Create a standardized expression_tree_mutator support routine

to go along with expression_tree_walker.  (_walker is not suitable for
routines that need to alter the tree structure significantly.)  Other minor
cleanups in clauses.c.
This commit is contained in:
Tom Lane 1999-08-09 00:51:26 +00:00
parent f0b651ac6b
commit 6bc601b648
3 changed files with 281 additions and 52 deletions

View File

@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/prep/preptlist.c,v 1.27 1999/07/17 20:17:16 momjian Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/prep/preptlist.c,v 1.28 1999/08/09 00:51:26 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -45,10 +45,9 @@ preprocess_targetlist(List *tlist,
Index result_relation,
List *range_table)
{
List *expanded_tlist = NIL;
Oid relid = InvalidOid;
List *t_list = NIL;
List *temp = NIL;
List *expanded_tlist;
List *t_list;
if (result_relation >= 1 && command_type != CMD_SELECT)
relid = getrelid(result_relation, range_table);
@ -61,14 +60,7 @@ preprocess_targetlist(List *tlist,
expanded_tlist = expand_targetlist(tlist, relid, command_type, result_relation);
/* XXX should the fix-opids be this early?? */
/* was mapCAR */
foreach(temp, expanded_tlist)
{
TargetEntry *tle = lfirst(temp);
if (tle->expr)
fix_opid(tle->expr);
}
fix_opids(expanded_tlist);
t_list = copyObject(expanded_tlist);
/* ------------------

View File

@ -7,7 +7,7 @@
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/util/clauses.c,v 1.43 1999/07/27 03:51:04 tgl Exp $
* $Header: /cvsroot/pgsql/src/backend/optimizer/util/clauses.c,v 1.44 1999/08/09 00:51:24 tgl Exp $
*
* HISTORY
* AUTHOR DATE MAJOR EVENT
@ -28,7 +28,7 @@
#include "utils/lsyscache.h"
static bool fix_opid_walker(Node *node, void *context);
static bool fix_opids_walker(Node *node, void *context);
static int is_single_func(Node *node);
@ -367,7 +367,7 @@ pull_constant_clauses(List *quals, List **constantQual)
else
restqual = lcons(lfirst(q), restqual);
}
freeList(quals);
freeList(quals); /* XXX seems a tad risky? */
*constantQual = constqual;
return restqual;
}
@ -409,6 +409,7 @@ clause_get_relids_vars(Node *clause, Relids *relids, List **vars)
if (vi == NIL)
var_list = lappend(var_list, var);
}
freeList(clvars);
*relids = varno_list;
*vars = var_list;
@ -426,6 +427,7 @@ NumRelids(Node *clause)
List *vars = pull_var_clause(clause);
List *var_list = NIL;
List *i;
int result;
foreach(i, vars)
{
@ -435,7 +437,10 @@ NumRelids(Node *clause)
var_list = lconsi(var->varno, var_list);
}
return length(var_list);
result = length(var_list);
freeList(vars);
freeList(var_list);
return result;
}
/*
@ -506,42 +511,28 @@ qual_clause_p(Node *clause)
}
/*
* fix_opid
* fix_opids
* Calculate opid field from opno for each Oper node in given tree.
* (The given tree can be anything expression_tree_walker handles.)
*
* Returns nothing.
* Returns its argument, which has been modified in-place.
*/
void
fix_opid(Node *clause)
List *
fix_opids(List *clauses)
{
/* This tree walk requires no special setup, so away we go... */
fix_opid_walker(clause, NULL);
fix_opids_walker((Node *) clauses, NULL);
return clauses;
}
static bool
fix_opid_walker (Node *node, void *context)
fix_opids_walker (Node *node, void *context)
{
if (node == NULL)
return false;
if (is_opclause(node))
replace_opid((Oper *) ((Expr *) node)->oper);
return expression_tree_walker(node, fix_opid_walker, context);
}
/*
* fix_opids
* Calculate the opid from the opno for all the clauses...
*
* Returns its argument.
*
* XXX This could and should be merged with fix_opid.
*
*/
List *
fix_opids(List *clauses)
{
fix_opid((Node *) clauses);
return clauses;
return expression_tree_walker(node, fix_opids_walker, context);
}
/*
@ -658,12 +649,17 @@ static int is_single_func(Node *node)
if (vars != NIL)
{
int funcvarno = ((Var *) lfirst(vars))->varno;
List *v;
/* need to check that all args of func are same relation */
while ((vars = lnext(vars)) != NIL)
foreach(v, lnext(vars))
{
if (((Var *) lfirst(vars))->varno != funcvarno)
return 0;
if (((Var *) lfirst(v))->varno != funcvarno)
{
funcvarno = 0;
break;
}
}
freeList(vars);
return funcvarno;
}
}
@ -730,6 +726,8 @@ get_rels_atts(Node *clause,
/*--------------------
* CommuteClause: commute a binary operator clause
*
* XXX the clause is destructively modified!
*--------------------
*/
void
@ -768,7 +766,7 @@ CommuteClause(Node *clause)
}
/*--------------------
/*
* Standard expression-tree walking support
*
* We used to have near-duplicate code in many different routines that
@ -778,12 +776,15 @@ CommuteClause(Node *clause)
* these routines only actually care about certain node types, and don't
* care about other types except insofar as they have to recurse through
* non-primitive node types. Therefore, we now provide generic tree-walking
* logic to consolidate the redundant "boilerplate" code.
*
* logic to consolidate the redundant "boilerplate" code. There are
* two versions: expression_tree_walker() and expression_tree_mutator().
*/
/*--------------------
* expression_tree_walker() is designed to support routines that traverse
* a tree in a read-only fashion (although it will also work for routines
* that modify nodes in-place but never add or delete nodes). A walker
* routine should look like this:
* that modify nodes in-place but never add/delete/replace nodes).
* A walker routine should look like this:
*
* bool my_walker (Node *node, my_struct *context)
* {
@ -803,8 +804,8 @@ CommuteClause(Node *clause)
* }
*
* The "context" argument points to a struct that holds whatever context
* information the walker routine needs (it can be used to return data
* gathered by the walker, too). This argument is not touched by
* information the walker routine needs --- it can be used to return data
* gathered by the walker, too. This argument is not touched by
* expression_tree_walker, but it is passed down to recursive sub-invocations
* of my_walker. The tree walk is started from a setup routine that
* fills in the appropriate context struct, calls my_walker with the top-level
@ -930,7 +931,7 @@ expression_tree_walker(Node *node, bool (*walker) (), void *context)
break;
case T_SubLink:
/* A "bare" SubLink (note we will not come here if we found
* a SUBPLAN_EXPR node above). Examine the lefthand side,
* a SUBPLAN_EXPR node above it). Examine the lefthand side,
* but not the oper list nor the subquery.
*/
return walker(((SubLink *) node)->lefthand, context);
@ -950,3 +951,238 @@ expression_tree_walker(Node *node, bool (*walker) (), void *context)
}
return false;
}
/*--------------------
* expression_tree_mutator() is designed to support routines that make a
* modified copy of an expression tree, with some nodes being added,
* removed, or replaced by new subtrees. The original tree is (normally)
* not changed. Each recursion level is responsible for returning a copy of
* (or appropriately modified substitute for) the subtree it is handed.
* A mutator routine should look like this:
*
* Node * my_mutator (Node *node, my_struct *context)
* {
* if (node == NULL)
* return NULL;
* // check for nodes that special work is required for, eg:
* if (IsA(node, Var))
* {
* ... create and return modified copy of Var node
* }
* else if (IsA(node, ...))
* {
* ... do special transformations of other node types
* }
* // for any node type not specially processed, do:
* return expression_tree_mutator(node, my_mutator, (void *) context);
* }
*
* The "context" argument points to a struct that holds whatever context
* information the mutator routine needs --- it can be used to return extra
* data gathered by the mutator, too. This argument is not touched by
* expression_tree_mutator, but it is passed down to recursive sub-invocations
* of my_mutator. The tree walk is started from a setup routine that
* fills in the appropriate context struct, calls my_mutator with the
* top-level node of the tree, and does any required post-processing.
*
* Each level of recursion must return an appropriately modified Node.
* If expression_tree_mutator() is called, it will make an exact copy
* of the given Node, but invoke my_mutator() to copy the sub-node(s)
* of that Node. In this way, my_mutator() has full control over the
* copying process but need not directly deal with expression trees
* that it has no interest in.
*
* Just as for expression_tree_walker, the node types handled by
* expression_tree_mutator include all those normally found in target lists
* and qualifier clauses during the planning stage.
*
* expression_tree_mutator will handle a SUBPLAN_EXPR node by recursing into
* the args and slink->oper lists (which belong to the outer plan), but it
* will simply copy the link to the inner plan, since that's typically what
* expression tree mutators want. A mutator that wants to modify the subplan
* can force appropriate behavior by recognizing subplan nodes and doing the
* right thing.
*
* Bare SubLink nodes (without a SUBPLAN_EXPR) are handled by recursing into
* the "lefthand" argument list only. (A bare SubLink should be seen only if
* the tree has not yet been processed by subselect.c.) Again, this can be
* overridden by the mutator, but it seems to be the most useful default
* behavior.
*--------------------
*/
Node *
expression_tree_mutator(Node *node, Node * (*mutator) (), void *context)
{
/*
* The mutator has already decided not to modify the current node,
* but we must call the mutator for any sub-nodes.
*/
#define FLATCOPY(newnode, node, nodetype) \
( (newnode) = makeNode(nodetype), \
memcpy((newnode), (node), sizeof(nodetype)) )
#define CHECKFLATCOPY(newnode, node, nodetype) \
( AssertMacro(IsA((node), nodetype)), \
(newnode) = makeNode(nodetype), \
memcpy((newnode), (node), sizeof(nodetype)) )
#define MUTATE(newfield, oldfield, fieldtype) \
( (newfield) = (fieldtype) mutator((Node *) (oldfield), context) )
if (node == NULL)
return NULL;
switch (nodeTag(node))
{
case T_Ident:
case T_Const:
case T_Var:
case T_Param:
/* primitive node types with no subnodes */
return (Node *) copyObject(node);
case T_Expr:
{
Expr *expr = (Expr *) node;
Expr *newnode;
FLATCOPY(newnode, expr, Expr);
if (expr->opType == SUBPLAN_EXPR)
{
SubLink *oldsublink = ((SubPlan *) expr->oper)->sublink;
SubPlan *newsubplan;
/* flat-copy the oper node, which is a SubPlan */
CHECKFLATCOPY(newsubplan, expr->oper, SubPlan);
newnode->oper = (Node *) newsubplan;
/* likewise its SubLink node */
CHECKFLATCOPY(newsubplan->sublink, oldsublink, SubLink);
/* transform args list (params to be passed to subplan) */
MUTATE(newnode->args, expr->args, List *);
/* transform sublink's oper list as well */
MUTATE(newsubplan->sublink->oper, oldsublink->oper, List*);
/* but not the subplan itself, which is referenced as-is */
}
else
{
/* for other Expr node types, just transform args list,
* linking to original oper node (OK?)
*/
MUTATE(newnode->args, expr->args, List *);
}
return (Node *) newnode;
}
break;
case T_Aggref:
{
Aggref *aggref = (Aggref *) node;
Aggref *newnode;
FLATCOPY(newnode, aggref, Aggref);
MUTATE(newnode->target, aggref->target, Node *);
return (Node *) newnode;
}
break;
case T_Iter:
{
Iter *iter = (Iter *) node;
Iter *newnode;
FLATCOPY(newnode, iter, Iter);
MUTATE(newnode->iterexpr, iter->iterexpr, Node *);
return (Node *) newnode;
}
break;
case T_ArrayRef:
{
ArrayRef *arrayref = (ArrayRef *) node;
ArrayRef *newnode;
FLATCOPY(newnode, arrayref, ArrayRef);
MUTATE(newnode->refupperindexpr, arrayref->refupperindexpr,
List *);
MUTATE(newnode->reflowerindexpr, arrayref->reflowerindexpr,
List *);
MUTATE(newnode->refexpr, arrayref->refexpr,
Node *);
MUTATE(newnode->refassgnexpr, arrayref->refassgnexpr,
Node *);
return (Node *) newnode;
}
break;
case T_CaseExpr:
{
CaseExpr *caseexpr = (CaseExpr *) node;
CaseExpr *newnode;
FLATCOPY(newnode, caseexpr, CaseExpr);
MUTATE(newnode->args, caseexpr->args, List *);
/* caseexpr->arg should be null, but we'll check it anyway */
MUTATE(newnode->arg, caseexpr->arg, Node *);
MUTATE(newnode->defresult, caseexpr->defresult, Node *);
return (Node *) newnode;
}
break;
case T_CaseWhen:
{
CaseWhen *casewhen = (CaseWhen *) node;
CaseWhen *newnode;
FLATCOPY(newnode, casewhen, CaseWhen);
MUTATE(newnode->expr, casewhen->expr, Node *);
MUTATE(newnode->result, casewhen->result, Node *);
return (Node *) newnode;
}
break;
case T_SubLink:
{
/* A "bare" SubLink (note we will not come here if we found
* a SUBPLAN_EXPR node above it). Transform the lefthand side,
* but not the oper list nor the subquery.
*/
SubLink *sublink = (SubLink *) node;
SubLink *newnode;
FLATCOPY(newnode, sublink, SubLink);
MUTATE(newnode->lefthand, sublink->lefthand, List *);
return (Node *) newnode;
}
break;
case T_List:
{
/* We assume the mutator isn't interested in the list nodes
* per se, so just invoke it on each list element.
* NOTE: this would fail badly on a list with integer elements!
*/
List *resultlist = NIL;
List *temp;
foreach(temp, (List *) node)
{
resultlist = lappend(resultlist,
mutator((Node *) lfirst(temp),
context));
}
return (Node *) resultlist;
}
break;
case T_TargetEntry:
{
/* We mutate the expression, but not the resdom, by default. */
TargetEntry *targetentry = (TargetEntry *) node;
TargetEntry *newnode;
FLATCOPY(newnode, targetentry, TargetEntry);
MUTATE(newnode->expr, targetentry->expr, Node *);
return (Node *) newnode;
}
break;
default:
elog(ERROR, "expression_tree_mutator: Unexpected node type %d",
nodeTag(node));
break;
}
/* can't get here, but keep compiler happy */
return NULL;
}

View File

@ -6,7 +6,7 @@
*
* Copyright (c) 1994, Regents of the University of California
*
* $Id: clauses.h,v 1.24 1999/07/27 03:51:00 tgl Exp $
* $Id: clauses.h,v 1.25 1999/08/09 00:51:23 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@ -44,7 +44,6 @@ extern void clause_get_relids_vars(Node *clause, Relids *relids, List **vars);
extern int NumRelids(Node *clause);
extern bool is_joinable(Node *clause);
extern bool qual_clause_p(Node *clause);
extern void fix_opid(Node *clause);
extern List *fix_opids(List *clauses);
extern void get_relattval(Node *clause, int targetrelid,
int *relid, AttrNumber *attno,
@ -55,6 +54,8 @@ extern void CommuteClause(Node *clause);
extern bool expression_tree_walker(Node *node, bool (*walker) (),
void *context);
extern Node *expression_tree_mutator(Node *node, Node * (*mutator) (),
void *context);
#define is_subplan(clause) ((Node*) (clause) != NULL && \
nodeTag((Node*) (clause)) == T_Expr && \