Use bump memory context for tuplesorts

29f6a959c added a bump allocator type for efficient compact allocations.
Here we make use of this for non-bounded tuplesorts to store tuples.
This is very space efficient when storing narrow tuples due to bump.c
not having chunk headers.  This means we can fit more tuples in work_mem
before spilling to disk, or perform an in-memory sort touching fewer
cacheline.

Author: David Rowley
Reviewed-by: Nathan Bossart
Reviewed-by: Matthias van de Meent
Reviewed-by: Tomas Vondra
Reviewed-by: John Naylor
Discussion: https://postgr.es/m/CAApHDvqGSpCU95TmM=Bp=6xjL_nLys4zdZOpfNyWBk97Xrdj2w@mail.gmail.com
This commit is contained in:
David Rowley 2024-04-08 00:32:26 +12:00
parent f3ff7bf83b
commit 6ed83d5fa5
3 changed files with 77 additions and 32 deletions

View File

@ -191,6 +191,11 @@ struct Tuplesortstate
* tuples to return? */
bool boundUsed; /* true if we made use of a bounded heap */
int bound; /* if bounded, the maximum number of tuples */
int64 tupleMem; /* memory consumed by individual tuples.
* storing this separately from what we track
* in availMem allows us to subtract the
* memory consumed by all tuples when dumping
* tuples to tape */
int64 availMem; /* remaining memory available, in bytes */
int64 allowedMem; /* total memory allowed, in bytes */
int maxTapes; /* max number of input tapes to merge in each
@ -764,18 +769,18 @@ tuplesort_begin_batch(Tuplesortstate *state)
* in the parent context, not this context, because there is no need to
* free memtuples early. For bounded sorts, tuples may be pfreed in any
* order, so we use a regular aset.c context so that it can make use of
* free'd memory. When the sort is not bounded, we make use of a
* generation.c context as this keeps allocations more compact with less
* wastage. Allocations are also slightly more CPU efficient.
* free'd memory. When the sort is not bounded, we make use of a bump.c
* context as this keeps allocations more compact with less wastage.
* Allocations are also slightly more CPU efficient.
*/
if (state->base.sortopt & TUPLESORT_ALLOWBOUNDED)
if (TupleSortUseBumpTupleCxt(state->base.sortopt))
state->base.tuplecontext = BumpContextCreate(state->base.sortcontext,
"Caller tuples",
ALLOCSET_DEFAULT_SIZES);
else
state->base.tuplecontext = AllocSetContextCreate(state->base.sortcontext,
"Caller tuples",
ALLOCSET_DEFAULT_SIZES);
else
state->base.tuplecontext = GenerationContextCreate(state->base.sortcontext,
"Caller tuples",
ALLOCSET_DEFAULT_SIZES);
state->status = TSS_INITIAL;
@ -1181,15 +1186,16 @@ noalloc:
* Shared code for tuple and datum cases.
*/
void
tuplesort_puttuple_common(Tuplesortstate *state, SortTuple *tuple, bool useAbbrev)
tuplesort_puttuple_common(Tuplesortstate *state, SortTuple *tuple,
bool useAbbrev, Size tuplen)
{
MemoryContext oldcontext = MemoryContextSwitchTo(state->base.sortcontext);
Assert(!LEADER(state));
/* Count the size of the out-of-line data */
if (tuple->tuple != NULL)
USEMEM(state, GetMemoryChunkSpace(tuple->tuple));
/* account for the memory used for this tuple */
USEMEM(state, tuplen);
state->tupleMem += tuplen;
if (!useAbbrev)
{
@ -2397,13 +2403,6 @@ dumptuples(Tuplesortstate *state, bool alltuples)
SortTuple *stup = &state->memtuples[i];
WRITETUP(state, state->destTape, stup);
/*
* Account for freeing the tuple, but no need to do the actual pfree
* since the tuplecontext is being reset after the loop.
*/
if (stup->tuple != NULL)
FREEMEM(state, GetMemoryChunkSpace(stup->tuple));
}
state->memtupcount = 0;
@ -2411,12 +2410,19 @@ dumptuples(Tuplesortstate *state, bool alltuples)
/*
* Reset tuple memory. We've freed all of the tuples that we previously
* allocated. It's important to avoid fragmentation when there is a stark
* change in the sizes of incoming tuples. Fragmentation due to
* AllocSetFree's bucketing by size class might be particularly bad if
* this step wasn't taken.
* change in the sizes of incoming tuples. In bounded sorts,
* fragmentation due to AllocSetFree's bucketing by size class might be
* particularly bad if this step wasn't taken.
*/
MemoryContextReset(state->base.tuplecontext);
/*
* Now update the memory accounting to subtract the memory used by the
* tuple.
*/
FREEMEM(state, state->tupleMem);
state->tupleMem = 0;
markrunend(state->destTape);
#ifdef TRACE_SORT

View File

@ -674,6 +674,7 @@ tuplesort_puttupleslot(Tuplesortstate *state, TupleTableSlot *slot)
SortTuple stup;
MinimalTuple tuple;
HeapTupleData htup;
Size tuplen;
/* copy the tuple into sort storage */
tuple = ExecCopySlotMinimalTuple(slot);
@ -686,9 +687,15 @@ tuplesort_puttupleslot(Tuplesortstate *state, TupleTableSlot *slot)
tupDesc,
&stup.isnull1);
/* GetMemoryChunkSpace is not supported for bump contexts */
if (TupleSortUseBumpTupleCxt(base->sortopt))
tuplen = MAXALIGN(tuple->t_len);
else
tuplen = GetMemoryChunkSpace(tuple);
tuplesort_puttuple_common(state, &stup,
base->sortKeys->abbrev_converter &&
!stup.isnull1);
!stup.isnull1, tuplen);
MemoryContextSwitchTo(oldcontext);
}
@ -705,6 +712,7 @@ tuplesort_putheaptuple(Tuplesortstate *state, HeapTuple tup)
TuplesortPublic *base = TuplesortstateGetPublic(state);
MemoryContext oldcontext = MemoryContextSwitchTo(base->tuplecontext);
TuplesortClusterArg *arg = (TuplesortClusterArg *) base->arg;
Size tuplen;
/* copy the tuple into sort storage */
tup = heap_copytuple(tup);
@ -722,10 +730,16 @@ tuplesort_putheaptuple(Tuplesortstate *state, HeapTuple tup)
&stup.isnull1);
}
/* GetMemoryChunkSpace is not supported for bump contexts */
if (TupleSortUseBumpTupleCxt(base->sortopt))
tuplen = MAXALIGN(HEAPTUPLESIZE + tup->t_len);
else
tuplen = GetMemoryChunkSpace(tup);
tuplesort_puttuple_common(state, &stup,
base->haveDatum1 &&
base->sortKeys->abbrev_converter &&
!stup.isnull1);
!stup.isnull1, tuplen);
MemoryContextSwitchTo(oldcontext);
}
@ -743,6 +757,7 @@ tuplesort_putindextuplevalues(Tuplesortstate *state, Relation rel,
IndexTuple tuple;
TuplesortPublic *base = TuplesortstateGetPublic(state);
TuplesortIndexArg *arg = (TuplesortIndexArg *) base->arg;
Size tuplen;
stup.tuple = index_form_tuple_context(RelationGetDescr(rel), values,
isnull, base->tuplecontext);
@ -754,10 +769,16 @@ tuplesort_putindextuplevalues(Tuplesortstate *state, Relation rel,
RelationGetDescr(arg->indexRel),
&stup.isnull1);
/* GetMemoryChunkSpace is not supported for bump contexts */
if (TupleSortUseBumpTupleCxt(base->sortopt))
tuplen = MAXALIGN(tuple->t_info & INDEX_SIZE_MASK);
else
tuplen = GetMemoryChunkSpace(tuple);
tuplesort_puttuple_common(state, &stup,
base->sortKeys &&
base->sortKeys->abbrev_converter &&
!stup.isnull1);
!stup.isnull1, tuplen);
}
/*
@ -770,6 +791,7 @@ tuplesort_putbrintuple(Tuplesortstate *state, BrinTuple *tuple, Size size)
BrinSortTuple *bstup;
TuplesortPublic *base = TuplesortstateGetPublic(state);
MemoryContext oldcontext = MemoryContextSwitchTo(base->tuplecontext);
Size tuplen;
/* allocate space for the whole BRIN sort tuple */
bstup = palloc(BRINSORTTUPLE_SIZE(size));
@ -781,10 +803,16 @@ tuplesort_putbrintuple(Tuplesortstate *state, BrinTuple *tuple, Size size)
stup.datum1 = tuple->bt_blkno;
stup.isnull1 = false;
/* GetMemoryChunkSpace is not supported for bump contexts */
if (TupleSortUseBumpTupleCxt(base->sortopt))
tuplen = MAXALIGN(BRINSORTTUPLE_SIZE(size));
else
tuplen = GetMemoryChunkSpace(bstup);
tuplesort_puttuple_common(state, &stup,
base->sortKeys &&
base->sortKeys->abbrev_converter &&
!stup.isnull1);
!stup.isnull1, tuplen);
MemoryContextSwitchTo(oldcontext);
}
@ -833,7 +861,7 @@ tuplesort_putdatum(Tuplesortstate *state, Datum val, bool isNull)
tuplesort_puttuple_common(state, &stup,
base->tuples &&
base->sortKeys->abbrev_converter && !isNull);
base->sortKeys->abbrev_converter && !isNull, 0);
MemoryContextSwitchTo(oldcontext);
}

View File

@ -98,6 +98,15 @@ typedef enum
/* specifies if the tuplesort is able to support bounded sorts */
#define TUPLESORT_ALLOWBOUNDED (1 << 1)
/*
* For bounded sort, tuples get pfree'd when they fall outside of the bound.
* When bounded sorts are not required, we can use a bump context for tuple
* allocation as there's no risk that pfree will ever be called for a tuple.
* Define a macro to make it easier for code to figure out if we're using a
* bump allocator.
*/
#define TupleSortUseBumpTupleCxt(opt) (((opt) & TUPLESORT_ALLOWBOUNDED) == 0)
typedef struct TuplesortInstrumentation
{
TuplesortMethod sortMethod; /* sort algorithm used */
@ -109,10 +118,11 @@ typedef struct TuplesortInstrumentation
* The objects we actually sort are SortTuple structs. These contain
* a pointer to the tuple proper (might be a MinimalTuple or IndexTuple),
* which is a separate palloc chunk --- we assume it is just one chunk and
* can be freed by a simple pfree() (except during merge, when we use a
* simple slab allocator). SortTuples also contain the tuple's first key
* column in Datum/nullflag format, and a source/input tape number that
* tracks which tape each heap element/slot belongs to during merging.
* can be freed by a simple pfree() (except during merge, where we use a
* simple slab allocator, and during a non-bounded sort where we use a bump
* allocator). SortTuples also contain the tuple's first key column in
* Datum/nullflag format, and a source/input tape number that tracks which
* tape each heap element/slot belongs to during merging.
*
* Storing the first key column lets us save heap_getattr or index_getattr
* calls during tuple comparisons. We could extract and save all the key
@ -367,7 +377,8 @@ extern Tuplesortstate *tuplesort_begin_common(int workMem,
extern void tuplesort_set_bound(Tuplesortstate *state, int64 bound);
extern bool tuplesort_used_bound(Tuplesortstate *state);
extern void tuplesort_puttuple_common(Tuplesortstate *state,
SortTuple *tuple, bool useAbbrev);
SortTuple *tuple, bool useAbbrev,
Size tuplen);
extern void tuplesort_performsort(Tuplesortstate *state);
extern bool tuplesort_gettuple_common(Tuplesortstate *state, bool forward,
SortTuple *stup);