postgresql/src/common/binaryheap.c

366 lines
8.3 KiB
C

/*-------------------------------------------------------------------------
*
* binaryheap.c
* A simple binary heap implementation
*
* Portions Copyright (c) 2012-2024, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/common/binaryheap.c
*
*-------------------------------------------------------------------------
*/
#ifdef FRONTEND
#include "postgres_fe.h"
#else
#include "postgres.h"
#endif
#include <math.h>
#ifdef FRONTEND
#include "common/logging.h"
#endif
#include "lib/binaryheap.h"
static void sift_down(binaryheap *heap, int node_off);
static void sift_up(binaryheap *heap, int node_off);
/*
* binaryheap_allocate
*
* Returns a pointer to a newly-allocated heap that has the capacity to
* store the given number of nodes, with the heap property defined by
* the given comparator function, which will be invoked with the additional
* argument specified by 'arg'.
*/
binaryheap *
binaryheap_allocate(int capacity, binaryheap_comparator compare, void *arg)
{
int sz;
binaryheap *heap;
sz = offsetof(binaryheap, bh_nodes) + sizeof(bh_node_type) * capacity;
heap = (binaryheap *) palloc(sz);
heap->bh_space = capacity;
heap->bh_compare = compare;
heap->bh_arg = arg;
heap->bh_size = 0;
heap->bh_has_heap_property = true;
return heap;
}
/*
* binaryheap_reset
*
* Resets the heap to an empty state, losing its data content but not the
* parameters passed at allocation.
*/
void
binaryheap_reset(binaryheap *heap)
{
heap->bh_size = 0;
heap->bh_has_heap_property = true;
}
/*
* binaryheap_free
*
* Releases memory used by the given binaryheap.
*/
void
binaryheap_free(binaryheap *heap)
{
pfree(heap);
}
/*
* These utility functions return the offset of the left child, right
* child, and parent of the node at the given index, respectively.
*
* The heap is represented as an array of nodes, with the root node
* stored at index 0. The left child of node i is at index 2*i+1, and
* the right child at 2*i+2. The parent of node i is at index (i-1)/2.
*/
static inline int
left_offset(int i)
{
return 2 * i + 1;
}
static inline int
right_offset(int i)
{
return 2 * i + 2;
}
static inline int
parent_offset(int i)
{
return (i - 1) / 2;
}
/*
* binaryheap_add_unordered
*
* Adds the given datum to the end of the heap's list of nodes in O(1) without
* preserving the heap property. This is a convenience to add elements quickly
* to a new heap. To obtain a valid heap, one must call binaryheap_build()
* afterwards.
*/
void
binaryheap_add_unordered(binaryheap *heap, bh_node_type d)
{
if (heap->bh_size >= heap->bh_space)
{
#ifdef FRONTEND
pg_fatal("out of binary heap slots");
#else
elog(ERROR, "out of binary heap slots");
#endif
}
heap->bh_has_heap_property = false;
heap->bh_nodes[heap->bh_size] = d;
heap->bh_size++;
}
/*
* binaryheap_build
*
* Assembles a valid heap in O(n) from the nodes added by
* binaryheap_add_unordered(). Not needed otherwise.
*/
void
binaryheap_build(binaryheap *heap)
{
int i;
for (i = parent_offset(heap->bh_size - 1); i >= 0; i--)
sift_down(heap, i);
heap->bh_has_heap_property = true;
}
/*
* binaryheap_add
*
* Adds the given datum to the heap in O(log n) time, while preserving
* the heap property.
*/
void
binaryheap_add(binaryheap *heap, bh_node_type d)
{
if (heap->bh_size >= heap->bh_space)
{
#ifdef FRONTEND
pg_fatal("out of binary heap slots");
#else
elog(ERROR, "out of binary heap slots");
#endif
}
heap->bh_nodes[heap->bh_size] = d;
heap->bh_size++;
sift_up(heap, heap->bh_size - 1);
}
/*
* binaryheap_first
*
* Returns a pointer to the first (root, topmost) node in the heap
* without modifying the heap. The caller must ensure that this
* routine is not used on an empty heap. Always O(1).
*/
bh_node_type
binaryheap_first(binaryheap *heap)
{
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
return heap->bh_nodes[0];
}
/*
* binaryheap_remove_first
*
* Removes the first (root, topmost) node in the heap and returns a
* pointer to it after rebalancing the heap. The caller must ensure
* that this routine is not used on an empty heap. O(log n) worst
* case.
*/
bh_node_type
binaryheap_remove_first(binaryheap *heap)
{
bh_node_type result;
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
/* extract the root node, which will be the result */
result = heap->bh_nodes[0];
/* easy if heap contains one element */
if (heap->bh_size == 1)
{
heap->bh_size--;
return result;
}
/*
* Remove the last node, placing it in the vacated root entry, and sift
* the new root node down to its correct position.
*/
heap->bh_nodes[0] = heap->bh_nodes[--heap->bh_size];
sift_down(heap, 0);
return result;
}
/*
* binaryheap_remove_node
*
* Removes the nth (zero based) node from the heap. The caller must ensure
* that there are at least (n + 1) nodes in the heap. O(log n) worst case.
*/
void
binaryheap_remove_node(binaryheap *heap, int n)
{
int cmp;
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
Assert(n >= 0 && n < heap->bh_size);
/* compare last node to the one that is being removed */
cmp = heap->bh_compare(heap->bh_nodes[--heap->bh_size],
heap->bh_nodes[n],
heap->bh_arg);
/* remove the last node, placing it in the vacated entry */
heap->bh_nodes[n] = heap->bh_nodes[heap->bh_size];
/* sift as needed to preserve the heap property */
if (cmp > 0)
sift_up(heap, n);
else if (cmp < 0)
sift_down(heap, n);
}
/*
* binaryheap_replace_first
*
* Replace the topmost element of a non-empty heap, preserving the heap
* property. O(1) in the best case, or O(log n) if it must fall back to
* sifting the new node down.
*/
void
binaryheap_replace_first(binaryheap *heap, bh_node_type d)
{
Assert(!binaryheap_empty(heap) && heap->bh_has_heap_property);
heap->bh_nodes[0] = d;
if (heap->bh_size > 1)
sift_down(heap, 0);
}
/*
* Sift a node up to the highest position it can hold according to the
* comparator.
*/
static void
sift_up(binaryheap *heap, int node_off)
{
bh_node_type node_val = heap->bh_nodes[node_off];
/*
* Within the loop, the node_off'th array entry is a "hole" that
* notionally holds node_val, but we don't actually store node_val there
* till the end, saving some unnecessary data copying steps.
*/
while (node_off != 0)
{
int cmp;
int parent_off;
bh_node_type parent_val;
/*
* If this node is smaller than its parent, the heap condition is
* satisfied, and we're done.
*/
parent_off = parent_offset(node_off);
parent_val = heap->bh_nodes[parent_off];
cmp = heap->bh_compare(node_val,
parent_val,
heap->bh_arg);
if (cmp <= 0)
break;
/*
* Otherwise, swap the parent value with the hole, and go on to check
* the node's new parent.
*/
heap->bh_nodes[node_off] = parent_val;
node_off = parent_off;
}
/* Re-fill the hole */
heap->bh_nodes[node_off] = node_val;
}
/*
* Sift a node down from its current position to satisfy the heap
* property.
*/
static void
sift_down(binaryheap *heap, int node_off)
{
bh_node_type node_val = heap->bh_nodes[node_off];
/*
* Within the loop, the node_off'th array entry is a "hole" that
* notionally holds node_val, but we don't actually store node_val there
* till the end, saving some unnecessary data copying steps.
*/
while (true)
{
int left_off = left_offset(node_off);
int right_off = right_offset(node_off);
int swap_off = 0;
/* Is the left child larger than the parent? */
if (left_off < heap->bh_size &&
heap->bh_compare(node_val,
heap->bh_nodes[left_off],
heap->bh_arg) < 0)
swap_off = left_off;
/* Is the right child larger than the parent? */
if (right_off < heap->bh_size &&
heap->bh_compare(node_val,
heap->bh_nodes[right_off],
heap->bh_arg) < 0)
{
/* swap with the larger child */
if (!swap_off ||
heap->bh_compare(heap->bh_nodes[left_off],
heap->bh_nodes[right_off],
heap->bh_arg) < 0)
swap_off = right_off;
}
/*
* If we didn't find anything to swap, the heap condition is
* satisfied, and we're done.
*/
if (!swap_off)
break;
/*
* Otherwise, swap the hole with the child that violates the heap
* property; then go on to check its children.
*/
heap->bh_nodes[node_off] = heap->bh_nodes[swap_off];
node_off = swap_off;
}
/* Re-fill the hole */
heap->bh_nodes[node_off] = node_val;
}