf);
}
LWLockRelease(TwoPhaseStateLock);
if (xids_p)
{
*xids_p = xids;
*nxids_p = nxids;
}
return result;
}
/*
* StandbyRecoverPreparedTransactions
*
* Scan the shared memory entries of TwoPhaseState and setup all the required
* information to allow standby queries to treat prepared transactions as still
* active.
*
* This is never called at the end of recovery - we use
* RecoverPreparedTransactions() at that point.
*
* The lack of calls to SubTransSetParent() calls here is by design;
* those calls are made by RecoverPreparedTransactions() at the end of recovery
* for those xacts that need this.
*/
void
StandbyRecoverPreparedTransactions(void)
{
int i;
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
for (i = 0; i < TwoPhaseState->numPrepXacts; i++)
{
TransactionId xid;
char *buf;
GlobalTransaction gxact = TwoPhaseState->prepXacts[i];
Assert(gxact->inredo);
xid = gxact->xid;
buf = ProcessTwoPhaseBuffer(xid,
gxact->prepare_start_lsn,
gxact->ondisk, false, false);
if (buf != NULL)
pfree(buf);
}
LWLockRelease(TwoPhaseStateLock);
}
/*
* RecoverPreparedTransactions
*
* Scan the shared memory entries of TwoPhaseState and reload the state for
* each prepared transaction (reacquire locks, etc).
*
* This is run at the end of recovery, but before we allow backends to write
* WAL.
*
* At the end of recovery the way we take snapshots will change. We now need
* to mark all running transactions with their full SubTransSetParent() info
* to allow normal snapshots to work correctly if snapshots overflow.
* We do this here because by definition prepared transactions are the only
* type of write transaction still running, so this is necessary and
* complete.
*/
void
RecoverPreparedTransactions(void)
{
int i;
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
for (i = 0; i < TwoPhaseState->numPrepXacts; i++)
{
TransactionId xid;
char *buf;
GlobalTransaction gxact = TwoPhaseState->prepXacts[i];
char *bufptr;
TwoPhaseFileHeader *hdr;
TransactionId *subxids;
const char *gid;
xid = gxact->xid;
/*
* Reconstruct subtrans state for the transaction --- needed because
* pg_subtrans is not preserved over a restart. Note that we are
* linking all the subtransactions directly to the top-level XID;
* there may originally have been a more complex hierarchy, but
* there's no need to restore that exactly. It's possible that
* SubTransSetParent has been set before, if the prepared transaction
* generated xid assignment records.
*/
buf = ProcessTwoPhaseBuffer(xid,
gxact->prepare_start_lsn,
gxact->ondisk, true, false);
if (buf == NULL)
continue;
ereport(LOG,
(errmsg("recovering prepared transaction %u from shared memory", xid)));
hdr = (TwoPhaseFileHeader *) buf;
Assert(TransactionIdEquals(hdr->xid, xid));
bufptr = buf + MAXALIGN(sizeof(TwoPhaseFileHeader));
gid = (const char *) bufptr;
bufptr += MAXALIGN(hdr->gidlen);
subxids = (TransactionId *) bufptr;
bufptr += MAXALIGN(hdr->nsubxacts * sizeof(TransactionId));
bufptr += MAXALIGN(hdr->ncommitrels * sizeof(RelFileNode));
bufptr += MAXALIGN(hdr->nabortrels * sizeof(RelFileNode));
bufptr += MAXALIGN(hdr->ninvalmsgs * sizeof(SharedInvalidationMessage));
/*
* Recreate its GXACT and dummy PGPROC. But, check whether it was
* added in redo and already has a shmem entry for it.
*/
MarkAsPreparingGuts(gxact, xid, gid,
hdr->prepared_at,
hdr->owner, hdr->database);
/* recovered, so reset the flag for entries generated by redo */
gxact->inredo = false;
GXactLoadSubxactData(gxact, hdr->nsubxacts, subxids);
MarkAsPrepared(gxact, true);
LWLockRelease(TwoPhaseStateLock);
/*
* Recover other state (notably locks) using resource managers.
*/
ProcessRecords(bufptr, xid, twophase_recover_callbacks);
/*
* Release locks held by the standby process after we process each
* prepared transaction. As a result, we don't need too many
* additional locks at any one time.
*/
if (InHotStandby)
StandbyReleaseLockTree(xid, hdr->nsubxacts, subxids);
/*
* We're done with recovering this transaction. Clear MyLockedGxact,
* like we do in PrepareTransaction() during normal operation.
*/
PostPrepare_Twophase();
pfree(buf);
LWLockAcquire(TwoPhaseStateLock, LW_EXCLUSIVE);
}
LWLockRelease(TwoPhaseStateLock);
}
/*
* ProcessTwoPhaseBuffer
*
* Given a transaction id, read it either from disk or read it directly
* via shmem xlog record pointer using the provided "prepare_start_lsn".
*
* If setParent is true, set up subtransaction parent linkages.
*
* If setNextXid is true, set ShmemVariableCache->nextFullXid to the newest
* value scanned.
*/
static char *
ProcessTwoPhaseBuffer(TransactionId xid,
XLogRecPtr prepare_start_lsn,
bool fromdisk,
bool setParent, bool setNextXid)
{
FullTransactionId nextFullXid = ShmemVariableCache->nextFullXid;
TransactionId origNextXid = XidFromFullTransactionId(nextFullXid);
TransactionId *subxids;
char *buf;
TwoPhaseFileHeader *hdr;
int i;
Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE));
if (!fromdisk)
Assert(prepare_start_lsn != InvalidXLogRecPtr);
/* Already processed? */
if (TransactionIdDidCommit(xid) || TransactionIdDidAbort(xid))
{
if (fromdisk)
{
ereport(WARNING,
(errmsg("removing stale two-phase state file for transaction %u",
xid)));
RemoveTwoPhaseFile(xid, true);
}
else
{
ereport(WARNING,
(errmsg("removing stale two-phase state from memory for transaction %u",
xid)));
PrepareRedoRemove(xid, true);
}
return NULL;
}
/* Reject XID if too new */
if (TransactionIdFollowsOrEquals(xid, origNextXid))
{
if (fromdisk)
{
ereport(WARNING,
(errmsg("removing future two-phase state file for transaction %u",
xid)));
RemoveTwoPhaseFile(xid, true);
}
else
{
ereport(WARNING,
(errmsg("removing future two-phase state from memory for transaction %u",
xid)));
PrepareRedoRemove(xid, true);
}
return NULL;
}
if (fromdisk)
{
/* Read and validate file */
buf = ReadTwoPhaseFile(xid, false);
}
else
{
/* Read xlog data */
XlogReadTwoPhaseData(prepare_start_lsn, &buf, NULL);
}
/* Deconstruct header */
hdr = (TwoPhaseFileHeader *) buf;
if (!TransactionIdEquals(hdr->xid, xid))
{
if (fromdisk)
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted two-phase state file for transaction %u",
xid)));
else
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted two-phase state in memory for transaction %u",
xid)));
}
/*
* Examine subtransaction XIDs ... they should all follow main XID, and
* they may force us to advance nextFullXid.
*/
subxids = (TransactionId *) (buf +
MAXALIGN(sizeof(TwoPhaseFileHeader)) +
MAXALIGN(hdr->gidlen));
for (i = 0; i < hdr->nsubxacts; i++)
{
TransactionId subxid = subxids[i];
Assert(TransactionIdFollows(subxid, xid));
/* update nextFullXid if needed */
if (setNextXid)
AdvanceNextFullTransactionIdPastXid(subxid);
if (setParent)
SubTransSetParent(subxid, xid);
}
return buf;
}
/*
* RecordTransactionCommitPrepared
*
* This is basically the same as RecordTransactionCommit (q.v. if you change
* this function): in particular, we must set the delayChkpt flag to avoid a
* race condition.
*
* We know the transaction made at least one XLOG entry (its PREPARE),
* so it is never possible to optimize out the commit record.
*/
static void
RecordTransactionCommitPrepared(TransactionId xid,
int nchildren,
TransactionId *children,
int nrels,
RelFileNode *rels,
int ninvalmsgs,
SharedInvalidationMessage *invalmsgs,
bool initfileinval,
const char *gid)
{
XLogRecPtr recptr;
TimestampTz committs = GetCurrentTimestamp();
bool replorigin;
/*
* Are we using the replication origins feature? Or, in other words, are
* we replaying remote actions?
*/
replorigin = (replorigin_session_origin != InvalidRepOriginId &&
replorigin_session_origin != DoNotReplicateId);
START_CRIT_SECTION();
/* See notes in RecordTransactionCommit */
MyPgXact->delayChkpt = true;
/*
* Emit the XLOG commit record. Note that we mark 2PC commits as
* potentially having AccessExclusiveLocks since we don't know whether or
* not they do.
*/
recptr = XactLogCommitRecord(committs,
nchildren, children, nrels, rels,
ninvalmsgs, invalmsgs,
initfileinval, false,
MyXactFlags | XACT_FLAGS_ACQUIREDACCESSEXCLUSIVELOCK,
xid, gid);
if (replorigin)
/* Move LSNs forward for this replication origin */
replorigin_session_advance(replorigin_session_origin_lsn,
XactLastRecEnd);
/*
* Record commit timestamp. The value comes from plain commit timestamp
* if replorigin is not enabled, or replorigin already set a value for us
* in replorigin_session_origin_timestamp otherwise.
*
* We don't need to WAL-log anything here, as the commit record written
* above already contains the data.
*/
if (!replorigin || replorigin_session_origin_timestamp == 0)
replorigin_session_origin_timestamp = committs;
TransactionTreeSetCommitTsData(xid, nchildren, children,
replorigin_session_origin_timestamp,
replorigin_session_origin, false);
/*
* We don't currently try to sleep before flush here ... nor is there any
* support for async commit of a prepared xact (the very idea is probably
* a contradiction)
*/
/* Flush XLOG to disk */
XLogFlush(recptr);
/* Mark the transaction committed in pg_xact */
TransactionIdCommitTree(xid, nchildren, children);
/* Checkpoint can proceed now */
MyPgXact->delayChkpt = false;
END_CRIT_SECTION();
/*
* Wait for synchronous replication, if required.
*
* Note that at this stage we have marked clog, but still show as running
* in the procarray and continue to hold locks.
*/
SyncRepWaitForLSN(recptr, true);
}
/*
* RecordTransactionAbortPrepared
*
* This is basically the same as RecordTransactionAbort.
*
* We know the transaction made at least one XLOG entry (its PREPARE),
* so it is never possible to optimize out the abort record.
*/
static void
RecordTransactionAbortPrepared(TransactionId xid,
int nchildren,
TransactionId *children,
int nrels,
RelFileNode *rels,
const char *gid)
{
XLogRecPtr recptr;
/*
* Catch the scenario where we aborted partway through
* RecordTransactionCommitPrepared ...
*/
if (TransactionIdDidCommit(xid))
elog(PANIC, "cannot abort transaction %u, it was already committed",
xid);
START_CRIT_SECTION();
/*
* Emit the XLOG commit record. Note that we mark 2PC aborts as
* potentially having AccessExclusiveLocks since we don't know whether or
* not they do.
*/
recptr = XactLogAbortRecord(GetCurrentTimestamp(),
nchildren, children,
nrels, rels,
MyXactFlags | XACT_FLAGS_ACQUIREDACCESSEXCLUSIVELOCK,
xid, gid);
/* Always flush, since we're about to remove the 2PC state file */
XLogFlush(recptr);
/*
* Mark the transaction aborted in clog. This is not absolutely necessary
* but we may as well do it while we are here.
*/
TransactionIdAbortTree(xid, nchildren, children);
END_CRIT_SECTION();
/*
* Wait for synchronous replication, if required.
*
* Note that at this stage we have marked clog, but still show as running
* in the procarray and continue to hold locks.
*/
SyncRepWaitForLSN(recptr, false);
}
/*
* PrepareRedoAdd
*
* Store pointers to the start/end of the WAL record along with the xid in
* a gxact entry in shared memory TwoPhaseState structure. If caller
* specifies InvalidXLogRecPtr as WAL location to fetch the two-phase
* data, the entry is marked as located on disk.
*/
void
PrepareRedoAdd(char *buf, XLogRecPtr start_lsn,
XLogRecPtr end_lsn, RepOriginId origin_id)
{
TwoPhaseFileHeader *hdr = (TwoPhaseFileHeader *) buf;
char *bufptr;
const char *gid;
GlobalTransaction gxact;
Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE));
Assert(RecoveryInProgress());
bufptr = buf + MAXALIGN(sizeof(TwoPhaseFileHeader));
gid = (const char *) bufptr;
/*
* Reserve the GID for the given transaction in the redo code path.
*
* This creates a gxact struct and puts it into the active array.
*
* In redo, this struct is mainly used to track PREPARE/COMMIT entries in
* shared memory. Hence, we only fill up the bare minimum contents here.
* The gxact also gets marked with gxact->inredo set to true to indicate
* that it got added in the redo phase
*/
/* Get a free gxact from the freelist */
if (TwoPhaseState->freeGXacts == NULL)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("maximum number of prepared transactions reached"),
errhint("Increase max_prepared_transactions (currently %d).",
max_prepared_xacts)));
gxact = TwoPhaseState->freeGXacts;
TwoPhaseState->freeGXacts = gxact->next;
gxact->prepared_at = hdr->prepared_at;
gxact->prepare_start_lsn = start_lsn;
gxact->prepare_end_lsn = end_lsn;
gxact->xid = hdr->xid;
gxact->owner = hdr->owner;
gxact->locking_backend = InvalidBackendId;
gxact->valid = false;
gxact->ondisk = XLogRecPtrIsInvalid(start_lsn);
gxact->inredo = true; /* yes, added in redo */
strcpy(gxact->gid, gid);
/* And insert it into the active array */
Assert(TwoPhaseState->numPrepXacts < max_prepared_xacts);
TwoPhaseState->prepXacts[TwoPhaseState->numPrepXacts++] = gxact;
if (origin_id != InvalidRepOriginId)
{
/* recover apply progress */
replorigin_advance(origin_id, hdr->origin_lsn, end_lsn,
false /* backward */ , false /* WAL */ );
}
elog(DEBUG2, "added 2PC data in shared memory for transaction %u", gxact->xid);
}
/*
* PrepareRedoRemove
*
* Remove the corresponding gxact entry from TwoPhaseState. Also remove
* the 2PC file if a prepared transaction was saved via an earlier checkpoint.
*
* Caller must hold TwoPhaseStateLock in exclusive mode, because TwoPhaseState
* is updated.
*/
void
PrepareRedoRemove(TransactionId xid, bool giveWarning)
{
GlobalTransaction gxact = NULL;
int i;
bool found = false;
Assert(LWLockHeldByMeInMode(TwoPhaseStateLock, LW_EXCLUSIVE));
Assert(RecoveryInProgress());
for (i = 0; i < TwoPhaseState->numPrepXacts; i++)
{
gxact = TwoPhaseState->prepXacts[i];
if (gxact->xid == xid)
{
Assert(gxact->inredo);
found = true;
break;
}
}
/*
* Just leave if there is nothing, this is expected during WAL replay.
*/
if (!found)
return;
/*
* And now we can clean up any files we may have left.
*/
elog(DEBUG2, "removing 2PC data for transaction %u", xid);
if (gxact->ondisk)
RemoveTwoPhaseFile(xid, giveWarning);
RemoveGXact(gxact);
}