postgresql/src/common/wchar.c

2133 lines
45 KiB
C

/*-------------------------------------------------------------------------
*
* wchar.c
* Functions for working with multibyte characters in various encodings.
*
* Portions Copyright (c) 1998-2024, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/common/wchar.c
*
*-------------------------------------------------------------------------
*/
#include "c.h"
#include "mb/pg_wchar.h"
#include "utils/ascii.h"
/*
* Operations on multi-byte encodings are driven by a table of helper
* functions.
*
* To add an encoding support, define mblen(), dsplen(), verifychar() and
* verifystr() for the encoding. For server-encodings, also define mb2wchar()
* and wchar2mb() conversion functions.
*
* These functions generally assume that their input is validly formed.
* The "verifier" functions, further down in the file, have to be more
* paranoid.
*
* We expect that mblen() does not need to examine more than the first byte
* of the character to discover the correct length. GB18030 is an exception
* to that rule, though, as it also looks at second byte. But even that
* behaves in a predictable way, if you only pass the first byte: it will
* treat 4-byte encoded characters as two 2-byte encoded characters, which is
* good enough for all current uses.
*
* Note: for the display output of psql to work properly, the return values
* of the dsplen functions must conform to the Unicode standard. In particular
* the NUL character is zero width and control characters are generally
* width -1. It is recommended that non-ASCII encodings refer their ASCII
* subset to the ASCII routines to ensure consistency.
*/
/*
* SQL/ASCII
*/
static int
pg_ascii2wchar_with_len(const unsigned char *from, pg_wchar *to, int len)
{
int cnt = 0;
while (len > 0 && *from)
{
*to++ = *from++;
len--;
cnt++;
}
*to = 0;
return cnt;
}
static int
pg_ascii_mblen(const unsigned char *s)
{
return 1;
}
static int
pg_ascii_dsplen(const unsigned char *s)
{
if (*s == '\0')
return 0;
if (*s < 0x20 || *s == 0x7f)
return -1;
return 1;
}
/*
* EUC
*/
static int
pg_euc2wchar_with_len(const unsigned char *from, pg_wchar *to, int len)
{
int cnt = 0;
while (len > 0 && *from)
{
if (*from == SS2 && len >= 2) /* JIS X 0201 (so called "1 byte
* KANA") */
{
from++;
*to = (SS2 << 8) | *from++;
len -= 2;
}
else if (*from == SS3 && len >= 3) /* JIS X 0212 KANJI */
{
from++;
*to = (SS3 << 16) | (*from++ << 8);
*to |= *from++;
len -= 3;
}
else if (IS_HIGHBIT_SET(*from) && len >= 2) /* JIS X 0208 KANJI */
{
*to = *from++ << 8;
*to |= *from++;
len -= 2;
}
else /* must be ASCII */
{
*to = *from++;
len--;
}
to++;
cnt++;
}
*to = 0;
return cnt;
}
static inline int
pg_euc_mblen(const unsigned char *s)
{
int len;
if (*s == SS2)
len = 2;
else if (*s == SS3)
len = 3;
else if (IS_HIGHBIT_SET(*s))
len = 2;
else
len = 1;
return len;
}
static inline int
pg_euc_dsplen(const unsigned char *s)
{
int len;
if (*s == SS2)
len = 2;
else if (*s == SS3)
len = 2;
else if (IS_HIGHBIT_SET(*s))
len = 2;
else
len = pg_ascii_dsplen(s);
return len;
}
/*
* EUC_JP
*/
static int
pg_eucjp2wchar_with_len(const unsigned char *from, pg_wchar *to, int len)
{
return pg_euc2wchar_with_len(from, to, len);
}
static int
pg_eucjp_mblen(const unsigned char *s)
{
return pg_euc_mblen(s);
}
static int
pg_eucjp_dsplen(const unsigned char *s)
{
int len;
if (*s == SS2)
len = 1;
else if (*s == SS3)
len = 2;
else if (IS_HIGHBIT_SET(*s))
len = 2;
else
len = pg_ascii_dsplen(s);
return len;
}
/*
* EUC_KR
*/
static int
pg_euckr2wchar_with_len(const unsigned char *from, pg_wchar *to, int len)
{
return pg_euc2wchar_with_len(from, to, len);
}
static int
pg_euckr_mblen(const unsigned char *s)
{
return pg_euc_mblen(s);
}
static int
pg_euckr_dsplen(const unsigned char *s)
{
return pg_euc_dsplen(s);
}
/*
* EUC_CN
*
*/
static int
pg_euccn2wchar_with_len(const unsigned char *from, pg_wchar *to, int len)
{
int cnt = 0;
while (len > 0 && *from)
{
if (*from == SS2 && len >= 3) /* code set 2 (unused?) */
{
from++;
*to = (SS2 << 16) | (*from++ << 8);
*to |= *from++;
len -= 3;
}
else if (*from == SS3 && len >= 3) /* code set 3 (unused ?) */
{
from++;
*to = (SS3 << 16) | (*from++ << 8);
*to |= *from++;
len -= 3;
}
else if (IS_HIGHBIT_SET(*from) && len >= 2) /* code set 1 */
{
*to = *from++ << 8;
*to |= *from++;
len -= 2;
}
else
{
*to = *from++;
len--;
}
to++;
cnt++;
}
*to = 0;
return cnt;
}
static int
pg_euccn_mblen(const unsigned char *s)
{
int len;
if (IS_HIGHBIT_SET(*s))
len = 2;
else
len = 1;
return len;
}
static int
pg_euccn_dsplen(const unsigned char *s)
{
int len;
if (IS_HIGHBIT_SET(*s))
len = 2;
else
len = pg_ascii_dsplen(s);
return len;
}
/*
* EUC_TW
*
*/
static int
pg_euctw2wchar_with_len(const unsigned char *from, pg_wchar *to, int len)
{
int cnt = 0;
while (len > 0 && *from)
{
if (*from == SS2 && len >= 4) /* code set 2 */
{
from++;
*to = (((uint32) SS2) << 24) | (*from++ << 16);
*to |= *from++ << 8;
*to |= *from++;
len -= 4;
}
else if (*from == SS3 && len >= 3) /* code set 3 (unused?) */
{
from++;
*to = (SS3 << 16) | (*from++ << 8);
*to |= *from++;
len -= 3;
}
else if (IS_HIGHBIT_SET(*from) && len >= 2) /* code set 2 */
{
*to = *from++ << 8;
*to |= *from++;
len -= 2;
}
else
{
*to = *from++;
len--;
}
to++;
cnt++;
}
*to = 0;
return cnt;
}
static int
pg_euctw_mblen(const unsigned char *s)
{
int len;
if (*s == SS2)
len = 4;
else if (*s == SS3)
len = 3;
else if (IS_HIGHBIT_SET(*s))
len = 2;
else
len = 1;
return len;
}
static int
pg_euctw_dsplen(const unsigned char *s)
{
int len;
if (*s == SS2)
len = 2;
else if (*s == SS3)
len = 2;
else if (IS_HIGHBIT_SET(*s))
len = 2;
else
len = pg_ascii_dsplen(s);
return len;
}
/*
* Convert pg_wchar to EUC_* encoding.
* caller must allocate enough space for "to", including a trailing zero!
* len: length of from.
* "from" not necessarily null terminated.
*/
static int
pg_wchar2euc_with_len(const pg_wchar *from, unsigned char *to, int len)
{
int cnt = 0;
while (len > 0 && *from)
{
unsigned char c;
if ((c = (*from >> 24)))
{
*to++ = c;
*to++ = (*from >> 16) & 0xff;
*to++ = (*from >> 8) & 0xff;
*to++ = *from & 0xff;
cnt += 4;
}
else if ((c = (*from >> 16)))
{
*to++ = c;
*to++ = (*from >> 8) & 0xff;
*to++ = *from & 0xff;
cnt += 3;
}
else if ((c = (*from >> 8)))
{
*to++ = c;
*to++ = *from & 0xff;
cnt += 2;
}
else
{
*to++ = *from;
cnt++;
}
from++;
len--;
}
*to = 0;
return cnt;
}
/*
* JOHAB
*/
static int
pg_johab_mblen(const unsigned char *s)
{
return pg_euc_mblen(s);
}
static int
pg_johab_dsplen(const unsigned char *s)
{
return pg_euc_dsplen(s);
}
/*
* convert UTF8 string to pg_wchar (UCS-4)
* caller must allocate enough space for "to", including a trailing zero!
* len: length of from.
* "from" not necessarily null terminated.
*/
static int
pg_utf2wchar_with_len(const unsigned char *from, pg_wchar *to, int len)
{
int cnt = 0;
uint32 c1,
c2,
c3,
c4;
while (len > 0 && *from)
{
if ((*from & 0x80) == 0)
{
*to = *from++;
len--;
}
else if ((*from & 0xe0) == 0xc0)
{
if (len < 2)
break; /* drop trailing incomplete char */
c1 = *from++ & 0x1f;
c2 = *from++ & 0x3f;
*to = (c1 << 6) | c2;
len -= 2;
}
else if ((*from & 0xf0) == 0xe0)
{
if (len < 3)
break; /* drop trailing incomplete char */
c1 = *from++ & 0x0f;
c2 = *from++ & 0x3f;
c3 = *from++ & 0x3f;
*to = (c1 << 12) | (c2 << 6) | c3;
len -= 3;
}
else if ((*from & 0xf8) == 0xf0)
{
if (len < 4)
break; /* drop trailing incomplete char */
c1 = *from++ & 0x07;
c2 = *from++ & 0x3f;
c3 = *from++ & 0x3f;
c4 = *from++ & 0x3f;
*to = (c1 << 18) | (c2 << 12) | (c3 << 6) | c4;
len -= 4;
}
else
{
/* treat a bogus char as length 1; not ours to raise error */
*to = *from++;
len--;
}
to++;
cnt++;
}
*to = 0;
return cnt;
}
/*
* Trivial conversion from pg_wchar to UTF-8.
* caller should allocate enough space for "to"
* len: length of from.
* "from" not necessarily null terminated.
*/
static int
pg_wchar2utf_with_len(const pg_wchar *from, unsigned char *to, int len)
{
int cnt = 0;
while (len > 0 && *from)
{
int char_len;
unicode_to_utf8(*from, to);
char_len = pg_utf_mblen(to);
cnt += char_len;
to += char_len;
from++;
len--;
}
*to = 0;
return cnt;
}
/*
* Return the byte length of a UTF8 character pointed to by s
*
* Note: in the current implementation we do not support UTF8 sequences
* of more than 4 bytes; hence do NOT return a value larger than 4.
* We return "1" for any leading byte that is either flat-out illegal or
* indicates a length larger than we support.
*
* pg_utf2wchar_with_len(), utf8_to_unicode(), pg_utf8_islegal(), and perhaps
* other places would need to be fixed to change this.
*/
int
pg_utf_mblen(const unsigned char *s)
{
int len;
if ((*s & 0x80) == 0)
len = 1;
else if ((*s & 0xe0) == 0xc0)
len = 2;
else if ((*s & 0xf0) == 0xe0)
len = 3;
else if ((*s & 0xf8) == 0xf0)
len = 4;
#ifdef NOT_USED
else if ((*s & 0xfc) == 0xf8)
len = 5;
else if ((*s & 0xfe) == 0xfc)
len = 6;
#endif
else
len = 1;
return len;
}
/*
* This is an implementation of wcwidth() and wcswidth() as defined in
* "The Single UNIX Specification, Version 2, The Open Group, 1997"
* <http://www.unix.org/online.html>
*
* Markus Kuhn -- 2001-09-08 -- public domain
*
* customised for PostgreSQL
*
* original available at : http://www.cl.cam.ac.uk/~mgk25/ucs/wcwidth.c
*/
struct mbinterval
{
unsigned int first;
unsigned int last;
};
/* auxiliary function for binary search in interval table */
static int
mbbisearch(pg_wchar ucs, const struct mbinterval *table, int max)
{
int min = 0;
int mid;
if (ucs < table[0].first || ucs > table[max].last)
return 0;
while (max >= min)
{
mid = (min + max) / 2;
if (ucs > table[mid].last)
min = mid + 1;
else if (ucs < table[mid].first)
max = mid - 1;
else
return 1;
}
return 0;
}
/* The following functions define the column width of an ISO 10646
* character as follows:
*
* - The null character (U+0000) has a column width of 0.
*
* - Other C0/C1 control characters and DEL will lead to a return
* value of -1.
*
* - Non-spacing and enclosing combining characters (general
* category code Mn, Me or Cf in the Unicode database) have a
* column width of 0.
*
* - Spacing characters in the East Asian Wide (W) or East Asian
* FullWidth (F) category as defined in Unicode Technical
* Report #11 have a column width of 2.
*
* - All remaining characters (including all printable
* ISO 8859-1 and WGL4 characters, Unicode control characters,
* etc.) have a column width of 1.
*
* This implementation assumes that wchar_t characters are encoded
* in ISO 10646.
*/
static int
ucs_wcwidth(pg_wchar ucs)
{
#include "common/unicode_nonspacing_table.h"
#include "common/unicode_east_asian_fw_table.h"
/* test for 8-bit control characters */
if (ucs == 0)
return 0;
if (ucs < 0x20 || (ucs >= 0x7f && ucs < 0xa0) || ucs > 0x0010ffff)
return -1;
/*
* binary search in table of non-spacing characters
*
* XXX: In the official Unicode sources, it is possible for a character to
* be described as both non-spacing and wide at the same time. As of
* Unicode 13.0, treating the non-spacing property as the determining
* factor for display width leads to the correct behavior, so do that
* search first.
*/
if (mbbisearch(ucs, nonspacing,
sizeof(nonspacing) / sizeof(struct mbinterval) - 1))
return 0;
/* binary search in table of wide characters */
if (mbbisearch(ucs, east_asian_fw,
sizeof(east_asian_fw) / sizeof(struct mbinterval) - 1))
return 2;
return 1;
}
static int
pg_utf_dsplen(const unsigned char *s)
{
return ucs_wcwidth(utf8_to_unicode(s));
}
/*
* convert mule internal code to pg_wchar
* caller should allocate enough space for "to"
* len: length of from.
* "from" not necessarily null terminated.
*/
static int
pg_mule2wchar_with_len(const unsigned char *from, pg_wchar *to, int len)
{
int cnt = 0;
while (len > 0 && *from)
{
if (IS_LC1(*from) && len >= 2)
{
*to = *from++ << 16;
*to |= *from++;
len -= 2;
}
else if (IS_LCPRV1(*from) && len >= 3)
{
from++;
*to = *from++ << 16;
*to |= *from++;
len -= 3;
}
else if (IS_LC2(*from) && len >= 3)
{
*to = *from++ << 16;
*to |= *from++ << 8;
*to |= *from++;
len -= 3;
}
else if (IS_LCPRV2(*from) && len >= 4)
{
from++;
*to = *from++ << 16;
*to |= *from++ << 8;
*to |= *from++;
len -= 4;
}
else
{ /* assume ASCII */
*to = (unsigned char) *from++;
len--;
}
to++;
cnt++;
}
*to = 0;
return cnt;
}
/*
* convert pg_wchar to mule internal code
* caller should allocate enough space for "to"
* len: length of from.
* "from" not necessarily null terminated.
*/
static int
pg_wchar2mule_with_len(const pg_wchar *from, unsigned char *to, int len)
{
int cnt = 0;
while (len > 0 && *from)
{
unsigned char lb;
lb = (*from >> 16) & 0xff;
if (IS_LC1(lb))
{
*to++ = lb;
*to++ = *from & 0xff;
cnt += 2;
}
else if (IS_LC2(lb))
{
*to++ = lb;
*to++ = (*from >> 8) & 0xff;
*to++ = *from & 0xff;
cnt += 3;
}
else if (IS_LCPRV1_A_RANGE(lb))
{
*to++ = LCPRV1_A;
*to++ = lb;
*to++ = *from & 0xff;
cnt += 3;
}
else if (IS_LCPRV1_B_RANGE(lb))
{
*to++ = LCPRV1_B;
*to++ = lb;
*to++ = *from & 0xff;
cnt += 3;
}
else if (IS_LCPRV2_A_RANGE(lb))
{
*to++ = LCPRV2_A;
*to++ = lb;
*to++ = (*from >> 8) & 0xff;
*to++ = *from & 0xff;
cnt += 4;
}
else if (IS_LCPRV2_B_RANGE(lb))
{
*to++ = LCPRV2_B;
*to++ = lb;
*to++ = (*from >> 8) & 0xff;
*to++ = *from & 0xff;
cnt += 4;
}
else
{
*to++ = *from & 0xff;
cnt += 1;
}
from++;
len--;
}
*to = 0;
return cnt;
}
/* exported for direct use by conv.c */
int
pg_mule_mblen(const unsigned char *s)
{
int len;
if (IS_LC1(*s))
len = 2;
else if (IS_LCPRV1(*s))
len = 3;
else if (IS_LC2(*s))
len = 3;
else if (IS_LCPRV2(*s))
len = 4;
else
len = 1; /* assume ASCII */
return len;
}
static int
pg_mule_dsplen(const unsigned char *s)
{
int len;
/*
* Note: it's not really appropriate to assume that all multibyte charsets
* are double-wide on screen. But this seems an okay approximation for
* the MULE charsets we currently support.
*/
if (IS_LC1(*s))
len = 1;
else if (IS_LCPRV1(*s))
len = 1;
else if (IS_LC2(*s))
len = 2;
else if (IS_LCPRV2(*s))
len = 2;
else
len = 1; /* assume ASCII */
return len;
}
/*
* ISO8859-1
*/
static int
pg_latin12wchar_with_len(const unsigned char *from, pg_wchar *to, int len)
{
int cnt = 0;
while (len > 0 && *from)
{
*to++ = *from++;
len--;
cnt++;
}
*to = 0;
return cnt;
}
/*
* Trivial conversion from pg_wchar to single byte encoding. Just ignores
* high bits.
* caller should allocate enough space for "to"
* len: length of from.
* "from" not necessarily null terminated.
*/
static int
pg_wchar2single_with_len(const pg_wchar *from, unsigned char *to, int len)
{
int cnt = 0;
while (len > 0 && *from)
{
*to++ = *from++;
len--;
cnt++;
}
*to = 0;
return cnt;
}
static int
pg_latin1_mblen(const unsigned char *s)
{
return 1;
}
static int
pg_latin1_dsplen(const unsigned char *s)
{
return pg_ascii_dsplen(s);
}
/*
* SJIS
*/
static int
pg_sjis_mblen(const unsigned char *s)
{
int len;
if (*s >= 0xa1 && *s <= 0xdf)
len = 1; /* 1 byte kana? */
else if (IS_HIGHBIT_SET(*s))
len = 2; /* kanji? */
else
len = 1; /* should be ASCII */
return len;
}
static int
pg_sjis_dsplen(const unsigned char *s)
{
int len;
if (*s >= 0xa1 && *s <= 0xdf)
len = 1; /* 1 byte kana? */
else if (IS_HIGHBIT_SET(*s))
len = 2; /* kanji? */
else
len = pg_ascii_dsplen(s); /* should be ASCII */
return len;
}
/*
* Big5
*/
static int
pg_big5_mblen(const unsigned char *s)
{
int len;
if (IS_HIGHBIT_SET(*s))
len = 2; /* kanji? */
else
len = 1; /* should be ASCII */
return len;
}
static int
pg_big5_dsplen(const unsigned char *s)
{
int len;
if (IS_HIGHBIT_SET(*s))
len = 2; /* kanji? */
else
len = pg_ascii_dsplen(s); /* should be ASCII */
return len;
}
/*
* GBK
*/
static int
pg_gbk_mblen(const unsigned char *s)
{
int len;
if (IS_HIGHBIT_SET(*s))
len = 2; /* kanji? */
else
len = 1; /* should be ASCII */
return len;
}
static int
pg_gbk_dsplen(const unsigned char *s)
{
int len;
if (IS_HIGHBIT_SET(*s))
len = 2; /* kanji? */
else
len = pg_ascii_dsplen(s); /* should be ASCII */
return len;
}
/*
* UHC
*/
static int
pg_uhc_mblen(const unsigned char *s)
{
int len;
if (IS_HIGHBIT_SET(*s))
len = 2; /* 2byte? */
else
len = 1; /* should be ASCII */
return len;
}
static int
pg_uhc_dsplen(const unsigned char *s)
{
int len;
if (IS_HIGHBIT_SET(*s))
len = 2; /* 2byte? */
else
len = pg_ascii_dsplen(s); /* should be ASCII */
return len;
}
/*
* GB18030
* Added by Bill Huang <bhuang@redhat.com>,<bill_huanghb@ybb.ne.jp>
*/
/*
* Unlike all other mblen() functions, this also looks at the second byte of
* the input. However, if you only pass the first byte of a multi-byte
* string, and \0 as the second byte, this still works in a predictable way:
* a 4-byte character will be reported as two 2-byte characters. That's
* enough for all current uses, as a client-only encoding. It works that
* way, because in any valid 4-byte GB18030-encoded character, the third and
* fourth byte look like a 2-byte encoded character, when looked at
* separately.
*/
static int
pg_gb18030_mblen(const unsigned char *s)
{
int len;
if (!IS_HIGHBIT_SET(*s))
len = 1; /* ASCII */
else if (*(s + 1) >= 0x30 && *(s + 1) <= 0x39)
len = 4;
else
len = 2;
return len;
}
static int
pg_gb18030_dsplen(const unsigned char *s)
{
int len;
if (IS_HIGHBIT_SET(*s))
len = 2;
else
len = pg_ascii_dsplen(s); /* ASCII */
return len;
}
/*
*-------------------------------------------------------------------
* multibyte sequence validators
*
* The verifychar functions accept "s", a pointer to the first byte of a
* string, and "len", the remaining length of the string. If there is a
* validly encoded character beginning at *s, return its length in bytes;
* else return -1.
*
* The verifystr functions also accept "s", a pointer to a string and "len",
* the length of the string. They verify the whole string, and return the
* number of input bytes (<= len) that are valid. In other words, if the
* whole string is valid, verifystr returns "len", otherwise it returns the
* byte offset of the first invalid character. The verifystr functions must
* test for and reject zeroes in the input.
*
* The verifychar functions can assume that len > 0 and that *s != '\0', but
* they must test for and reject zeroes in any additional bytes of a
* multibyte character. Note that this definition allows the function for a
* single-byte encoding to be just "return 1".
*-------------------------------------------------------------------
*/
static int
pg_ascii_verifychar(const unsigned char *s, int len)
{
return 1;
}
static int
pg_ascii_verifystr(const unsigned char *s, int len)
{
const unsigned char *nullpos = memchr(s, 0, len);
if (nullpos == NULL)
return len;
else
return nullpos - s;
}
#define IS_EUC_RANGE_VALID(c) ((c) >= 0xa1 && (c) <= 0xfe)
static int
pg_eucjp_verifychar(const unsigned char *s, int len)
{
int l;
unsigned char c1,
c2;
c1 = *s++;
switch (c1)
{
case SS2: /* JIS X 0201 */
l = 2;
if (l > len)
return -1;
c2 = *s++;
if (c2 < 0xa1 || c2 > 0xdf)
return -1;
break;
case SS3: /* JIS X 0212 */
l = 3;
if (l > len)
return -1;
c2 = *s++;
if (!IS_EUC_RANGE_VALID(c2))
return -1;
c2 = *s++;
if (!IS_EUC_RANGE_VALID(c2))
return -1;
break;
default:
if (IS_HIGHBIT_SET(c1)) /* JIS X 0208? */
{
l = 2;
if (l > len)
return -1;
if (!IS_EUC_RANGE_VALID(c1))
return -1;
c2 = *s++;
if (!IS_EUC_RANGE_VALID(c2))
return -1;
}
else
/* must be ASCII */
{
l = 1;
}
break;
}
return l;
}
static int
pg_eucjp_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_eucjp_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
static int
pg_euckr_verifychar(const unsigned char *s, int len)
{
int l;
unsigned char c1,
c2;
c1 = *s++;
if (IS_HIGHBIT_SET(c1))
{
l = 2;
if (l > len)
return -1;
if (!IS_EUC_RANGE_VALID(c1))
return -1;
c2 = *s++;
if (!IS_EUC_RANGE_VALID(c2))
return -1;
}
else
/* must be ASCII */
{
l = 1;
}
return l;
}
static int
pg_euckr_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_euckr_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
/* EUC-CN byte sequences are exactly same as EUC-KR */
#define pg_euccn_verifychar pg_euckr_verifychar
#define pg_euccn_verifystr pg_euckr_verifystr
static int
pg_euctw_verifychar(const unsigned char *s, int len)
{
int l;
unsigned char c1,
c2;
c1 = *s++;
switch (c1)
{
case SS2: /* CNS 11643 Plane 1-7 */
l = 4;
if (l > len)
return -1;
c2 = *s++;
if (c2 < 0xa1 || c2 > 0xa7)
return -1;
c2 = *s++;
if (!IS_EUC_RANGE_VALID(c2))
return -1;
c2 = *s++;
if (!IS_EUC_RANGE_VALID(c2))
return -1;
break;
case SS3: /* unused */
return -1;
default:
if (IS_HIGHBIT_SET(c1)) /* CNS 11643 Plane 1 */
{
l = 2;
if (l > len)
return -1;
/* no further range check on c1? */
c2 = *s++;
if (!IS_EUC_RANGE_VALID(c2))
return -1;
}
else
/* must be ASCII */
{
l = 1;
}
break;
}
return l;
}
static int
pg_euctw_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_euctw_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
static int
pg_johab_verifychar(const unsigned char *s, int len)
{
int l,
mbl;
unsigned char c;
l = mbl = pg_johab_mblen(s);
if (len < l)
return -1;
if (!IS_HIGHBIT_SET(*s))
return mbl;
while (--l > 0)
{
c = *++s;
if (!IS_EUC_RANGE_VALID(c))
return -1;
}
return mbl;
}
static int
pg_johab_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_johab_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
static int
pg_mule_verifychar(const unsigned char *s, int len)
{
int l,
mbl;
unsigned char c;
l = mbl = pg_mule_mblen(s);
if (len < l)
return -1;
while (--l > 0)
{
c = *++s;
if (!IS_HIGHBIT_SET(c))
return -1;
}
return mbl;
}
static int
pg_mule_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_mule_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
static int
pg_latin1_verifychar(const unsigned char *s, int len)
{
return 1;
}
static int
pg_latin1_verifystr(const unsigned char *s, int len)
{
const unsigned char *nullpos = memchr(s, 0, len);
if (nullpos == NULL)
return len;
else
return nullpos - s;
}
static int
pg_sjis_verifychar(const unsigned char *s, int len)
{
int l,
mbl;
unsigned char c1,
c2;
l = mbl = pg_sjis_mblen(s);
if (len < l)
return -1;
if (l == 1) /* pg_sjis_mblen already verified it */
return mbl;
c1 = *s++;
c2 = *s;
if (!ISSJISHEAD(c1) || !ISSJISTAIL(c2))
return -1;
return mbl;
}
static int
pg_sjis_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_sjis_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
static int
pg_big5_verifychar(const unsigned char *s, int len)
{
int l,
mbl;
l = mbl = pg_big5_mblen(s);
if (len < l)
return -1;
while (--l > 0)
{
if (*++s == '\0')
return -1;
}
return mbl;
}
static int
pg_big5_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_big5_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
static int
pg_gbk_verifychar(const unsigned char *s, int len)
{
int l,
mbl;
l = mbl = pg_gbk_mblen(s);
if (len < l)
return -1;
while (--l > 0)
{
if (*++s == '\0')
return -1;
}
return mbl;
}
static int
pg_gbk_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_gbk_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
static int
pg_uhc_verifychar(const unsigned char *s, int len)
{
int l,
mbl;
l = mbl = pg_uhc_mblen(s);
if (len < l)
return -1;
while (--l > 0)
{
if (*++s == '\0')
return -1;
}
return mbl;
}
static int
pg_uhc_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_uhc_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
static int
pg_gb18030_verifychar(const unsigned char *s, int len)
{
int l;
if (!IS_HIGHBIT_SET(*s))
l = 1; /* ASCII */
else if (len >= 4 && *(s + 1) >= 0x30 && *(s + 1) <= 0x39)
{
/* Should be 4-byte, validate remaining bytes */
if (*s >= 0x81 && *s <= 0xfe &&
*(s + 2) >= 0x81 && *(s + 2) <= 0xfe &&
*(s + 3) >= 0x30 && *(s + 3) <= 0x39)
l = 4;
else
l = -1;
}
else if (len >= 2 && *s >= 0x81 && *s <= 0xfe)
{
/* Should be 2-byte, validate */
if ((*(s + 1) >= 0x40 && *(s + 1) <= 0x7e) ||
(*(s + 1) >= 0x80 && *(s + 1) <= 0xfe))
l = 2;
else
l = -1;
}
else
l = -1;
return l;
}
static int
pg_gb18030_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_gb18030_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
static int
pg_utf8_verifychar(const unsigned char *s, int len)
{
int l;
if ((*s & 0x80) == 0)
{
if (*s == '\0')
return -1;
return 1;
}
else if ((*s & 0xe0) == 0xc0)
l = 2;
else if ((*s & 0xf0) == 0xe0)
l = 3;
else if ((*s & 0xf8) == 0xf0)
l = 4;
else
l = 1;
if (l > len)
return -1;
if (!pg_utf8_islegal(s, l))
return -1;
return l;
}
/*
* The fast path of the UTF-8 verifier uses a deterministic finite automaton
* (DFA) for multibyte characters. In a traditional table-driven DFA, the
* input byte and current state are used to compute an index into an array of
* state transitions. Since the address of the next transition is dependent
* on this computation, there is latency in executing the load instruction,
* and the CPU is not kept busy.
*
* Instead, we use a "shift-based" DFA as described by Per Vognsen:
*
* https://gist.github.com/pervognsen/218ea17743e1442e59bb60d29b1aa725
*
* In a shift-based DFA, the input byte is an index into array of integers
* whose bit pattern encodes the state transitions. To compute the next
* state, we simply right-shift the integer by the current state and apply a
* mask. In this scheme, the address of the transition only depends on the
* input byte, so there is better pipelining.
*
* The naming convention for states and transitions was adopted from a UTF-8
* to UTF-16/32 transcoder, whose table is reproduced below:
*
* https://github.com/BobSteagall/utf_utils/blob/6b7a465265de2f5fa6133d653df0c9bdd73bbcf8/src/utf_utils.cpp
*
* ILL ASC CR1 CR2 CR3 L2A L3A L3B L3C L4A L4B L4C CLASS / STATE
* ==========================================================================
* err, END, err, err, err, CS1, P3A, CS2, P3B, P4A, CS3, P4B, | BGN/END
* err, err, err, err, err, err, err, err, err, err, err, err, | ERR
* |
* err, err, END, END, END, err, err, err, err, err, err, err, | CS1
* err, err, CS1, CS1, CS1, err, err, err, err, err, err, err, | CS2
* err, err, CS2, CS2, CS2, err, err, err, err, err, err, err, | CS3
* |
* err, err, err, err, CS1, err, err, err, err, err, err, err, | P3A
* err, err, CS1, CS1, err, err, err, err, err, err, err, err, | P3B
* |
* err, err, err, CS2, CS2, err, err, err, err, err, err, err, | P4A
* err, err, CS2, err, err, err, err, err, err, err, err, err, | P4B
*
* In the most straightforward implementation, a shift-based DFA for UTF-8
* requires 64-bit integers to encode the transitions, but with an SMT solver
* it's possible to find state numbers such that the transitions fit within
* 32-bit integers, as Dougall Johnson demonstrated:
*
* https://gist.github.com/dougallj/166e326de6ad4cf2c94be97a204c025f
*
* This packed representation is the reason for the seemingly odd choice of
* state values below.
*/
/* Error */
#define ERR 0
/* Begin */
#define BGN 11
/* Continuation states, expect 1/2/3 continuation bytes */
#define CS1 16
#define CS2 1
#define CS3 5
/* Partial states, where the first continuation byte has a restricted range */
#define P3A 6 /* Lead was E0, check for 3-byte overlong */
#define P3B 20 /* Lead was ED, check for surrogate */
#define P4A 25 /* Lead was F0, check for 4-byte overlong */
#define P4B 30 /* Lead was F4, check for too-large */
/* Begin and End are the same state */
#define END BGN
/* the encoded state transitions for the lookup table */
/* ASCII */
#define ASC (END << BGN)
/* 2-byte lead */
#define L2A (CS1 << BGN)
/* 3-byte lead */
#define L3A (P3A << BGN)
#define L3B (CS2 << BGN)
#define L3C (P3B << BGN)
/* 4-byte lead */
#define L4A (P4A << BGN)
#define L4B (CS3 << BGN)
#define L4C (P4B << BGN)
/* continuation byte */
#define CR1 (END << CS1) | (CS1 << CS2) | (CS2 << CS3) | (CS1 << P3B) | (CS2 << P4B)
#define CR2 (END << CS1) | (CS1 << CS2) | (CS2 << CS3) | (CS1 << P3B) | (CS2 << P4A)
#define CR3 (END << CS1) | (CS1 << CS2) | (CS2 << CS3) | (CS1 << P3A) | (CS2 << P4A)
/* invalid byte */
#define ILL ERR
static const uint32 Utf8Transition[256] =
{
/* ASCII */
ILL, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
ASC, ASC, ASC, ASC, ASC, ASC, ASC, ASC,
/* continuation bytes */
/* 80..8F */
CR1, CR1, CR1, CR1, CR1, CR1, CR1, CR1,
CR1, CR1, CR1, CR1, CR1, CR1, CR1, CR1,
/* 90..9F */
CR2, CR2, CR2, CR2, CR2, CR2, CR2, CR2,
CR2, CR2, CR2, CR2, CR2, CR2, CR2, CR2,
/* A0..BF */
CR3, CR3, CR3, CR3, CR3, CR3, CR3, CR3,
CR3, CR3, CR3, CR3, CR3, CR3, CR3, CR3,
CR3, CR3, CR3, CR3, CR3, CR3, CR3, CR3,
CR3, CR3, CR3, CR3, CR3, CR3, CR3, CR3,
/* leading bytes */
/* C0..DF */
ILL, ILL, L2A, L2A, L2A, L2A, L2A, L2A,
L2A, L2A, L2A, L2A, L2A, L2A, L2A, L2A,
L2A, L2A, L2A, L2A, L2A, L2A, L2A, L2A,
L2A, L2A, L2A, L2A, L2A, L2A, L2A, L2A,
/* E0..EF */
L3A, L3B, L3B, L3B, L3B, L3B, L3B, L3B,
L3B, L3B, L3B, L3B, L3B, L3C, L3B, L3B,
/* F0..FF */
L4A, L4B, L4B, L4B, L4C, ILL, ILL, ILL,
ILL, ILL, ILL, ILL, ILL, ILL, ILL, ILL
};
static void
utf8_advance(const unsigned char *s, uint32 *state, int len)
{
/* Note: We deliberately don't check the state's value here. */
while (len > 0)
{
/*
* It's important that the mask value is 31: In most instruction sets,
* a shift by a 32-bit operand is understood to be a shift by its mod
* 32, so the compiler should elide the mask operation.
*/
*state = Utf8Transition[*s++] >> (*state & 31);
len--;
}
*state &= 31;
}
static int
pg_utf8_verifystr(const unsigned char *s, int len)
{
const unsigned char *start = s;
const int orig_len = len;
uint32 state = BGN;
/*
* With a stride of two vector widths, gcc will unroll the loop. Even if
* the compiler can unroll a longer loop, it's not worth it because we
* must fall back to the byte-wise algorithm if we find any non-ASCII.
*/
#define STRIDE_LENGTH (2 * sizeof(Vector8))
if (len >= STRIDE_LENGTH)
{
while (len >= STRIDE_LENGTH)
{
/*
* If the chunk is all ASCII, we can skip the full UTF-8 check,
* but we must first check for a non-END state, which means the
* previous chunk ended in the middle of a multibyte sequence.
*/
if (state != END || !is_valid_ascii(s, STRIDE_LENGTH))
utf8_advance(s, &state, STRIDE_LENGTH);
s += STRIDE_LENGTH;
len -= STRIDE_LENGTH;
}
/* The error state persists, so we only need to check for it here. */
if (state == ERR)
{
/*
* Start over from the beginning with the slow path so we can
* count the valid bytes.
*/
len = orig_len;
s = start;
}
else if (state != END)
{
/*
* The fast path exited in the middle of a multibyte sequence.
* Walk backwards to find the leading byte so that the slow path
* can resume checking from there. We must always backtrack at
* least one byte, since the current byte could be e.g. an ASCII
* byte after a 2-byte lead, which is invalid.
*/
do
{
Assert(s > start);
s--;
len++;
Assert(IS_HIGHBIT_SET(*s));
} while (pg_utf_mblen(s) <= 1);
}
}
/* check remaining bytes */
while (len > 0)
{
int l;
/* fast path for ASCII-subset characters */
if (!IS_HIGHBIT_SET(*s))
{
if (*s == '\0')
break;
l = 1;
}
else
{
l = pg_utf8_verifychar(s, len);
if (l == -1)
break;
}
s += l;
len -= l;
}
return s - start;
}
/*
* Check for validity of a single UTF-8 encoded character
*
* This directly implements the rules in RFC3629. The bizarre-looking
* restrictions on the second byte are meant to ensure that there isn't
* more than one encoding of a given Unicode character point; that is,
* you may not use a longer-than-necessary byte sequence with high order
* zero bits to represent a character that would fit in fewer bytes.
* To do otherwise is to create security hazards (eg, create an apparent
* non-ASCII character that decodes to plain ASCII).
*
* length is assumed to have been obtained by pg_utf_mblen(), and the
* caller must have checked that that many bytes are present in the buffer.
*/
bool
pg_utf8_islegal(const unsigned char *source, int length)
{
unsigned char a;
switch (length)
{
default:
/* reject lengths 5 and 6 for now */
return false;
case 4:
a = source[3];
if (a < 0x80 || a > 0xBF)
return false;
/* FALL THRU */
case 3:
a = source[2];
if (a < 0x80 || a > 0xBF)
return false;
/* FALL THRU */
case 2:
a = source[1];
switch (*source)
{
case 0xE0:
if (a < 0xA0 || a > 0xBF)
return false;
break;
case 0xED:
if (a < 0x80 || a > 0x9F)
return false;
break;
case 0xF0:
if (a < 0x90 || a > 0xBF)
return false;
break;
case 0xF4:
if (a < 0x80 || a > 0x8F)
return false;
break;
default:
if (a < 0x80 || a > 0xBF)
return false;
break;
}
/* FALL THRU */
case 1:
a = *source;
if (a >= 0x80 && a < 0xC2)
return false;
if (a > 0xF4)
return false;
break;
}
return true;
}
/*
*-------------------------------------------------------------------
* encoding info table
*-------------------------------------------------------------------
*/
const pg_wchar_tbl pg_wchar_table[] = {
[PG_SQL_ASCII] = {pg_ascii2wchar_with_len, pg_wchar2single_with_len, pg_ascii_mblen, pg_ascii_dsplen, pg_ascii_verifychar, pg_ascii_verifystr, 1},
[PG_EUC_JP] = {pg_eucjp2wchar_with_len, pg_wchar2euc_with_len, pg_eucjp_mblen, pg_eucjp_dsplen, pg_eucjp_verifychar, pg_eucjp_verifystr, 3},
[PG_EUC_CN] = {pg_euccn2wchar_with_len, pg_wchar2euc_with_len, pg_euccn_mblen, pg_euccn_dsplen, pg_euccn_verifychar, pg_euccn_verifystr, 2},
[PG_EUC_KR] = {pg_euckr2wchar_with_len, pg_wchar2euc_with_len, pg_euckr_mblen, pg_euckr_dsplen, pg_euckr_verifychar, pg_euckr_verifystr, 3},
[PG_EUC_TW] = {pg_euctw2wchar_with_len, pg_wchar2euc_with_len, pg_euctw_mblen, pg_euctw_dsplen, pg_euctw_verifychar, pg_euctw_verifystr, 4},
[PG_EUC_JIS_2004] = {pg_eucjp2wchar_with_len, pg_wchar2euc_with_len, pg_eucjp_mblen, pg_eucjp_dsplen, pg_eucjp_verifychar, pg_eucjp_verifystr, 3},
[PG_UTF8] = {pg_utf2wchar_with_len, pg_wchar2utf_with_len, pg_utf_mblen, pg_utf_dsplen, pg_utf8_verifychar, pg_utf8_verifystr, 4},
[PG_MULE_INTERNAL] = {pg_mule2wchar_with_len, pg_wchar2mule_with_len, pg_mule_mblen, pg_mule_dsplen, pg_mule_verifychar, pg_mule_verifystr, 4},
[PG_LATIN1] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_LATIN2] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_LATIN3] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_LATIN4] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_LATIN5] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_LATIN6] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_LATIN7] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_LATIN8] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_LATIN9] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_LATIN10] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN1256] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN1258] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN866] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN874] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_KOI8R] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN1251] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN1252] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_ISO_8859_5] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_ISO_8859_6] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_ISO_8859_7] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_ISO_8859_8] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN1250] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN1253] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN1254] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN1255] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_WIN1257] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_KOI8U] = {pg_latin12wchar_with_len, pg_wchar2single_with_len, pg_latin1_mblen, pg_latin1_dsplen, pg_latin1_verifychar, pg_latin1_verifystr, 1},
[PG_SJIS] = {0, 0, pg_sjis_mblen, pg_sjis_dsplen, pg_sjis_verifychar, pg_sjis_verifystr, 2},
[PG_BIG5] = {0, 0, pg_big5_mblen, pg_big5_dsplen, pg_big5_verifychar, pg_big5_verifystr, 2},
[PG_GBK] = {0, 0, pg_gbk_mblen, pg_gbk_dsplen, pg_gbk_verifychar, pg_gbk_verifystr, 2},
[PG_UHC] = {0, 0, pg_uhc_mblen, pg_uhc_dsplen, pg_uhc_verifychar, pg_uhc_verifystr, 2},
[PG_GB18030] = {0, 0, pg_gb18030_mblen, pg_gb18030_dsplen, pg_gb18030_verifychar, pg_gb18030_verifystr, 4},
[PG_JOHAB] = {0, 0, pg_johab_mblen, pg_johab_dsplen, pg_johab_verifychar, pg_johab_verifystr, 3},
[PG_SHIFT_JIS_2004] = {0, 0, pg_sjis_mblen, pg_sjis_dsplen, pg_sjis_verifychar, pg_sjis_verifystr, 2},
};
/*
* Returns the byte length of a multibyte character.
*
* Caution: when dealing with text that is not certainly valid in the
* specified encoding, the result may exceed the actual remaining
* string length. Callers that are not prepared to deal with that
* should use pg_encoding_mblen_bounded() instead.
*/
int
pg_encoding_mblen(int encoding, const char *mbstr)
{
return (PG_VALID_ENCODING(encoding) ?
pg_wchar_table[encoding].mblen((const unsigned char *) mbstr) :
pg_wchar_table[PG_SQL_ASCII].mblen((const unsigned char *) mbstr));
}
/*
* Returns the byte length of a multibyte character; but not more than
* the distance to end of string.
*/
int
pg_encoding_mblen_bounded(int encoding, const char *mbstr)
{
return strnlen(mbstr, pg_encoding_mblen(encoding, mbstr));
}
/*
* Returns the display length of a multibyte character.
*/
int
pg_encoding_dsplen(int encoding, const char *mbstr)
{
return (PG_VALID_ENCODING(encoding) ?
pg_wchar_table[encoding].dsplen((const unsigned char *) mbstr) :
pg_wchar_table[PG_SQL_ASCII].dsplen((const unsigned char *) mbstr));
}
/*
* Verify the first multibyte character of the given string.
* Return its byte length if good, -1 if bad. (See comments above for
* full details of the mbverifychar API.)
*/
int
pg_encoding_verifymbchar(int encoding, const char *mbstr, int len)
{
return (PG_VALID_ENCODING(encoding) ?
pg_wchar_table[encoding].mbverifychar((const unsigned char *) mbstr, len) :
pg_wchar_table[PG_SQL_ASCII].mbverifychar((const unsigned char *) mbstr, len));
}
/*
* Verify that a string is valid for the given encoding.
* Returns the number of input bytes (<= len) that form a valid string.
* (See comments above for full details of the mbverifystr API.)
*/
int
pg_encoding_verifymbstr(int encoding, const char *mbstr, int len)
{
return (PG_VALID_ENCODING(encoding) ?
pg_wchar_table[encoding].mbverifystr((const unsigned char *) mbstr, len) :
pg_wchar_table[PG_SQL_ASCII].mbverifystr((const unsigned char *) mbstr, len));
}
/*
* fetch maximum length of a given encoding
*/
int
pg_encoding_max_length(int encoding)
{
Assert(PG_VALID_ENCODING(encoding));
return pg_wchar_table[encoding].maxmblen;
}