/* * pgp-mpi-internal.c * OpenPGP MPI functions. * * Copyright (c) 2005 Marko Kreen * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * contrib/pgcrypto/pgp-mpi-internal.c */ #include "postgres.h" #include "imath.h" #include "pgp.h" #include "px.h" static mpz_t * mp_new() { mpz_t *mp = mp_int_alloc(); mp_int_init_size(mp, 256); return mp; } static void mp_clear_free(mpz_t *a) { if (!a) return; /* fixme: no clear? */ mp_int_free(a); } static int mp_px_rand(uint32 bits, mpz_t *res) { unsigned bytes = (bits + 7) / 8; int last_bits = bits & 7; uint8 *buf; buf = px_alloc(bytes); if (!pg_strong_random(buf, bytes)) { px_free(buf); return PXE_NO_RANDOM; } /* clear unnecessary bits and set last bit to one */ if (last_bits) { buf[0] >>= 8 - last_bits; buf[0] |= 1 << (last_bits - 1); } else buf[0] |= 1 << 7; mp_int_read_unsigned(res, buf, bytes); px_free(buf); return 0; } static void mp_modmul(mpz_t *a, mpz_t *b, mpz_t *p, mpz_t *res) { mpz_t *tmp = mp_new(); mp_int_mul(a, b, tmp); mp_int_mod(tmp, p, res); mp_clear_free(tmp); } static mpz_t * mpi_to_bn(PGP_MPI *n) { mpz_t *bn = mp_new(); mp_int_read_unsigned(bn, n->data, n->bytes); if (!bn) return NULL; if (mp_int_count_bits(bn) != n->bits) { px_debug("mpi_to_bn: bignum conversion failed: mpi=%d, bn=%d", n->bits, mp_int_count_bits(bn)); mp_clear_free(bn); return NULL; } return bn; } static PGP_MPI * bn_to_mpi(mpz_t *bn) { int res; PGP_MPI *n; int bytes; res = pgp_mpi_alloc(mp_int_count_bits(bn), &n); if (res < 0) return NULL; bytes = (mp_int_count_bits(bn) + 7) / 8; if (bytes != n->bytes) { px_debug("bn_to_mpi: bignum conversion failed: bn=%d, mpi=%d", bytes, n->bytes); pgp_mpi_free(n); return NULL; } mp_int_to_unsigned(bn, n->data, n->bytes); return n; } /* * Decide the number of bits in the random component k * * It should be in the same range as p for signing (which * is deprecated), but can be much smaller for encrypting. * * Until I research it further, I just mimic gpg behaviour. * It has a special mapping table, for values <= 5120, * above that it uses 'arbitrary high number'. Following * algorithm hovers 10-70 bits above gpg values. And for * larger p, it uses gpg's algorithm. * * The point is - if k gets large, encryption will be * really slow. It does not matter for decryption. */ static int decide_k_bits(int p_bits) { if (p_bits <= 5120) return p_bits / 10 + 160; else return (p_bits / 8 + 200) * 3 / 2; } int pgp_elgamal_encrypt(PGP_PubKey *pk, PGP_MPI *_m, PGP_MPI **c1_p, PGP_MPI **c2_p) { int res = PXE_PGP_MATH_FAILED; int k_bits; mpz_t *m = mpi_to_bn(_m); mpz_t *p = mpi_to_bn(pk->pub.elg.p); mpz_t *g = mpi_to_bn(pk->pub.elg.g); mpz_t *y = mpi_to_bn(pk->pub.elg.y); mpz_t *k = mp_new(); mpz_t *yk = mp_new(); mpz_t *c1 = mp_new(); mpz_t *c2 = mp_new(); if (!m || !p || !g || !y || !k || !yk || !c1 || !c2) goto err; /* * generate k */ k_bits = decide_k_bits(mp_int_count_bits(p)); res = mp_px_rand(k_bits, k); if (res < 0) return res; /* * c1 = g^k c2 = m * y^k */ mp_int_exptmod(g, k, p, c1); mp_int_exptmod(y, k, p, yk); mp_modmul(m, yk, p, c2); /* result */ *c1_p = bn_to_mpi(c1); *c2_p = bn_to_mpi(c2); if (*c1_p && *c2_p) res = 0; err: mp_clear_free(c2); mp_clear_free(c1); mp_clear_free(yk); mp_clear_free(k); mp_clear_free(y); mp_clear_free(g); mp_clear_free(p); mp_clear_free(m); return res; } int pgp_elgamal_decrypt(PGP_PubKey *pk, PGP_MPI *_c1, PGP_MPI *_c2, PGP_MPI **msg_p) { int res = PXE_PGP_MATH_FAILED; mpz_t *c1 = mpi_to_bn(_c1); mpz_t *c2 = mpi_to_bn(_c2); mpz_t *p = mpi_to_bn(pk->pub.elg.p); mpz_t *x = mpi_to_bn(pk->sec.elg.x); mpz_t *c1x = mp_new(); mpz_t *div = mp_new(); mpz_t *m = mp_new(); if (!c1 || !c2 || !p || !x || !c1x || !div || !m) goto err; /* * m = c2 / (c1^x) */ mp_int_exptmod(c1, x, p, c1x); mp_int_invmod(c1x, p, div); mp_modmul(c2, div, p, m); /* result */ *msg_p = bn_to_mpi(m); if (*msg_p) res = 0; err: mp_clear_free(m); mp_clear_free(div); mp_clear_free(c1x); mp_clear_free(x); mp_clear_free(p); mp_clear_free(c2); mp_clear_free(c1); return res; } int pgp_rsa_encrypt(PGP_PubKey *pk, PGP_MPI *_m, PGP_MPI **c_p) { int res = PXE_PGP_MATH_FAILED; mpz_t *m = mpi_to_bn(_m); mpz_t *e = mpi_to_bn(pk->pub.rsa.e); mpz_t *n = mpi_to_bn(pk->pub.rsa.n); mpz_t *c = mp_new(); if (!m || !e || !n || !c) goto err; /* * c = m ^ e */ mp_int_exptmod(m, e, n, c); *c_p = bn_to_mpi(c); if (*c_p) res = 0; err: mp_clear_free(c); mp_clear_free(n); mp_clear_free(e); mp_clear_free(m); return res; } int pgp_rsa_decrypt(PGP_PubKey *pk, PGP_MPI *_c, PGP_MPI **m_p) { int res = PXE_PGP_MATH_FAILED; mpz_t *c = mpi_to_bn(_c); mpz_t *d = mpi_to_bn(pk->sec.rsa.d); mpz_t *n = mpi_to_bn(pk->pub.rsa.n); mpz_t *m = mp_new(); if (!m || !d || !n || !c) goto err; /* * m = c ^ d */ mp_int_exptmod(c, d, n, m); *m_p = bn_to_mpi(m); if (*m_p) res = 0; err: mp_clear_free(m); mp_clear_free(n); mp_clear_free(d); mp_clear_free(c); return res; }