postgresql/src/include/utils/jsonb.h

441 lines
16 KiB
C

/*-------------------------------------------------------------------------
*
* jsonb.h
* Declarations for jsonb data type support.
*
* Copyright (c) 1996-2024, PostgreSQL Global Development Group
*
* src/include/utils/jsonb.h
*
*-------------------------------------------------------------------------
*/
#ifndef __JSONB_H__
#define __JSONB_H__
#include "lib/stringinfo.h"
#include "utils/array.h"
#include "utils/numeric.h"
/* Tokens used when sequentially processing a jsonb value */
typedef enum
{
WJB_DONE,
WJB_KEY,
WJB_VALUE,
WJB_ELEM,
WJB_BEGIN_ARRAY,
WJB_END_ARRAY,
WJB_BEGIN_OBJECT,
WJB_END_OBJECT,
} JsonbIteratorToken;
/* Strategy numbers for GIN index opclasses */
#define JsonbContainsStrategyNumber 7
#define JsonbExistsStrategyNumber 9
#define JsonbExistsAnyStrategyNumber 10
#define JsonbExistsAllStrategyNumber 11
#define JsonbJsonpathExistsStrategyNumber 15
#define JsonbJsonpathPredicateStrategyNumber 16
/*
* In the standard jsonb_ops GIN opclass for jsonb, we choose to index both
* keys and values. The storage format is text. The first byte of the text
* string distinguishes whether this is a key (always a string), null value,
* boolean value, numeric value, or string value. However, array elements
* that are strings are marked as though they were keys; this imprecision
* supports the definition of the "exists" operator, which treats array
* elements like keys. The remainder of the text string is empty for a null
* value, "t" or "f" for a boolean value, a normalized print representation of
* a numeric value, or the text of a string value. However, if the length of
* this text representation would exceed JGIN_MAXLENGTH bytes, we instead hash
* the text representation and store an 8-hex-digit representation of the
* uint32 hash value, marking the prefix byte with an additional bit to
* distinguish that this has happened. Hashing long strings saves space and
* ensures that we won't overrun the maximum entry length for a GIN index.
* (But JGIN_MAXLENGTH is quite a bit shorter than GIN's limit. It's chosen
* to ensure that the on-disk text datum will have a short varlena header.)
* Note that when any hashed item appears in a query, we must recheck index
* matches against the heap tuple; currently, this costs nothing because we
* must always recheck for other reasons.
*/
#define JGINFLAG_KEY 0x01 /* key (or string array element) */
#define JGINFLAG_NULL 0x02 /* null value */
#define JGINFLAG_BOOL 0x03 /* boolean value */
#define JGINFLAG_NUM 0x04 /* numeric value */
#define JGINFLAG_STR 0x05 /* string value (if not an array element) */
#define JGINFLAG_HASHED 0x10 /* OR'd into flag if value was hashed */
#define JGIN_MAXLENGTH 125 /* max length of text part before hashing */
typedef struct JsonbPair JsonbPair;
typedef struct JsonbValue JsonbValue;
/*
* Jsonbs are varlena objects, so must meet the varlena convention that the
* first int32 of the object contains the total object size in bytes. Be sure
* to use VARSIZE() and SET_VARSIZE() to access it, though!
*
* Jsonb is the on-disk representation, in contrast to the in-memory JsonbValue
* representation. Often, JsonbValues are just shims through which a Jsonb
* buffer is accessed, but they can also be deep copied and passed around.
*
* Jsonb is a tree structure. Each node in the tree consists of a JEntry
* header and a variable-length content (possibly of zero size). The JEntry
* header indicates what kind of a node it is, e.g. a string or an array,
* and provides the length of its variable-length portion.
*
* The JEntry and the content of a node are not stored physically together.
* Instead, the container array or object has an array that holds the JEntrys
* of all the child nodes, followed by their variable-length portions.
*
* The root node is an exception; it has no parent array or object that could
* hold its JEntry. Hence, no JEntry header is stored for the root node. It
* is implicitly known that the root node must be an array or an object,
* so we can get away without the type indicator as long as we can distinguish
* the two. For that purpose, both an array and an object begin with a uint32
* header field, which contains an JB_FOBJECT or JB_FARRAY flag. When a naked
* scalar value needs to be stored as a Jsonb value, what we actually store is
* an array with one element, with the flags in the array's header field set
* to JB_FSCALAR | JB_FARRAY.
*
* Overall, the Jsonb struct requires 4-bytes alignment. Within the struct,
* the variable-length portion of some node types is aligned to a 4-byte
* boundary, while others are not. When alignment is needed, the padding is
* in the beginning of the node that requires it. For example, if a numeric
* node is stored after a string node, so that the numeric node begins at
* offset 3, the variable-length portion of the numeric node will begin with
* one padding byte so that the actual numeric data is 4-byte aligned.
*/
/*
* JEntry format.
*
* The least significant 28 bits store either the data length of the entry,
* or its end+1 offset from the start of the variable-length portion of the
* containing object. The next three bits store the type of the entry, and
* the high-order bit tells whether the least significant bits store a length
* or an offset.
*
* The reason for the offset-or-length complication is to compromise between
* access speed and data compressibility. In the initial design each JEntry
* always stored an offset, but this resulted in JEntry arrays with horrible
* compressibility properties, so that TOAST compression of a JSONB did not
* work well. Storing only lengths would greatly improve compressibility,
* but it makes random access into large arrays expensive (O(N) not O(1)).
* So what we do is store an offset in every JB_OFFSET_STRIDE'th JEntry and
* a length in the rest. This results in reasonably compressible data (as
* long as the stride isn't too small). We may have to examine as many as
* JB_OFFSET_STRIDE JEntrys in order to find out the offset or length of any
* given item, but that's still O(1) no matter how large the container is.
*
* We could avoid eating a flag bit for this purpose if we were to store
* the stride in the container header, or if we were willing to treat the
* stride as an unchangeable constant. Neither of those options is very
* attractive though.
*/
typedef uint32 JEntry;
#define JENTRY_OFFLENMASK 0x0FFFFFFF
#define JENTRY_TYPEMASK 0x70000000
#define JENTRY_HAS_OFF 0x80000000
/* values stored in the type bits */
#define JENTRY_ISSTRING 0x00000000
#define JENTRY_ISNUMERIC 0x10000000
#define JENTRY_ISBOOL_FALSE 0x20000000
#define JENTRY_ISBOOL_TRUE 0x30000000
#define JENTRY_ISNULL 0x40000000
#define JENTRY_ISCONTAINER 0x50000000 /* array or object */
/* Access macros. Note possible multiple evaluations */
#define JBE_OFFLENFLD(je_) ((je_) & JENTRY_OFFLENMASK)
#define JBE_HAS_OFF(je_) (((je_) & JENTRY_HAS_OFF) != 0)
#define JBE_ISSTRING(je_) (((je_) & JENTRY_TYPEMASK) == JENTRY_ISSTRING)
#define JBE_ISNUMERIC(je_) (((je_) & JENTRY_TYPEMASK) == JENTRY_ISNUMERIC)
#define JBE_ISCONTAINER(je_) (((je_) & JENTRY_TYPEMASK) == JENTRY_ISCONTAINER)
#define JBE_ISNULL(je_) (((je_) & JENTRY_TYPEMASK) == JENTRY_ISNULL)
#define JBE_ISBOOL_TRUE(je_) (((je_) & JENTRY_TYPEMASK) == JENTRY_ISBOOL_TRUE)
#define JBE_ISBOOL_FALSE(je_) (((je_) & JENTRY_TYPEMASK) == JENTRY_ISBOOL_FALSE)
#define JBE_ISBOOL(je_) (JBE_ISBOOL_TRUE(je_) || JBE_ISBOOL_FALSE(je_))
/* Macro for advancing an offset variable to the next JEntry */
#define JBE_ADVANCE_OFFSET(offset, je) \
do { \
JEntry je_ = (je); \
if (JBE_HAS_OFF(je_)) \
(offset) = JBE_OFFLENFLD(je_); \
else \
(offset) += JBE_OFFLENFLD(je_); \
} while(0)
/*
* We store an offset, not a length, every JB_OFFSET_STRIDE children.
* Caution: this macro should only be referenced when creating a JSONB
* value. When examining an existing value, pay attention to the HAS_OFF
* bits instead. This allows changes in the offset-placement heuristic
* without breaking on-disk compatibility.
*/
#define JB_OFFSET_STRIDE 32
/*
* A jsonb array or object node, within a Jsonb Datum.
*
* An array has one child for each element, stored in array order.
*
* An object has two children for each key/value pair. The keys all appear
* first, in key sort order; then the values appear, in an order matching the
* key order. This arrangement keeps the keys compact in memory, making a
* search for a particular key more cache-friendly.
*/
typedef struct JsonbContainer
{
uint32 header; /* number of elements or key/value pairs, and
* flags */
JEntry children[FLEXIBLE_ARRAY_MEMBER];
/* the data for each child node follows. */
} JsonbContainer;
/* flags for the header-field in JsonbContainer */
#define JB_CMASK 0x0FFFFFFF /* mask for count field */
#define JB_FSCALAR 0x10000000 /* flag bits */
#define JB_FOBJECT 0x20000000
#define JB_FARRAY 0x40000000
/* convenience macros for accessing a JsonbContainer struct */
#define JsonContainerSize(jc) ((jc)->header & JB_CMASK)
#define JsonContainerIsScalar(jc) (((jc)->header & JB_FSCALAR) != 0)
#define JsonContainerIsObject(jc) (((jc)->header & JB_FOBJECT) != 0)
#define JsonContainerIsArray(jc) (((jc)->header & JB_FARRAY) != 0)
/* The top-level on-disk format for a jsonb datum. */
typedef struct
{
int32 vl_len_; /* varlena header (do not touch directly!) */
JsonbContainer root;
} Jsonb;
/* convenience macros for accessing the root container in a Jsonb datum */
#define JB_ROOT_COUNT(jbp_) (*(uint32 *) VARDATA(jbp_) & JB_CMASK)
#define JB_ROOT_IS_SCALAR(jbp_) ((*(uint32 *) VARDATA(jbp_) & JB_FSCALAR) != 0)
#define JB_ROOT_IS_OBJECT(jbp_) ((*(uint32 *) VARDATA(jbp_) & JB_FOBJECT) != 0)
#define JB_ROOT_IS_ARRAY(jbp_) ((*(uint32 *) VARDATA(jbp_) & JB_FARRAY) != 0)
enum jbvType
{
/* Scalar types */
jbvNull = 0x0,
jbvString,
jbvNumeric,
jbvBool,
/* Composite types */
jbvArray = 0x10,
jbvObject,
/* Binary (i.e. struct Jsonb) jbvArray/jbvObject */
jbvBinary,
/*
* Virtual types.
*
* These types are used only for in-memory JSON processing and serialized
* into JSON strings when outputted to json/jsonb.
*/
jbvDatetime = 0x20,
};
/*
* JsonbValue: In-memory representation of Jsonb. This is a convenient
* deserialized representation, that can easily support using the "val"
* union across underlying types during manipulation. The Jsonb on-disk
* representation has various alignment considerations.
*/
struct JsonbValue
{
enum jbvType type; /* Influences sort order */
union
{
Numeric numeric;
bool boolean;
struct
{
int len;
char *val; /* Not necessarily null-terminated */
} string; /* String primitive type */
struct
{
int nElems;
JsonbValue *elems;
bool rawScalar; /* Top-level "raw scalar" array? */
} array; /* Array container type */
struct
{
int nPairs; /* 1 pair, 2 elements */
JsonbPair *pairs;
} object; /* Associative container type */
struct
{
int len;
JsonbContainer *data;
} binary; /* Array or object, in on-disk format */
struct
{
Datum value;
Oid typid;
int32 typmod;
int tz; /* Numeric time zone, in seconds, for
* TimestampTz data type */
} datetime;
} val;
};
#define IsAJsonbScalar(jsonbval) (((jsonbval)->type >= jbvNull && \
(jsonbval)->type <= jbvBool) || \
(jsonbval)->type == jbvDatetime)
/*
* Key/value pair within an Object.
*
* This struct type is only used briefly while constructing a Jsonb; it is
* *not* the on-disk representation.
*
* Pairs with duplicate keys are de-duplicated. We store the originally
* observed pair ordering for the purpose of removing duplicates in a
* well-defined way (which is "last observed wins").
*/
struct JsonbPair
{
JsonbValue key; /* Must be a jbvString */
JsonbValue value; /* May be of any type */
uint32 order; /* Pair's index in original sequence */
};
/* Conversion state used when parsing Jsonb from text, or for type coercion */
typedef struct JsonbParseState
{
JsonbValue contVal;
Size size;
struct JsonbParseState *next;
bool unique_keys; /* Check object key uniqueness */
bool skip_nulls; /* Skip null object fields */
} JsonbParseState;
/*
* JsonbIterator holds details of the type for each iteration. It also stores a
* Jsonb varlena buffer, which can be directly accessed in some contexts.
*/
typedef enum
{
JBI_ARRAY_START,
JBI_ARRAY_ELEM,
JBI_OBJECT_START,
JBI_OBJECT_KEY,
JBI_OBJECT_VALUE,
} JsonbIterState;
typedef struct JsonbIterator
{
/* Container being iterated */
JsonbContainer *container;
uint32 nElems; /* Number of elements in children array (will
* be nPairs for objects) */
bool isScalar; /* Pseudo-array scalar value? */
JEntry *children; /* JEntrys for child nodes */
/* Data proper. This points to the beginning of the variable-length data */
char *dataProper;
/* Current item in buffer (up to nElems) */
int curIndex;
/* Data offset corresponding to current item */
uint32 curDataOffset;
/*
* If the container is an object, we want to return keys and values
* alternately; so curDataOffset points to the current key, and
* curValueOffset points to the current value.
*/
uint32 curValueOffset;
/* Private state */
JsonbIterState state;
struct JsonbIterator *parent;
} JsonbIterator;
/* Convenience macros */
static inline Jsonb *
DatumGetJsonbP(Datum d)
{
return (Jsonb *) PG_DETOAST_DATUM(d);
}
static inline Jsonb *
DatumGetJsonbPCopy(Datum d)
{
return (Jsonb *) PG_DETOAST_DATUM_COPY(d);
}
static inline Datum
JsonbPGetDatum(const Jsonb *p)
{
return PointerGetDatum(p);
}
#define PG_GETARG_JSONB_P(x) DatumGetJsonbP(PG_GETARG_DATUM(x))
#define PG_GETARG_JSONB_P_COPY(x) DatumGetJsonbPCopy(PG_GETARG_DATUM(x))
#define PG_RETURN_JSONB_P(x) PG_RETURN_POINTER(x)
/* Support functions */
extern uint32 getJsonbOffset(const JsonbContainer *jc, int index);
extern uint32 getJsonbLength(const JsonbContainer *jc, int index);
extern int compareJsonbContainers(JsonbContainer *a, JsonbContainer *b);
extern JsonbValue *findJsonbValueFromContainer(JsonbContainer *container,
uint32 flags,
JsonbValue *key);
extern JsonbValue *getKeyJsonValueFromContainer(JsonbContainer *container,
const char *keyVal, int keyLen,
JsonbValue *res);
extern JsonbValue *getIthJsonbValueFromContainer(JsonbContainer *container,
uint32 i);
extern JsonbValue *pushJsonbValue(JsonbParseState **pstate,
JsonbIteratorToken seq, JsonbValue *jbval);
extern JsonbIterator *JsonbIteratorInit(JsonbContainer *container);
extern JsonbIteratorToken JsonbIteratorNext(JsonbIterator **it, JsonbValue *val,
bool skipNested);
extern void JsonbToJsonbValue(Jsonb *jsonb, JsonbValue *val);
extern Jsonb *JsonbValueToJsonb(JsonbValue *val);
extern bool JsonbDeepContains(JsonbIterator **val,
JsonbIterator **mContained);
extern void JsonbHashScalarValue(const JsonbValue *scalarVal, uint32 *hash);
extern void JsonbHashScalarValueExtended(const JsonbValue *scalarVal,
uint64 *hash, uint64 seed);
/* jsonb.c support functions */
extern char *JsonbToCString(StringInfo out, JsonbContainer *in,
int estimated_len);
extern char *JsonbToCStringIndent(StringInfo out, JsonbContainer *in,
int estimated_len);
extern char *JsonbUnquote(Jsonb *jb);
extern bool JsonbExtractScalar(JsonbContainer *jbc, JsonbValue *res);
extern const char *JsonbTypeName(JsonbValue *val);
extern Datum jsonb_set_element(Jsonb *jb, Datum *path, int path_len,
JsonbValue *newval);
extern Datum jsonb_get_element(Jsonb *jb, Datum *path, int npath,
bool *isnull, bool as_text);
extern bool to_jsonb_is_immutable(Oid typoid);
extern Datum jsonb_build_object_worker(int nargs, const Datum *args, const bool *nulls,
const Oid *types, bool absent_on_null,
bool unique_keys);
extern Datum jsonb_build_array_worker(int nargs, const Datum *args, const bool *nulls,
const Oid *types, bool absent_on_null);
#endif /* __JSONB_H__ */