opnsense-src/sys/amd64/amd64/pmap.c

8191 lines
219 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-
* Copyright (c) 1991 Regents of the University of California.
* All rights reserved.
* Copyright (c) 1994 John S. Dyson
* All rights reserved.
* Copyright (c) 1994 David Greenman
* All rights reserved.
* Copyright (c) 2003 Peter Wemm
* All rights reserved.
* Copyright (c) 2005-2010 Alan L. Cox <alc@cs.rice.edu>
* All rights reserved.
* Copyright (c) 2014-2018 The FreeBSD Foundation
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department and William Jolitz of UUNET Technologies Inc.
*
* Portions of this software were developed by
* Konstantin Belousov <kib@FreeBSD.org> under sponsorship from
* the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: @(#)pmap.c 7.7 (Berkeley) 5/12/91
*/
/*-
* Copyright (c) 2003 Networks Associates Technology, Inc.
* All rights reserved.
*
* This software was developed for the FreeBSD Project by Jake Burkholder,
* Safeport Network Services, and Network Associates Laboratories, the
* Security Research Division of Network Associates, Inc. under
* DARPA/SPAWAR contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA
* CHATS research program.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#define AMD64_NPT_AWARE
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
/*
* Manages physical address maps.
*
* Since the information managed by this module is
* also stored by the logical address mapping module,
* this module may throw away valid virtual-to-physical
* mappings at almost any time. However, invalidations
* of virtual-to-physical mappings must be done as
* requested.
*
* In order to cope with hardware architectures which
* make virtual-to-physical map invalidates expensive,
* this module may delay invalidate or reduced protection
* operations until such time as they are actually
* necessary. This module is given full information as
* to which processors are currently using which maps,
* and to when physical maps must be made correct.
*/
#include "opt_pax.h"
#include "opt_pmap.h"
#include "opt_vm.h"
#include <sys/param.h>
#include <sys/bitstring.h>
#include <sys/bus.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sx.h>
#include <sys/turnstile.h>
#include <sys/vmem.h>
#include <sys/vmmeter.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/smp.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_phys.h>
#include <vm/vm_radix.h>
#include <vm/vm_reserv.h>
#include <vm/uma.h>
#include <machine/intr_machdep.h>
#include <x86/apicvar.h>
#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/specialreg.h>
#ifdef SMP
#include <machine/smp.h>
#endif
#include <machine/tss.h>
static __inline boolean_t
pmap_type_guest(pmap_t pmap)
{
return ((pmap->pm_type == PT_EPT) || (pmap->pm_type == PT_RVI));
}
static __inline boolean_t
pmap_emulate_ad_bits(pmap_t pmap)
{
return ((pmap->pm_flags & PMAP_EMULATE_AD_BITS) != 0);
}
static __inline pt_entry_t
pmap_valid_bit(pmap_t pmap)
{
pt_entry_t mask;
switch (pmap->pm_type) {
case PT_X86:
case PT_RVI:
mask = X86_PG_V;
break;
case PT_EPT:
if (pmap_emulate_ad_bits(pmap))
mask = EPT_PG_EMUL_V;
else
mask = EPT_PG_READ;
break;
default:
panic("pmap_valid_bit: invalid pm_type %d", pmap->pm_type);
}
return (mask);
}
static __inline pt_entry_t
pmap_rw_bit(pmap_t pmap)
{
pt_entry_t mask;
switch (pmap->pm_type) {
case PT_X86:
case PT_RVI:
mask = X86_PG_RW;
break;
case PT_EPT:
if (pmap_emulate_ad_bits(pmap))
mask = EPT_PG_EMUL_RW;
else
mask = EPT_PG_WRITE;
break;
default:
panic("pmap_rw_bit: invalid pm_type %d", pmap->pm_type);
}
return (mask);
}
static pt_entry_t pg_g;
static __inline pt_entry_t
pmap_global_bit(pmap_t pmap)
{
pt_entry_t mask;
switch (pmap->pm_type) {
case PT_X86:
mask = pg_g;
break;
case PT_RVI:
case PT_EPT:
mask = 0;
break;
default:
panic("pmap_global_bit: invalid pm_type %d", pmap->pm_type);
}
return (mask);
}
static __inline pt_entry_t
pmap_accessed_bit(pmap_t pmap)
{
pt_entry_t mask;
switch (pmap->pm_type) {
case PT_X86:
case PT_RVI:
mask = X86_PG_A;
break;
case PT_EPT:
if (pmap_emulate_ad_bits(pmap))
mask = EPT_PG_READ;
else
mask = EPT_PG_A;
break;
default:
panic("pmap_accessed_bit: invalid pm_type %d", pmap->pm_type);
}
return (mask);
}
static __inline pt_entry_t
pmap_modified_bit(pmap_t pmap)
{
pt_entry_t mask;
switch (pmap->pm_type) {
case PT_X86:
case PT_RVI:
mask = X86_PG_M;
break;
case PT_EPT:
if (pmap_emulate_ad_bits(pmap))
mask = EPT_PG_WRITE;
else
mask = EPT_PG_M;
break;
default:
panic("pmap_modified_bit: invalid pm_type %d", pmap->pm_type);
}
return (mask);
}
extern struct pcpu __pcpu[];
#if !defined(DIAGNOSTIC)
#ifdef __GNUC_GNU_INLINE__
#define PMAP_INLINE __attribute__((__gnu_inline__)) inline
#else
#define PMAP_INLINE extern inline
#endif
#else
#define PMAP_INLINE
#endif
#ifdef PV_STATS
#define PV_STAT(x) do { x ; } while (0)
#else
#define PV_STAT(x) do { } while (0)
#endif
#define pa_index(pa) ((pa) >> PDRSHIFT)
#define pa_to_pvh(pa) (&pv_table[pa_index(pa)])
#define NPV_LIST_LOCKS MAXCPU
#define PHYS_TO_PV_LIST_LOCK(pa) \
(&pv_list_locks[pa_index(pa) % NPV_LIST_LOCKS])
#define CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa) do { \
struct rwlock **_lockp = (lockp); \
struct rwlock *_new_lock; \
\
_new_lock = PHYS_TO_PV_LIST_LOCK(pa); \
if (_new_lock != *_lockp) { \
if (*_lockp != NULL) \
rw_wunlock(*_lockp); \
*_lockp = _new_lock; \
rw_wlock(*_lockp); \
} \
} while (0)
#define CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m) \
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, VM_PAGE_TO_PHYS(m))
#define RELEASE_PV_LIST_LOCK(lockp) do { \
struct rwlock **_lockp = (lockp); \
\
if (*_lockp != NULL) { \
rw_wunlock(*_lockp); \
*_lockp = NULL; \
} \
} while (0)
#define VM_PAGE_TO_PV_LIST_LOCK(m) \
PHYS_TO_PV_LIST_LOCK(VM_PAGE_TO_PHYS(m))
struct pmap kernel_pmap_store;
vm_offset_t virtual_avail; /* VA of first avail page (after kernel bss) */
vm_offset_t virtual_end; /* VA of last avail page (end of kernel AS) */
int nkpt;
SYSCTL_INT(_machdep, OID_AUTO, nkpt, CTLFLAG_RD, &nkpt, 0,
"Number of kernel page table pages allocated on bootup");
static int ndmpdp;
vm_paddr_t dmaplimit;
vm_offset_t kernel_vm_end = VM_MIN_KERNEL_ADDRESS;
pt_entry_t pg_nx;
static SYSCTL_NODE(_vm, OID_AUTO, pmap, CTLFLAG_RD, 0, "VM/pmap parameters");
static int pat_works = 1;
SYSCTL_INT(_vm_pmap, OID_AUTO, pat_works, CTLFLAG_RD, &pat_works, 1,
"Is page attribute table fully functional?");
static int pg_ps_enabled = 1;
SYSCTL_INT(_vm_pmap, OID_AUTO, pg_ps_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&pg_ps_enabled, 0, "Are large page mappings enabled?");
#define PAT_INDEX_SIZE 8
static int pat_index[PAT_INDEX_SIZE]; /* cache mode to PAT index conversion */
static u_int64_t KPTphys; /* phys addr of kernel level 1 */
static u_int64_t KPDphys; /* phys addr of kernel level 2 */
u_int64_t KPDPphys; /* phys addr of kernel level 3 */
u_int64_t KPML4phys; /* phys addr of kernel level 4 */
static u_int64_t DMPDphys; /* phys addr of direct mapped level 2 */
static u_int64_t DMPDPphys; /* phys addr of direct mapped level 3 */
static int ndmpdpphys; /* number of DMPDPphys pages */
/*
* pmap_mapdev support pre initialization (i.e. console)
*/
#define PMAP_PREINIT_MAPPING_COUNT 8
static struct pmap_preinit_mapping {
vm_paddr_t pa;
vm_offset_t va;
vm_size_t sz;
int mode;
} pmap_preinit_mapping[PMAP_PREINIT_MAPPING_COUNT];
static int pmap_initialized;
/*
* Data for the pv entry allocation mechanism.
* Updates to pv_invl_gen are protected by the pv_list_locks[]
* elements, but reads are not.
*/
static TAILQ_HEAD(pch, pv_chunk) pv_chunks = TAILQ_HEAD_INITIALIZER(pv_chunks);
static struct mtx pv_chunks_mutex;
static struct rwlock pv_list_locks[NPV_LIST_LOCKS];
static u_long pv_invl_gen[NPV_LIST_LOCKS];
static struct md_page *pv_table;
static struct md_page pv_dummy;
/*
* All those kernel PT submaps that BSD is so fond of
*/
pt_entry_t *CMAP1 = NULL;
caddr_t CADDR1 = 0;
static vm_offset_t qframe = 0;
static struct mtx qframe_mtx;
static int pmap_flags = PMAP_PDE_SUPERPAGE; /* flags for x86 pmaps */
int pmap_pcid_enabled = 1;
SYSCTL_INT(_vm_pmap, OID_AUTO, pcid_enabled, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&pmap_pcid_enabled, 0, "Is TLB Context ID enabled ?");
int invpcid_works = 0;
SYSCTL_INT(_vm_pmap, OID_AUTO, invpcid_works, CTLFLAG_RD, &invpcid_works, 0,
"Is the invpcid instruction available ?");
#ifdef PAX
/* The related part of code is in x86/identcpu.c - see pti_get_default() */
int pti = 1;
#else
int pti = 0;
#endif
SYSCTL_INT(_vm_pmap, OID_AUTO, pti, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&pti, 0,
"Page Table Isolation enabled");
static vm_object_t pti_obj;
static pml4_entry_t *pti_pml4;
static vm_pindex_t pti_pg_idx;
static bool pti_finalized;
static int
pmap_pcid_save_cnt_proc(SYSCTL_HANDLER_ARGS)
{
int i;
uint64_t res;
res = 0;
CPU_FOREACH(i) {
res += cpuid_to_pcpu[i]->pc_pm_save_cnt;
}
return (sysctl_handle_64(oidp, &res, 0, req));
}
SYSCTL_PROC(_vm_pmap, OID_AUTO, pcid_save_cnt, CTLTYPE_U64 | CTLFLAG_RW |
CTLFLAG_MPSAFE, NULL, 0, pmap_pcid_save_cnt_proc, "QU",
"Count of saved TLB context on switch");
static LIST_HEAD(, pmap_invl_gen) pmap_invl_gen_tracker =
LIST_HEAD_INITIALIZER(&pmap_invl_gen_tracker);
static struct mtx invl_gen_mtx;
static u_long pmap_invl_gen = 0;
/* Fake lock object to satisfy turnstiles interface. */
static struct lock_object invl_gen_ts = {
.lo_name = "invlts",
};
static bool
pmap_not_in_di(void)
{
return (curthread->td_md.md_invl_gen.gen == 0);
}
#define PMAP_ASSERT_NOT_IN_DI() \
KASSERT(pmap_not_in_di(), ("DI already started"))
/*
* Start a new Delayed Invalidation (DI) block of code, executed by
* the current thread. Within a DI block, the current thread may
* destroy both the page table and PV list entries for a mapping and
* then release the corresponding PV list lock before ensuring that
* the mapping is flushed from the TLBs of any processors with the
* pmap active.
*/
static void
pmap_delayed_invl_started(void)
{
struct pmap_invl_gen *invl_gen;
u_long currgen;
invl_gen = &curthread->td_md.md_invl_gen;
PMAP_ASSERT_NOT_IN_DI();
mtx_lock(&invl_gen_mtx);
if (LIST_EMPTY(&pmap_invl_gen_tracker))
currgen = pmap_invl_gen;
else
currgen = LIST_FIRST(&pmap_invl_gen_tracker)->gen;
invl_gen->gen = currgen + 1;
LIST_INSERT_HEAD(&pmap_invl_gen_tracker, invl_gen, link);
mtx_unlock(&invl_gen_mtx);
}
/*
* Finish the DI block, previously started by the current thread. All
* required TLB flushes for the pages marked by
* pmap_delayed_invl_page() must be finished before this function is
* called.
*
* This function works by bumping the global DI generation number to
* the generation number of the current thread's DI, unless there is a
* pending DI that started earlier. In the latter case, bumping the
* global DI generation number would incorrectly signal that the
* earlier DI had finished. Instead, this function bumps the earlier
* DI's generation number to match the generation number of the
* current thread's DI.
*/
static void
pmap_delayed_invl_finished(void)
{
struct pmap_invl_gen *invl_gen, *next;
struct turnstile *ts;
invl_gen = &curthread->td_md.md_invl_gen;
KASSERT(invl_gen->gen != 0, ("missed invl_started"));
mtx_lock(&invl_gen_mtx);
next = LIST_NEXT(invl_gen, link);
if (next == NULL) {
turnstile_chain_lock(&invl_gen_ts);
ts = turnstile_lookup(&invl_gen_ts);
pmap_invl_gen = invl_gen->gen;
if (ts != NULL) {
turnstile_broadcast(ts, TS_SHARED_QUEUE);
turnstile_unpend(ts, TS_SHARED_LOCK);
}
turnstile_chain_unlock(&invl_gen_ts);
} else {
next->gen = invl_gen->gen;
}
LIST_REMOVE(invl_gen, link);
mtx_unlock(&invl_gen_mtx);
invl_gen->gen = 0;
}
#ifdef PV_STATS
static long invl_wait;
SYSCTL_LONG(_vm_pmap, OID_AUTO, invl_wait, CTLFLAG_RD, &invl_wait, 0,
"Number of times DI invalidation blocked pmap_remove_all/write");
#endif
static u_long *
pmap_delayed_invl_genp(vm_page_t m)
{
return (&pv_invl_gen[pa_index(VM_PAGE_TO_PHYS(m)) % NPV_LIST_LOCKS]);
}
/*
* Ensure that all currently executing DI blocks, that need to flush
* TLB for the given page m, actually flushed the TLB at the time the
* function returned. If the page m has an empty PV list and we call
* pmap_delayed_invl_wait(), upon its return we know that no CPU has a
* valid mapping for the page m in either its page table or TLB.
*
* This function works by blocking until the global DI generation
* number catches up with the generation number associated with the
* given page m and its PV list. Since this function's callers
* typically own an object lock and sometimes own a page lock, it
* cannot sleep. Instead, it blocks on a turnstile to relinquish the
* processor.
*/
static void
pmap_delayed_invl_wait(vm_page_t m)
{
struct turnstile *ts;
u_long *m_gen;
#ifdef PV_STATS
bool accounted = false;
#endif
m_gen = pmap_delayed_invl_genp(m);
while (*m_gen > pmap_invl_gen) {
#ifdef PV_STATS
if (!accounted) {
atomic_add_long(&invl_wait, 1);
accounted = true;
}
#endif
ts = turnstile_trywait(&invl_gen_ts);
if (*m_gen > pmap_invl_gen)
turnstile_wait(ts, NULL, TS_SHARED_QUEUE);
else
turnstile_cancel(ts);
}
}
/*
* Mark the page m's PV list as participating in the current thread's
* DI block. Any threads concurrently using m's PV list to remove or
* restrict all mappings to m will wait for the current thread's DI
* block to complete before proceeding.
*
* The function works by setting the DI generation number for m's PV
* list to at least the DI generation number of the current thread.
* This forces a caller of pmap_delayed_invl_wait() to block until
* current thread calls pmap_delayed_invl_finished().
*/
static void
pmap_delayed_invl_page(vm_page_t m)
{
u_long gen, *m_gen;
rw_assert(VM_PAGE_TO_PV_LIST_LOCK(m), RA_WLOCKED);
gen = curthread->td_md.md_invl_gen.gen;
if (gen == 0)
return;
m_gen = pmap_delayed_invl_genp(m);
if (*m_gen < gen)
*m_gen = gen;
}
/*
* Crashdump maps.
*/
static caddr_t crashdumpmap;
/*
* Internal flags for pmap_enter()'s helper functions.
*/
#define PMAP_ENTER_NORECLAIM 0x1000000 /* Don't reclaim PV entries. */
#define PMAP_ENTER_NOREPLACE 0x2000000 /* Don't replace mappings. */
static void free_pv_chunk(struct pv_chunk *pc);
static void free_pv_entry(pmap_t pmap, pv_entry_t pv);
static pv_entry_t get_pv_entry(pmap_t pmap, struct rwlock **lockp);
static int popcnt_pc_map_pq(uint64_t *map);
static vm_page_t reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp);
static void reserve_pv_entries(pmap_t pmap, int needed,
struct rwlock **lockp);
static void pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
struct rwlock **lockp);
static bool pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde,
u_int flags, struct rwlock **lockp);
#if VM_NRESERVLEVEL > 0
static void pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
struct rwlock **lockp);
#endif
static void pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va);
static pv_entry_t pmap_pvh_remove(struct md_page *pvh, pmap_t pmap,
vm_offset_t va);
static int pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode);
static boolean_t pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va);
static boolean_t pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde,
vm_offset_t va, struct rwlock **lockp);
static boolean_t pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe,
vm_offset_t va);
static bool pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, struct rwlock **lockp);
static int pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde,
u_int flags, vm_page_t m, struct rwlock **lockp);
static vm_page_t pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va,
vm_page_t m, vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp);
static void pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte);
static int pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte);
static void pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va,
pd_entry_t pde);
static void pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode);
static void pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask);
#if VM_NRESERVLEVEL > 0
static void pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
struct rwlock **lockp);
#endif
static boolean_t pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva,
vm_prot_t prot);
static void pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask);
static void pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva,
bool exec);
static pdp_entry_t *pmap_pti_pdpe(vm_offset_t va);
static pd_entry_t *pmap_pti_pde(vm_offset_t va);
static void pmap_pti_wire_pte(void *pte);
static int pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
struct spglist *free, struct rwlock **lockp);
static int pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t sva,
pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp);
static vm_page_t pmap_remove_pt_page(pmap_t pmap, vm_offset_t va);
static void pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
struct spglist *free);
static bool pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
pd_entry_t *pde, struct spglist *free,
struct rwlock **lockp);
static boolean_t pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va,
vm_page_t m, struct rwlock **lockp);
static void pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
pd_entry_t newpde);
static void pmap_update_pde_invalidate(pmap_t, vm_offset_t va, pd_entry_t pde);
static vm_page_t _pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex,
struct rwlock **lockp);
static vm_page_t pmap_allocpde(pmap_t pmap, vm_offset_t va,
struct rwlock **lockp);
static vm_page_t pmap_allocpte(pmap_t pmap, vm_offset_t va,
struct rwlock **lockp);
static void _pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m,
struct spglist *free);
static int pmap_unuse_pt(pmap_t, vm_offset_t, pd_entry_t, struct spglist *);
/********************/
/* Inline functions */
/********************/
/* Return a non-clipped PD index for a given VA */
static __inline vm_pindex_t
pmap_pde_pindex(vm_offset_t va)
{
return (va >> PDRSHIFT);
}
/* Return a pointer to the PML4 slot that corresponds to a VA */
static __inline pml4_entry_t *
pmap_pml4e(pmap_t pmap, vm_offset_t va)
{
return (&pmap->pm_pml4[pmap_pml4e_index(va)]);
}
/* Return a pointer to the PDP slot that corresponds to a VA */
static __inline pdp_entry_t *
pmap_pml4e_to_pdpe(pml4_entry_t *pml4e, vm_offset_t va)
{
pdp_entry_t *pdpe;
pdpe = (pdp_entry_t *)PHYS_TO_DMAP(*pml4e & PG_FRAME);
return (&pdpe[pmap_pdpe_index(va)]);
}
/* Return a pointer to the PDP slot that corresponds to a VA */
static __inline pdp_entry_t *
pmap_pdpe(pmap_t pmap, vm_offset_t va)
{
pml4_entry_t *pml4e;
pt_entry_t PG_V;
PG_V = pmap_valid_bit(pmap);
pml4e = pmap_pml4e(pmap, va);
if ((*pml4e & PG_V) == 0)
return (NULL);
return (pmap_pml4e_to_pdpe(pml4e, va));
}
/* Return a pointer to the PD slot that corresponds to a VA */
static __inline pd_entry_t *
pmap_pdpe_to_pde(pdp_entry_t *pdpe, vm_offset_t va)
{
pd_entry_t *pde;
pde = (pd_entry_t *)PHYS_TO_DMAP(*pdpe & PG_FRAME);
return (&pde[pmap_pde_index(va)]);
}
/* Return a pointer to the PD slot that corresponds to a VA */
static __inline pd_entry_t *
pmap_pde(pmap_t pmap, vm_offset_t va)
{
pdp_entry_t *pdpe;
pt_entry_t PG_V;
PG_V = pmap_valid_bit(pmap);
pdpe = pmap_pdpe(pmap, va);
if (pdpe == NULL || (*pdpe & PG_V) == 0)
return (NULL);
return (pmap_pdpe_to_pde(pdpe, va));
}
/* Return a pointer to the PT slot that corresponds to a VA */
static __inline pt_entry_t *
pmap_pde_to_pte(pd_entry_t *pde, vm_offset_t va)
{
pt_entry_t *pte;
pte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
return (&pte[pmap_pte_index(va)]);
}
/* Return a pointer to the PT slot that corresponds to a VA */
static __inline pt_entry_t *
pmap_pte(pmap_t pmap, vm_offset_t va)
{
pd_entry_t *pde;
pt_entry_t PG_V;
PG_V = pmap_valid_bit(pmap);
pde = pmap_pde(pmap, va);
if (pde == NULL || (*pde & PG_V) == 0)
return (NULL);
if ((*pde & PG_PS) != 0) /* compat with i386 pmap_pte() */
return ((pt_entry_t *)pde);
return (pmap_pde_to_pte(pde, va));
}
static __inline void
pmap_resident_count_inc(pmap_t pmap, int count)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
pmap->pm_stats.resident_count += count;
}
static __inline void
pmap_resident_count_dec(pmap_t pmap, int count)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT(pmap->pm_stats.resident_count >= count,
("pmap %p resident count underflow %ld %d", pmap,
pmap->pm_stats.resident_count, count));
pmap->pm_stats.resident_count -= count;
}
PMAP_INLINE pt_entry_t *
vtopte(vm_offset_t va)
{
u_int64_t mask = ((1ul << (NPTEPGSHIFT + NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopte on a uva/gpa 0x%0lx", va));
return (PTmap + ((va >> PAGE_SHIFT) & mask));
}
static __inline pd_entry_t *
vtopde(vm_offset_t va)
{
u_int64_t mask = ((1ul << (NPDEPGSHIFT + NPDPEPGSHIFT + NPML4EPGSHIFT)) - 1);
KASSERT(va >= VM_MAXUSER_ADDRESS, ("vtopde on a uva/gpa 0x%0lx", va));
return (PDmap + ((va >> PDRSHIFT) & mask));
}
static u_int64_t
allocpages(vm_paddr_t *firstaddr, int n)
{
u_int64_t ret;
ret = *firstaddr;
bzero((void *)ret, n * PAGE_SIZE);
*firstaddr += n * PAGE_SIZE;
return (ret);
}
CTASSERT(powerof2(NDMPML4E));
/* number of kernel PDP slots */
#define NKPDPE(ptpgs) howmany(ptpgs, NPDEPG)
static void
nkpt_init(vm_paddr_t addr)
{
int pt_pages;
#ifdef NKPT
pt_pages = NKPT;
#else
pt_pages = howmany(addr, 1 << PDRSHIFT);
pt_pages += NKPDPE(pt_pages);
/*
* Add some slop beyond the bare minimum required for bootstrapping
* the kernel.
*
* This is quite important when allocating KVA for kernel modules.
* The modules are required to be linked in the negative 2GB of
* the address space. If we run out of KVA in this region then
* pmap_growkernel() will need to allocate page table pages to map
* the entire 512GB of KVA space which is an unnecessary tax on
* physical memory.
*
* Secondly, device memory mapped as part of setting up the low-
* level console(s) is taken from KVA, starting at virtual_avail.
* This is because cninit() is called after pmap_bootstrap() but
* before vm_init() and pmap_init(). 20MB for a frame buffer is
* not uncommon.
*/
pt_pages += 32; /* 64MB additional slop. */
#endif
nkpt = pt_pages;
}
/*
* Returns the proper write/execute permission for a physical page that is
* part of the initial boot allocations.
*
* If the page has kernel text, it is marked as read-only. If the page has
* kernel read-only data, it is marked as read-only/not-executable. If the
* page has only read-write data, it is marked as read-write/not-executable.
* If the page is below/above the kernel range, it is marked as read-write.
*
* This function operates on 2M pages, since we map the kernel space that
* way.
*
* Note that this doesn't currently provide any protection for modules.
*/
static inline pt_entry_t
bootaddr_rwx(vm_paddr_t pa)
{
/*
* Everything in the same 2M page as the start of the kernel
* should be static. On the other hand, things in the same 2M
* page as the end of the kernel could be read-write/executable,
* as the kernel image is not guaranteed to end on a 2M boundary.
*/
if (pa < trunc_2mpage(btext - KERNBASE) ||
pa >= trunc_2mpage(_end - KERNBASE))
return (X86_PG_RW);
/*
* The linker should ensure that the read-only and read-write
* portions don't share the same 2M page, so this shouldn't
* impact read-only data. However, in any case, any page with
* read-write data needs to be read-write.
*/
if (pa >= trunc_2mpage(brwsection - KERNBASE))
return (X86_PG_RW | pg_nx);
/*
* Mark any 2M page containing kernel text as read-only. Mark
* other pages with read-only data as read-only and not executable.
* (It is likely a small portion of the read-only data section will
* be marked as read-only, but executable. This should be acceptable
* since the read-only protection will keep the data from changing.)
* Note that fixups to the .text section will still work until we
* set CR0.WP.
*/
if (pa < round_2mpage(etext - KERNBASE))
return (0);
return (pg_nx);
}
static void
create_pagetables(vm_paddr_t *firstaddr)
{
int i, j, ndm1g, nkpdpe, nkdmpde;
pt_entry_t *pt_p;
pd_entry_t *pd_p;
pdp_entry_t *pdp_p;
pml4_entry_t *p4_p;
uint64_t DMPDkernphys;
/* Allocate page table pages for the direct map */
ndmpdp = howmany(ptoa(Maxmem), NBPDP);
if (ndmpdp < 4) /* Minimum 4GB of dirmap */
ndmpdp = 4;
ndmpdpphys = howmany(ndmpdp, NPDPEPG);
if (ndmpdpphys > NDMPML4E) {
/*
* Each NDMPML4E allows 512 GB, so limit to that,
* and then readjust ndmpdp and ndmpdpphys.
*/
printf("NDMPML4E limits system to %d GB\n", NDMPML4E * 512);
Maxmem = atop(NDMPML4E * NBPML4);
ndmpdpphys = NDMPML4E;
ndmpdp = NDMPML4E * NPDEPG;
}
DMPDPphys = allocpages(firstaddr, ndmpdpphys);
ndm1g = 0;
if ((amd_feature & AMDID_PAGE1GB) != 0) {
/*
* Calculate the number of 1G pages that will fully fit in
* Maxmem.
*/
ndm1g = ptoa(Maxmem) >> PDPSHIFT;
/*
* Allocate 2M pages for the kernel. These will be used in
* place of the first one or more 1G pages from ndm1g.
*/
nkdmpde = howmany((vm_offset_t)(brwsection - KERNBASE), NBPDP);
DMPDkernphys = allocpages(firstaddr, nkdmpde);
}
if (ndm1g < ndmpdp)
DMPDphys = allocpages(firstaddr, ndmpdp - ndm1g);
dmaplimit = (vm_paddr_t)ndmpdp << PDPSHIFT;
/* Allocate pages */
KPML4phys = allocpages(firstaddr, 1);
KPDPphys = allocpages(firstaddr, NKPML4E);
/*
* Allocate the initial number of kernel page table pages required to
* bootstrap. We defer this until after all memory-size dependent
* allocations are done (e.g. direct map), so that we don't have to
* build in too much slop in our estimate.
*
* Note that when NKPML4E > 1, we have an empty page underneath
* all but the KPML4I'th one, so we need NKPML4E-1 extra (zeroed)
* pages. (pmap_enter requires a PD page to exist for each KPML4E.)
*/
nkpt_init(*firstaddr);
nkpdpe = NKPDPE(nkpt);
KPTphys = allocpages(firstaddr, nkpt);
KPDphys = allocpages(firstaddr, nkpdpe);
/* Fill in the underlying page table pages */
/* XXX not fully used, underneath 2M pages */
pt_p = (pt_entry_t *)KPTphys;
for (i = 0; ptoa(i) < *firstaddr; i++)
pt_p[i] = ptoa(i) | X86_PG_V | pg_g | bootaddr_rwx(ptoa(i));
/* Now map the page tables at their location within PTmap */
pd_p = (pd_entry_t *)KPDphys;
for (i = 0; i < nkpt; i++)
pd_p[i] = (KPTphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
/* Map from zero to end of allocations under 2M pages */
/* This replaces some of the KPTphys entries above */
for (i = 0; (i << PDRSHIFT) < *firstaddr; i++)
pd_p[i] = (i << PDRSHIFT) | X86_PG_V | PG_PS | pg_g |
bootaddr_rwx(i << PDRSHIFT);
/*
* Because we map the physical blocks in 2M pages, adjust firstaddr
* to record the physical blocks we've actually mapped into kernel
* virtual address space.
*/
*firstaddr = round_2mpage(*firstaddr);
/*
* Because we map the physical blocks in 2M pages, adjust firstaddr
* to record the physical blocks we've actually mapped into kernel
* virtual address space.
*/
*firstaddr = round_2mpage(*firstaddr);
/* And connect up the PD to the PDP (leaving room for L4 pages) */
pdp_p = (pdp_entry_t *)(KPDPphys + ptoa(KPML4I - KPML4BASE));
for (i = 0; i < nkpdpe; i++)
pdp_p[i + KPDPI] = (KPDphys + ptoa(i)) | X86_PG_RW | X86_PG_V;
/*
* Now, set up the direct map region using 2MB and/or 1GB pages. If
* the end of physical memory is not aligned to a 1GB page boundary,
* then the residual physical memory is mapped with 2MB pages. Later,
* if pmap_mapdev{_attr}() uses the direct map for non-write-back
* memory, pmap_change_attr() will demote any 2MB or 1GB page mappings
* that are partially used.
*/
pd_p = (pd_entry_t *)DMPDphys;
for (i = NPDEPG * ndm1g, j = 0; i < NPDEPG * ndmpdp; i++, j++) {
pd_p[j] = (vm_paddr_t)i << PDRSHIFT;
/* Preset PG_M and PG_A because demotion expects it. */
pd_p[j] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
X86_PG_M | X86_PG_A | pg_nx;
}
pdp_p = (pdp_entry_t *)DMPDPphys;
for (i = 0; i < ndm1g; i++) {
pdp_p[i] = (vm_paddr_t)i << PDPSHIFT;
/* Preset PG_M and PG_A because demotion expects it. */
pdp_p[i] |= X86_PG_RW | X86_PG_V | PG_PS | pg_g |
X86_PG_M | X86_PG_A | pg_nx;
}
for (j = 0; i < ndmpdp; i++, j++) {
pdp_p[i] = DMPDphys + ptoa(j);
pdp_p[i] |= X86_PG_RW | X86_PG_V;
}
/*
* Instead of using a 1G page for the memory containing the kernel,
* use 2M pages with appropriate permissions. (If using 1G pages,
* this will partially overwrite the PDPEs above.)
*/
if (ndm1g) {
pd_p = (pd_entry_t *)DMPDkernphys;
for (i = 0; i < (NPDEPG * nkdmpde); i++)
pd_p[i] = (i << PDRSHIFT) | X86_PG_V | PG_PS | pg_g |
X86_PG_M | X86_PG_A | pg_nx |
bootaddr_rwx(i << PDRSHIFT);
for (i = 0; i < nkdmpde; i++)
pdp_p[i] = (DMPDkernphys + ptoa(i)) | X86_PG_RW |
X86_PG_V;
}
/* And recursively map PML4 to itself in order to get PTmap */
p4_p = (pml4_entry_t *)KPML4phys;
p4_p[PML4PML4I] = KPML4phys;
p4_p[PML4PML4I] |= X86_PG_RW | X86_PG_V | pg_nx;
/* Connect the Direct Map slot(s) up to the PML4. */
for (i = 0; i < ndmpdpphys; i++) {
p4_p[DMPML4I + i] = DMPDPphys + ptoa(i);
p4_p[DMPML4I + i] |= X86_PG_RW | X86_PG_V;
}
/* Connect the KVA slots up to the PML4 */
for (i = 0; i < NKPML4E; i++) {
p4_p[KPML4BASE + i] = KPDPphys + ptoa(i);
p4_p[KPML4BASE + i] |= X86_PG_RW | X86_PG_V;
}
}
/*
* Bootstrap the system enough to run with virtual memory.
*
* On amd64 this is called after mapping has already been enabled
* and just syncs the pmap module with what has already been done.
* [We can't call it easily with mapping off since the kernel is not
* mapped with PA == VA, hence we would have to relocate every address
* from the linked base (virtual) address "KERNBASE" to the actual
* (physical) address starting relative to 0]
*/
void
pmap_bootstrap(vm_paddr_t *firstaddr)
{
vm_offset_t va;
pt_entry_t *pte;
int i;
if (!pti)
pg_g = X86_PG_G;
/*
* Create an initial set of page tables to run the kernel in.
*/
create_pagetables(firstaddr);
/*
* Add a physical memory segment (vm_phys_seg) corresponding to the
* preallocated kernel page table pages so that vm_page structures
* representing these pages will be created. The vm_page structures
* are required for promotion of the corresponding kernel virtual
* addresses to superpage mappings.
*/
vm_phys_add_seg(KPTphys, KPTphys + ptoa(nkpt));
virtual_avail = (vm_offset_t) KERNBASE + *firstaddr;
virtual_end = VM_MAX_KERNEL_ADDRESS;
/* XXX do %cr0 as well */
load_cr4(rcr4() | CR4_PGE);
load_cr3(KPML4phys);
if (cpu_stdext_feature & CPUID_STDEXT_SMEP)
load_cr4(rcr4() | CR4_SMEP);
/*
* Initialize the kernel pmap (which is statically allocated).
*/
PMAP_LOCK_INIT(kernel_pmap);
kernel_pmap->pm_pml4 = (pdp_entry_t *)PHYS_TO_DMAP(KPML4phys);
kernel_pmap->pm_cr3 = KPML4phys;
kernel_pmap->pm_ucr3 = PMAP_NO_CR3;
CPU_FILL(&kernel_pmap->pm_active); /* don't allow deactivation */
TAILQ_INIT(&kernel_pmap->pm_pvchunk);
kernel_pmap->pm_flags = pmap_flags;
/*
* Initialize the TLB invalidations generation number lock.
*/
mtx_init(&invl_gen_mtx, "invlgn", NULL, MTX_DEF);
/*
* Reserve some special page table entries/VA space for temporary
* mapping of pages.
*/
#define SYSMAP(c, p, v, n) \
v = (c)va; va += ((n)*PAGE_SIZE); p = pte; pte += (n);
va = virtual_avail;
pte = vtopte(va);
/*
* Crashdump maps. The first page is reused as CMAP1 for the
* memory test.
*/
SYSMAP(caddr_t, CMAP1, crashdumpmap, MAXDUMPPGS)
CADDR1 = crashdumpmap;
virtual_avail = va;
/*
* Initialize the PAT MSR.
* pmap_init_pat() clears and sets CR4_PGE, which, as a
* side-effect, invalidates stale PG_G TLB entries that might
* have been created in our pre-boot environment.
*/
pmap_init_pat();
/* Initialize TLB Context Id. */
TUNABLE_INT_FETCH("vm.pmap.pcid_enabled", &pmap_pcid_enabled);
if ((cpu_feature2 & CPUID2_PCID) != 0 && pmap_pcid_enabled) {
/* Check for INVPCID support */
invpcid_works = (cpu_stdext_feature & CPUID_STDEXT_INVPCID)
!= 0;
for (i = 0; i < MAXCPU; i++) {
kernel_pmap->pm_pcids[i].pm_pcid = PMAP_PCID_KERN;
kernel_pmap->pm_pcids[i].pm_gen = 1;
}
__pcpu[0].pc_pcid_next = PMAP_PCID_KERN + 1;
__pcpu[0].pc_pcid_gen = 1;
/*
* pcpu area for APs is zeroed during AP startup.
* pc_pcid_next and pc_pcid_gen are initialized by AP
* during pcpu setup.
*/
load_cr4(rcr4() | CR4_PCIDE);
} else {
pmap_pcid_enabled = 0;
}
}
/*
* Setup the PAT MSR.
*/
void
pmap_init_pat(void)
{
int pat_table[PAT_INDEX_SIZE];
uint64_t pat_msr;
u_long cr0, cr4;
int i;
/* Bail if this CPU doesn't implement PAT. */
if ((cpu_feature & CPUID_PAT) == 0)
panic("no PAT??");
/* Set default PAT index table. */
for (i = 0; i < PAT_INDEX_SIZE; i++)
pat_table[i] = -1;
pat_table[PAT_WRITE_BACK] = 0;
pat_table[PAT_WRITE_THROUGH] = 1;
pat_table[PAT_UNCACHEABLE] = 3;
pat_table[PAT_WRITE_COMBINING] = 3;
pat_table[PAT_WRITE_PROTECTED] = 3;
pat_table[PAT_UNCACHED] = 3;
/* Initialize default PAT entries. */
pat_msr = PAT_VALUE(0, PAT_WRITE_BACK) |
PAT_VALUE(1, PAT_WRITE_THROUGH) |
PAT_VALUE(2, PAT_UNCACHED) |
PAT_VALUE(3, PAT_UNCACHEABLE) |
PAT_VALUE(4, PAT_WRITE_BACK) |
PAT_VALUE(5, PAT_WRITE_THROUGH) |
PAT_VALUE(6, PAT_UNCACHED) |
PAT_VALUE(7, PAT_UNCACHEABLE);
if (pat_works) {
/*
* Leave the indices 0-3 at the default of WB, WT, UC-, and UC.
* Program 5 and 6 as WP and WC.
* Leave 4 and 7 as WB and UC.
*/
pat_msr &= ~(PAT_MASK(5) | PAT_MASK(6));
pat_msr |= PAT_VALUE(5, PAT_WRITE_PROTECTED) |
PAT_VALUE(6, PAT_WRITE_COMBINING);
pat_table[PAT_UNCACHED] = 2;
pat_table[PAT_WRITE_PROTECTED] = 5;
pat_table[PAT_WRITE_COMBINING] = 6;
} else {
/*
* Just replace PAT Index 2 with WC instead of UC-.
*/
pat_msr &= ~PAT_MASK(2);
pat_msr |= PAT_VALUE(2, PAT_WRITE_COMBINING);
pat_table[PAT_WRITE_COMBINING] = 2;
}
/* Disable PGE. */
cr4 = rcr4();
load_cr4(cr4 & ~CR4_PGE);
/* Disable caches (CD = 1, NW = 0). */
cr0 = rcr0();
load_cr0((cr0 & ~CR0_NW) | CR0_CD);
/* Flushes caches and TLBs. */
wbinvd();
invltlb();
/* Update PAT and index table. */
wrmsr(MSR_PAT, pat_msr);
for (i = 0; i < PAT_INDEX_SIZE; i++)
pat_index[i] = pat_table[i];
/* Flush caches and TLBs again. */
wbinvd();
invltlb();
/* Restore caches and PGE. */
load_cr0(cr0);
load_cr4(cr4);
}
/*
* Initialize a vm_page's machine-dependent fields.
*/
void
pmap_page_init(vm_page_t m)
{
TAILQ_INIT(&m->md.pv_list);
m->md.pat_mode = PAT_WRITE_BACK;
}
/*
* Initialize the pmap module.
* Called by vm_init, to initialize any structures that the pmap
* system needs to map virtual memory.
*/
void
pmap_init(void)
{
struct pmap_preinit_mapping *ppim;
vm_page_t mpte;
vm_size_t s;
int error, i, pv_npg, ret, skz63;
/* L1TF, reserve page @0 unconditionally */
vm_page_blacklist_add(0, bootverbose);
/* Detect bare-metal Skylake Server and Skylake-X. */
if (vm_guest == VM_GUEST_NO && cpu_vendor_id == CPU_VENDOR_INTEL &&
CPUID_TO_FAMILY(cpu_id) == 0x6 && CPUID_TO_MODEL(cpu_id) == 0x55) {
/*
* Skylake-X errata SKZ63. Processor May Hang When
* Executing Code In an HLE Transaction Region between
* 40000000H and 403FFFFFH.
*
* Mark the pages in the range as preallocated. It
* seems to be impossible to distinguish between
* Skylake Server and Skylake X.
*/
skz63 = 1;
TUNABLE_INT_FETCH("hw.skz63_enable", &skz63);
if (skz63 != 0) {
if (bootverbose)
printf("SKZ63: skipping 4M RAM starting "
"at physical 1G\n");
for (i = 0; i < atop(0x400000); i++) {
ret = vm_page_blacklist_add(0x40000000 +
ptoa(i), FALSE);
if (!ret && bootverbose)
printf("page at %#lx already used\n",
0x40000000 + ptoa(i));
}
}
}
/*
* Initialize the vm page array entries for the kernel pmap's
* page table pages.
*/
for (i = 0; i < nkpt; i++) {
mpte = PHYS_TO_VM_PAGE(KPTphys + (i << PAGE_SHIFT));
KASSERT(mpte >= vm_page_array &&
mpte < &vm_page_array[vm_page_array_size],
("pmap_init: page table page is out of range"));
mpte->pindex = pmap_pde_pindex(KERNBASE) + i;
mpte->phys_addr = KPTphys + (i << PAGE_SHIFT);
mpte->wire_count = 1;
}
atomic_add_int(&vm_cnt.v_wire_count, nkpt);
/*
* If the kernel is running on a virtual machine, then it must assume
* that MCA is enabled by the hypervisor. Moreover, the kernel must
* be prepared for the hypervisor changing the vendor and family that
* are reported by CPUID. Consequently, the workaround for AMD Family
* 10h Erratum 383 is enabled if the processor's feature set does not
* include at least one feature that is only supported by older Intel
* or newer AMD processors.
*/
if (vm_guest != VM_GUEST_NO && (cpu_feature & CPUID_SS) == 0 &&
(cpu_feature2 & (CPUID2_SSSE3 | CPUID2_SSE41 | CPUID2_AESNI |
CPUID2_AVX | CPUID2_XSAVE)) == 0 && (amd_feature2 & (AMDID2_XOP |
AMDID2_FMA4)) == 0)
workaround_erratum383 = 1;
/*
* Are large page mappings enabled?
*/
TUNABLE_INT_FETCH("vm.pmap.pg_ps_enabled", &pg_ps_enabled);
if (pg_ps_enabled) {
KASSERT(MAXPAGESIZES > 1 && pagesizes[1] == 0,
("pmap_init: can't assign to pagesizes[1]"));
pagesizes[1] = NBPDR;
}
/*
* Initialize the pv chunk list mutex.
*/
mtx_init(&pv_chunks_mutex, "pmap pv chunk list", NULL, MTX_DEF);
/*
* Initialize the pool of pv list locks.
*/
for (i = 0; i < NPV_LIST_LOCKS; i++)
rw_init(&pv_list_locks[i], "pmap pv list");
/*
* Calculate the size of the pv head table for superpages.
*/
pv_npg = howmany(vm_phys_segs[vm_phys_nsegs - 1].end, NBPDR);
/*
* Allocate memory for the pv head table for superpages.
*/
s = (vm_size_t)(pv_npg * sizeof(struct md_page));
s = round_page(s);
pv_table = (struct md_page *)kmem_malloc(kernel_arena, s,
M_WAITOK | M_ZERO);
for (i = 0; i < pv_npg; i++)
TAILQ_INIT(&pv_table[i].pv_list);
TAILQ_INIT(&pv_dummy.pv_list);
pmap_initialized = 1;
for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
ppim = pmap_preinit_mapping + i;
if (ppim->va == 0)
continue;
/* Make the direct map consistent */
if (ppim->pa < dmaplimit && ppim->pa + ppim->sz < dmaplimit) {
(void)pmap_change_attr(PHYS_TO_DMAP(ppim->pa),
ppim->sz, ppim->mode);
}
if (!bootverbose)
continue;
printf("PPIM %u: PA=%#lx, VA=%#lx, size=%#lx, mode=%#x\n", i,
ppim->pa, ppim->va, ppim->sz, ppim->mode);
}
mtx_init(&qframe_mtx, "qfrmlk", NULL, MTX_SPIN);
error = vmem_alloc(kernel_arena, PAGE_SIZE, M_BESTFIT | M_WAITOK,
(vmem_addr_t *)&qframe);
if (error != 0)
panic("qframe allocation failed");
}
static SYSCTL_NODE(_vm_pmap, OID_AUTO, pde, CTLFLAG_RD, 0,
"2MB page mapping counters");
static u_long pmap_pde_demotions;
SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, demotions, CTLFLAG_RD,
&pmap_pde_demotions, 0, "2MB page demotions");
static u_long pmap_pde_mappings;
SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, mappings, CTLFLAG_RD,
&pmap_pde_mappings, 0, "2MB page mappings");
static u_long pmap_pde_p_failures;
SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, p_failures, CTLFLAG_RD,
&pmap_pde_p_failures, 0, "2MB page promotion failures");
static u_long pmap_pde_promotions;
SYSCTL_ULONG(_vm_pmap_pde, OID_AUTO, promotions, CTLFLAG_RD,
&pmap_pde_promotions, 0, "2MB page promotions");
static SYSCTL_NODE(_vm_pmap, OID_AUTO, pdpe, CTLFLAG_RD, 0,
"1GB page mapping counters");
static u_long pmap_pdpe_demotions;
SYSCTL_ULONG(_vm_pmap_pdpe, OID_AUTO, demotions, CTLFLAG_RD,
&pmap_pdpe_demotions, 0, "1GB page demotions");
/***************************************************
* Low level helper routines.....
***************************************************/
static pt_entry_t
pmap_swap_pat(pmap_t pmap, pt_entry_t entry)
{
int x86_pat_bits = X86_PG_PTE_PAT | X86_PG_PDE_PAT;
switch (pmap->pm_type) {
case PT_X86:
case PT_RVI:
/* Verify that both PAT bits are not set at the same time */
KASSERT((entry & x86_pat_bits) != x86_pat_bits,
("Invalid PAT bits in entry %#lx", entry));
/* Swap the PAT bits if one of them is set */
if ((entry & x86_pat_bits) != 0)
entry ^= x86_pat_bits;
break;
case PT_EPT:
/*
* Nothing to do - the memory attributes are represented
* the same way for regular pages and superpages.
*/
break;
default:
panic("pmap_switch_pat_bits: bad pm_type %d", pmap->pm_type);
}
return (entry);
}
/*
* Determine the appropriate bits to set in a PTE or PDE for a specified
* caching mode.
*/
int
pmap_cache_bits(pmap_t pmap, int mode, boolean_t is_pde)
{
int cache_bits, pat_flag, pat_idx;
if (mode < 0 || mode >= PAT_INDEX_SIZE || pat_index[mode] < 0)
panic("Unknown caching mode %d\n", mode);
switch (pmap->pm_type) {
case PT_X86:
case PT_RVI:
/* The PAT bit is different for PTE's and PDE's. */
pat_flag = is_pde ? X86_PG_PDE_PAT : X86_PG_PTE_PAT;
/* Map the caching mode to a PAT index. */
pat_idx = pat_index[mode];
/* Map the 3-bit index value into the PAT, PCD, and PWT bits. */
cache_bits = 0;
if (pat_idx & 0x4)
cache_bits |= pat_flag;
if (pat_idx & 0x2)
cache_bits |= PG_NC_PCD;
if (pat_idx & 0x1)
cache_bits |= PG_NC_PWT;
break;
case PT_EPT:
cache_bits = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(mode);
break;
default:
panic("unsupported pmap type %d", pmap->pm_type);
}
return (cache_bits);
}
static int
pmap_cache_mask(pmap_t pmap, boolean_t is_pde)
{
int mask;
switch (pmap->pm_type) {
case PT_X86:
case PT_RVI:
mask = is_pde ? X86_PG_PDE_CACHE : X86_PG_PTE_CACHE;
break;
case PT_EPT:
mask = EPT_PG_IGNORE_PAT | EPT_PG_MEMORY_TYPE(0x7);
break;
default:
panic("pmap_cache_mask: invalid pm_type %d", pmap->pm_type);
}
return (mask);
}
bool
pmap_ps_enabled(pmap_t pmap)
{
return (pg_ps_enabled && (pmap->pm_flags & PMAP_PDE_SUPERPAGE) != 0);
}
static void
pmap_update_pde_store(pmap_t pmap, pd_entry_t *pde, pd_entry_t newpde)
{
switch (pmap->pm_type) {
case PT_X86:
break;
case PT_RVI:
case PT_EPT:
/*
* XXX
* This is a little bogus since the generation number is
* supposed to be bumped up when a region of the address
* space is invalidated in the page tables.
*
* In this case the old PDE entry is valid but yet we want
* to make sure that any mappings using the old entry are
* invalidated in the TLB.
*
* The reason this works as expected is because we rendezvous
* "all" host cpus and force any vcpu context to exit as a
* side-effect.
*/
atomic_add_acq_long(&pmap->pm_eptgen, 1);
break;
default:
panic("pmap_update_pde_store: bad pm_type %d", pmap->pm_type);
}
pde_store(pde, newpde);
}
/*
* After changing the page size for the specified virtual address in the page
* table, flush the corresponding entries from the processor's TLB. Only the
* calling processor's TLB is affected.
*
* The calling thread must be pinned to a processor.
*/
static void
pmap_update_pde_invalidate(pmap_t pmap, vm_offset_t va, pd_entry_t newpde)
{
pt_entry_t PG_G;
if (pmap_type_guest(pmap))
return;
KASSERT(pmap->pm_type == PT_X86,
("pmap_update_pde_invalidate: invalid type %d", pmap->pm_type));
PG_G = pmap_global_bit(pmap);
if ((newpde & PG_PS) == 0)
/* Demotion: flush a specific 2MB page mapping. */
invlpg(va);
else if ((newpde & PG_G) == 0)
/*
* Promotion: flush every 4KB page mapping from the TLB
* because there are too many to flush individually.
*/
invltlb();
else {
/*
* Promotion: flush every 4KB page mapping from the TLB,
* including any global (PG_G) mappings.
*/
invltlb_glob();
}
}
#ifdef SMP
/*
* For SMP, these functions have to use the IPI mechanism for coherence.
*
* N.B.: Before calling any of the following TLB invalidation functions,
* the calling processor must ensure that all stores updating a non-
* kernel page table are globally performed. Otherwise, another
* processor could cache an old, pre-update entry without being
* invalidated. This can happen one of two ways: (1) The pmap becomes
* active on another processor after its pm_active field is checked by
* one of the following functions but before a store updating the page
* table is globally performed. (2) The pmap becomes active on another
* processor before its pm_active field is checked but due to
* speculative loads one of the following functions stills reads the
* pmap as inactive on the other processor.
*
* The kernel page table is exempt because its pm_active field is
* immutable. The kernel page table is always active on every
* processor.
*/
/*
* Interrupt the cpus that are executing in the guest context.
* This will force the vcpu to exit and the cached EPT mappings
* will be invalidated by the host before the next vmresume.
*/
static __inline void
pmap_invalidate_ept(pmap_t pmap)
{
int ipinum;
sched_pin();
KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
("pmap_invalidate_ept: absurd pm_active"));
/*
* The TLB mappings associated with a vcpu context are not
* flushed each time a different vcpu is chosen to execute.
*
* This is in contrast with a process's vtop mappings that
* are flushed from the TLB on each context switch.
*
* Therefore we need to do more than just a TLB shootdown on
* the active cpus in 'pmap->pm_active'. To do this we keep
* track of the number of invalidations performed on this pmap.
*
* Each vcpu keeps a cache of this counter and compares it
* just before a vmresume. If the counter is out-of-date an
* invept will be done to flush stale mappings from the TLB.
*/
atomic_add_acq_long(&pmap->pm_eptgen, 1);
/*
* Force the vcpu to exit and trap back into the hypervisor.
*/
ipinum = pmap->pm_flags & PMAP_NESTED_IPIMASK;
ipi_selected(pmap->pm_active, ipinum);
sched_unpin();
}
void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{
cpuset_t *mask;
struct invpcid_descr d;
uint64_t kcr3, ucr3;
uint32_t pcid;
u_int cpuid, i;
if (pmap_type_guest(pmap)) {
pmap_invalidate_ept(pmap);
return;
}
KASSERT(pmap->pm_type == PT_X86,
("pmap_invalidate_page: invalid type %d", pmap->pm_type));
sched_pin();
if (pmap == kernel_pmap) {
invlpg(va);
mask = &all_cpus;
} else {
cpuid = PCPU_GET(cpuid);
if (pmap == PCPU_GET(curpmap)) {
invlpg(va);
if (pmap_pcid_enabled && pmap->pm_ucr3 != PMAP_NO_CR3) {
/*
* Disable context switching. pm_pcid
* is recalculated on switch, which
* might make us use wrong pcid below.
*/
critical_enter();
pcid = pmap->pm_pcids[cpuid].pm_pcid;
if (invpcid_works) {
d.pcid = pcid | PMAP_PCID_USER_PT;
d.pad = 0;
d.addr = va;
invpcid(&d, INVPCID_ADDR);
} else {
kcr3 = pmap->pm_cr3 | pcid |
CR3_PCID_SAVE;
ucr3 = pmap->pm_ucr3 | pcid |
PMAP_PCID_USER_PT | CR3_PCID_SAVE;
pmap_pti_pcid_invlpg(ucr3, kcr3, va);
}
critical_exit();
}
} else if (pmap_pcid_enabled)
pmap->pm_pcids[cpuid].pm_gen = 0;
if (pmap_pcid_enabled) {
CPU_FOREACH(i) {
if (cpuid != i)
pmap->pm_pcids[i].pm_gen = 0;
}
/*
* The fence is between stores to pm_gen and the read of
* the pm_active mask. We need to ensure that it is
* impossible for us to miss the bit update in pm_active
* and simultaneously observe a non-zero pm_gen in
* pmap_activate_sw(), otherwise TLB update is missed.
* Without the fence, IA32 allows such an outcome.
* Note that pm_active is updated by a locked operation,
* which provides the reciprocal fence.
*/
atomic_thread_fence_seq_cst();
}
mask = &pmap->pm_active;
}
smp_masked_invlpg(*mask, va, pmap);
sched_unpin();
}
/* 4k PTEs -- Chosen to exceed the total size of Broadwell L2 TLB */
#define PMAP_INVLPG_THRESHOLD (4 * 1024 * PAGE_SIZE)
void
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
cpuset_t *mask;
struct invpcid_descr d;
vm_offset_t addr;
uint64_t kcr3, ucr3;
uint32_t pcid;
u_int cpuid, i;
if (eva - sva >= PMAP_INVLPG_THRESHOLD) {
pmap_invalidate_all(pmap);
return;
}
if (pmap_type_guest(pmap)) {
pmap_invalidate_ept(pmap);
return;
}
KASSERT(pmap->pm_type == PT_X86,
("pmap_invalidate_range: invalid type %d", pmap->pm_type));
sched_pin();
cpuid = PCPU_GET(cpuid);
if (pmap == kernel_pmap) {
for (addr = sva; addr < eva; addr += PAGE_SIZE)
invlpg(addr);
mask = &all_cpus;
} else {
if (pmap == PCPU_GET(curpmap)) {
for (addr = sva; addr < eva; addr += PAGE_SIZE)
invlpg(addr);
if (pmap_pcid_enabled && pmap->pm_ucr3 != PMAP_NO_CR3) {
critical_enter();
pcid = pmap->pm_pcids[cpuid].pm_pcid;
if (invpcid_works) {
d.pcid = pcid | PMAP_PCID_USER_PT;
d.pad = 0;
d.addr = sva;
for (; d.addr < eva; d.addr +=
PAGE_SIZE)
invpcid(&d, INVPCID_ADDR);
} else {
kcr3 = pmap->pm_cr3 | pcid |
CR3_PCID_SAVE;
ucr3 = pmap->pm_ucr3 | pcid |
PMAP_PCID_USER_PT | CR3_PCID_SAVE;
pmap_pti_pcid_invlrng(ucr3, kcr3, sva,
eva);
}
critical_exit();
}
} else if (pmap_pcid_enabled) {
pmap->pm_pcids[cpuid].pm_gen = 0;
}
if (pmap_pcid_enabled) {
CPU_FOREACH(i) {
if (cpuid != i)
pmap->pm_pcids[i].pm_gen = 0;
}
/* See the comment in pmap_invalidate_page(). */
atomic_thread_fence_seq_cst();
}
mask = &pmap->pm_active;
}
smp_masked_invlpg_range(*mask, sva, eva, pmap);
sched_unpin();
}
void
pmap_invalidate_all(pmap_t pmap)
{
cpuset_t *mask;
struct invpcid_descr d;
uint64_t kcr3, ucr3;
uint32_t pcid;
u_int cpuid, i;
if (pmap_type_guest(pmap)) {
pmap_invalidate_ept(pmap);
return;
}
KASSERT(pmap->pm_type == PT_X86,
("pmap_invalidate_all: invalid type %d", pmap->pm_type));
sched_pin();
if (pmap == kernel_pmap) {
if (pmap_pcid_enabled && invpcid_works) {
bzero(&d, sizeof(d));
invpcid(&d, INVPCID_CTXGLOB);
} else {
invltlb_glob();
}
mask = &all_cpus;
} else {
cpuid = PCPU_GET(cpuid);
if (pmap == PCPU_GET(curpmap)) {
if (pmap_pcid_enabled) {
critical_enter();
pcid = pmap->pm_pcids[cpuid].pm_pcid;
if (invpcid_works) {
d.pcid = pcid;
d.pad = 0;
d.addr = 0;
invpcid(&d, INVPCID_CTX);
if (pmap->pm_ucr3 != PMAP_NO_CR3) {
d.pcid |= PMAP_PCID_USER_PT;
invpcid(&d, INVPCID_CTX);
}
} else {
kcr3 = pmap->pm_cr3 | pcid;
ucr3 = pmap->pm_ucr3;
if (ucr3 != PMAP_NO_CR3) {
ucr3 |= pcid | PMAP_PCID_USER_PT;
pmap_pti_pcid_invalidate(ucr3,
kcr3);
} else {
load_cr3(kcr3);
}
}
critical_exit();
} else {
invltlb();
}
} else if (pmap_pcid_enabled) {
pmap->pm_pcids[cpuid].pm_gen = 0;
}
if (pmap_pcid_enabled) {
CPU_FOREACH(i) {
if (cpuid != i)
pmap->pm_pcids[i].pm_gen = 0;
}
/* See the comment in pmap_invalidate_page(). */
atomic_thread_fence_seq_cst();
}
mask = &pmap->pm_active;
}
smp_masked_invltlb(*mask, pmap);
sched_unpin();
}
void
pmap_invalidate_cache(void)
{
sched_pin();
wbinvd();
smp_cache_flush();
sched_unpin();
}
struct pde_action {
cpuset_t invalidate; /* processors that invalidate their TLB */
pmap_t pmap;
vm_offset_t va;
pd_entry_t *pde;
pd_entry_t newpde;
u_int store; /* processor that updates the PDE */
};
static void
pmap_update_pde_action(void *arg)
{
struct pde_action *act = arg;
if (act->store == PCPU_GET(cpuid))
pmap_update_pde_store(act->pmap, act->pde, act->newpde);
}
static void
pmap_update_pde_teardown(void *arg)
{
struct pde_action *act = arg;
if (CPU_ISSET(PCPU_GET(cpuid), &act->invalidate))
pmap_update_pde_invalidate(act->pmap, act->va, act->newpde);
}
/*
* Change the page size for the specified virtual address in a way that
* prevents any possibility of the TLB ever having two entries that map the
* same virtual address using different page sizes. This is the recommended
* workaround for Erratum 383 on AMD Family 10h processors. It prevents a
* machine check exception for a TLB state that is improperly diagnosed as a
* hardware error.
*/
static void
pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
{
struct pde_action act;
cpuset_t active, other_cpus;
u_int cpuid;
sched_pin();
cpuid = PCPU_GET(cpuid);
other_cpus = all_cpus;
CPU_CLR(cpuid, &other_cpus);
if (pmap == kernel_pmap || pmap_type_guest(pmap))
active = all_cpus;
else {
active = pmap->pm_active;
}
if (CPU_OVERLAP(&active, &other_cpus)) {
act.store = cpuid;
act.invalidate = active;
act.va = va;
act.pmap = pmap;
act.pde = pde;
act.newpde = newpde;
CPU_SET(cpuid, &active);
smp_rendezvous_cpus(active,
smp_no_rendezvous_barrier, pmap_update_pde_action,
pmap_update_pde_teardown, &act);
} else {
pmap_update_pde_store(pmap, pde, newpde);
if (CPU_ISSET(cpuid, &active))
pmap_update_pde_invalidate(pmap, va, newpde);
}
sched_unpin();
}
#else /* !SMP */
/*
* Normal, non-SMP, invalidation functions.
*/
void
pmap_invalidate_page(pmap_t pmap, vm_offset_t va)
{
struct invpcid_descr d;
uint64_t kcr3, ucr3;
uint32_t pcid;
if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
pmap->pm_eptgen++;
return;
}
KASSERT(pmap->pm_type == PT_X86,
("pmap_invalidate_range: unknown type %d", pmap->pm_type));
if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
invlpg(va);
if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
pmap->pm_ucr3 != PMAP_NO_CR3) {
critical_enter();
pcid = pmap->pm_pcids[0].pm_pcid;
if (invpcid_works) {
d.pcid = pcid | PMAP_PCID_USER_PT;
d.pad = 0;
d.addr = va;
invpcid(&d, INVPCID_ADDR);
} else {
kcr3 = pmap->pm_cr3 | pcid | CR3_PCID_SAVE;
ucr3 = pmap->pm_ucr3 | pcid |
PMAP_PCID_USER_PT | CR3_PCID_SAVE;
pmap_pti_pcid_invlpg(ucr3, kcr3, va);
}
critical_exit();
}
} else if (pmap_pcid_enabled)
pmap->pm_pcids[0].pm_gen = 0;
}
void
pmap_invalidate_range(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
struct invpcid_descr d;
vm_offset_t addr;
uint64_t kcr3, ucr3;
if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
pmap->pm_eptgen++;
return;
}
KASSERT(pmap->pm_type == PT_X86,
("pmap_invalidate_range: unknown type %d", pmap->pm_type));
if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap)) {
for (addr = sva; addr < eva; addr += PAGE_SIZE)
invlpg(addr);
if (pmap == PCPU_GET(curpmap) && pmap_pcid_enabled &&
pmap->pm_ucr3 != PMAP_NO_CR3) {
critical_enter();
if (invpcid_works) {
d.pcid = pmap->pm_pcids[0].pm_pcid |
PMAP_PCID_USER_PT;
d.pad = 0;
d.addr = sva;
for (; d.addr < eva; d.addr += PAGE_SIZE)
invpcid(&d, INVPCID_ADDR);
} else {
kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].
pm_pcid | CR3_PCID_SAVE;
ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[0].
pm_pcid | PMAP_PCID_USER_PT | CR3_PCID_SAVE;
pmap_pti_pcid_invlrng(ucr3, kcr3, sva, eva);
}
critical_exit();
}
} else if (pmap_pcid_enabled) {
pmap->pm_pcids[0].pm_gen = 0;
}
}
void
pmap_invalidate_all(pmap_t pmap)
{
struct invpcid_descr d;
uint64_t kcr3, ucr3;
if (pmap->pm_type == PT_RVI || pmap->pm_type == PT_EPT) {
pmap->pm_eptgen++;
return;
}
KASSERT(pmap->pm_type == PT_X86,
("pmap_invalidate_all: unknown type %d", pmap->pm_type));
if (pmap == kernel_pmap) {
if (pmap_pcid_enabled && invpcid_works) {
bzero(&d, sizeof(d));
invpcid(&d, INVPCID_CTXGLOB);
} else {
invltlb_glob();
}
} else if (pmap == PCPU_GET(curpmap)) {
if (pmap_pcid_enabled) {
critical_enter();
if (invpcid_works) {
d.pcid = pmap->pm_pcids[0].pm_pcid;
d.pad = 0;
d.addr = 0;
invpcid(&d, INVPCID_CTX);
if (pmap->pm_ucr3 != PMAP_NO_CR3) {
d.pcid |= PMAP_PCID_USER_PT;
invpcid(&d, INVPCID_CTX);
}
} else {
kcr3 = pmap->pm_cr3 | pmap->pm_pcids[0].pm_pcid;
if (pmap->pm_ucr3 != PMAP_NO_CR3) {
ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[
0].pm_pcid | PMAP_PCID_USER_PT;
pmap_pti_pcid_invalidate(ucr3, kcr3);
} else
load_cr3(kcr3);
}
critical_exit();
} else {
invltlb();
}
} else if (pmap_pcid_enabled) {
pmap->pm_pcids[0].pm_gen = 0;
}
}
PMAP_INLINE void
pmap_invalidate_cache(void)
{
wbinvd();
}
static void
pmap_update_pde(pmap_t pmap, vm_offset_t va, pd_entry_t *pde, pd_entry_t newpde)
{
pmap_update_pde_store(pmap, pde, newpde);
if (pmap == kernel_pmap || pmap == PCPU_GET(curpmap))
pmap_update_pde_invalidate(pmap, va, newpde);
else
pmap->pm_pcids[0].pm_gen = 0;
}
#endif /* !SMP */
static void
pmap_invalidate_pde_page(pmap_t pmap, vm_offset_t va, pd_entry_t pde)
{
/*
* When the PDE has PG_PROMOTED set, the 2MB page mapping was created
* by a promotion that did not invalidate the 512 4KB page mappings
* that might exist in the TLB. Consequently, at this point, the TLB
* may hold both 4KB and 2MB page mappings for the address range [va,
* va + NBPDR). Therefore, the entire range must be invalidated here.
* In contrast, when PG_PROMOTED is clear, the TLB will not hold any
* 4KB page mappings for the address range [va, va + NBPDR), and so a
* single INVLPG suffices to invalidate the 2MB page mapping from the
* TLB.
*/
if ((pde & PG_PROMOTED) != 0)
pmap_invalidate_range(pmap, va, va + NBPDR - 1);
else
pmap_invalidate_page(pmap, va);
}
#define PMAP_CLFLUSH_THRESHOLD (2 * 1024 * 1024)
void
pmap_invalidate_cache_range(vm_offset_t sva, vm_offset_t eva, boolean_t force)
{
if (force) {
sva &= ~(vm_offset_t)(cpu_clflush_line_size - 1);
} else {
KASSERT((sva & PAGE_MASK) == 0,
("pmap_invalidate_cache_range: sva not page-aligned"));
KASSERT((eva & PAGE_MASK) == 0,
("pmap_invalidate_cache_range: eva not page-aligned"));
}
if ((cpu_feature & CPUID_SS) != 0 && !force)
; /* If "Self Snoop" is supported and allowed, do nothing. */
else if ((cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0 &&
eva - sva < PMAP_CLFLUSH_THRESHOLD) {
/*
* XXX: Some CPUs fault, hang, or trash the local APIC
* registers if we use CLFLUSH on the local APIC
* range. The local APIC is always uncached, so we
* don't need to flush for that range anyway.
*/
if (pmap_kextract(sva) == lapic_paddr)
return;
/*
* Otherwise, do per-cache line flush. Use the sfence
* instruction to insure that previous stores are
* included in the write-back. The processor
* propagates flush to other processors in the cache
* coherence domain.
*/
sfence();
for (; sva < eva; sva += cpu_clflush_line_size)
clflushopt(sva);
sfence();
} else if ((cpu_feature & CPUID_CLFSH) != 0 &&
eva - sva < PMAP_CLFLUSH_THRESHOLD) {
if (pmap_kextract(sva) == lapic_paddr)
return;
/*
* Writes are ordered by CLFLUSH on Intel CPUs.
*/
if (cpu_vendor_id != CPU_VENDOR_INTEL)
mfence();
for (; sva < eva; sva += cpu_clflush_line_size)
clflush(sva);
if (cpu_vendor_id != CPU_VENDOR_INTEL)
mfence();
} else {
/*
* No targeted cache flush methods are supported by CPU,
* or the supplied range is bigger than 2MB.
* Globally invalidate cache.
*/
pmap_invalidate_cache();
}
}
/*
* Remove the specified set of pages from the data and instruction caches.
*
* In contrast to pmap_invalidate_cache_range(), this function does not
* rely on the CPU's self-snoop feature, because it is intended for use
* when moving pages into a different cache domain.
*/
void
pmap_invalidate_cache_pages(vm_page_t *pages, int count)
{
vm_offset_t daddr, eva;
int i;
bool useclflushopt;
useclflushopt = (cpu_stdext_feature & CPUID_STDEXT_CLFLUSHOPT) != 0;
if (count >= PMAP_CLFLUSH_THRESHOLD / PAGE_SIZE ||
((cpu_feature & CPUID_CLFSH) == 0 && !useclflushopt))
pmap_invalidate_cache();
else {
if (useclflushopt)
sfence();
else if (cpu_vendor_id != CPU_VENDOR_INTEL)
mfence();
for (i = 0; i < count; i++) {
daddr = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pages[i]));
eva = daddr + PAGE_SIZE;
for (; daddr < eva; daddr += cpu_clflush_line_size) {
if (useclflushopt)
clflushopt(daddr);
else
clflush(daddr);
}
}
if (useclflushopt)
sfence();
else if (cpu_vendor_id != CPU_VENDOR_INTEL)
mfence();
}
}
/*
* Routine: pmap_extract
* Function:
* Extract the physical page address associated
* with the given map/virtual_address pair.
*/
vm_paddr_t
pmap_extract(pmap_t pmap, vm_offset_t va)
{
pdp_entry_t *pdpe;
pd_entry_t *pde;
pt_entry_t *pte, PG_V;
vm_paddr_t pa;
pa = 0;
PG_V = pmap_valid_bit(pmap);
PMAP_LOCK(pmap);
pdpe = pmap_pdpe(pmap, va);
if (pdpe != NULL && (*pdpe & PG_V) != 0) {
if ((*pdpe & PG_PS) != 0)
pa = (*pdpe & PG_PS_FRAME) | (va & PDPMASK);
else {
pde = pmap_pdpe_to_pde(pdpe, va);
if ((*pde & PG_V) != 0) {
if ((*pde & PG_PS) != 0) {
pa = (*pde & PG_PS_FRAME) |
(va & PDRMASK);
} else {
pte = pmap_pde_to_pte(pde, va);
pa = (*pte & PG_FRAME) |
(va & PAGE_MASK);
}
}
}
}
PMAP_UNLOCK(pmap);
return (pa);
}
/*
* Routine: pmap_extract_and_hold
* Function:
* Atomically extract and hold the physical page
* with the given pmap and virtual address pair
* if that mapping permits the given protection.
*/
vm_page_t
pmap_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot)
{
pd_entry_t pde, *pdep;
pt_entry_t pte, PG_RW, PG_V;
vm_paddr_t pa;
vm_page_t m;
pa = 0;
m = NULL;
PG_RW = pmap_rw_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PMAP_LOCK(pmap);
retry:
pdep = pmap_pde(pmap, va);
if (pdep != NULL && (pde = *pdep)) {
if (pde & PG_PS) {
if ((pde & PG_RW) || (prot & VM_PROT_WRITE) == 0) {
if (vm_page_pa_tryrelock(pmap, (pde &
PG_PS_FRAME) | (va & PDRMASK), &pa))
goto retry;
m = PHYS_TO_VM_PAGE((pde & PG_PS_FRAME) |
(va & PDRMASK));
vm_page_hold(m);
}
} else {
pte = *pmap_pde_to_pte(pdep, va);
if ((pte & PG_V) &&
((pte & PG_RW) || (prot & VM_PROT_WRITE) == 0)) {
if (vm_page_pa_tryrelock(pmap, pte & PG_FRAME,
&pa))
goto retry;
m = PHYS_TO_VM_PAGE(pte & PG_FRAME);
vm_page_hold(m);
}
}
}
PA_UNLOCK_COND(pa);
PMAP_UNLOCK(pmap);
return (m);
}
vm_paddr_t
pmap_kextract(vm_offset_t va)
{
pd_entry_t pde;
vm_paddr_t pa;
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS) {
pa = DMAP_TO_PHYS(va);
} else {
pde = *vtopde(va);
if (pde & PG_PS) {
pa = (pde & PG_PS_FRAME) | (va & PDRMASK);
} else {
/*
* Beware of a concurrent promotion that changes the
* PDE at this point! For example, vtopte() must not
* be used to access the PTE because it would use the
* new PDE. It is, however, safe to use the old PDE
* because the page table page is preserved by the
* promotion.
*/
pa = *pmap_pde_to_pte(&pde, va);
pa = (pa & PG_FRAME) | (va & PAGE_MASK);
}
}
return (pa);
}
/***************************************************
* Low level mapping routines.....
***************************************************/
/*
* Add a wired page to the kva.
* Note: not SMP coherent.
*/
PMAP_INLINE void
pmap_kenter(vm_offset_t va, vm_paddr_t pa)
{
pt_entry_t *pte;
pte = vtopte(va);
pte_store(pte, pa | X86_PG_RW | X86_PG_V | pg_g);
}
static __inline void
pmap_kenter_attr(vm_offset_t va, vm_paddr_t pa, int mode)
{
pt_entry_t *pte;
int cache_bits;
pte = vtopte(va);
cache_bits = pmap_cache_bits(kernel_pmap, mode, 0);
pte_store(pte, pa | X86_PG_RW | X86_PG_V | pg_g | cache_bits);
}
/*
* Remove a page from the kernel pagetables.
* Note: not SMP coherent.
*/
PMAP_INLINE void
pmap_kremove(vm_offset_t va)
{
pt_entry_t *pte;
pte = vtopte(va);
pte_clear(pte);
}
/*
* Used to map a range of physical addresses into kernel
* virtual address space.
*
* The value passed in '*virt' is a suggested virtual address for
* the mapping. Architectures which can support a direct-mapped
* physical to virtual region can return the appropriate address
* within that region, leaving '*virt' unchanged. Other
* architectures should map the pages starting at '*virt' and
* update '*virt' with the first usable address after the mapped
* region.
*/
vm_offset_t
pmap_map(vm_offset_t *virt, vm_paddr_t start, vm_paddr_t end, int prot)
{
return PHYS_TO_DMAP(start);
}
/*
* Add a list of wired pages to the kva
* this routine is only used for temporary
* kernel mappings that do not need to have
* page modification or references recorded.
* Note that old mappings are simply written
* over. The page *must* be wired.
* Note: SMP coherent. Uses a ranged shootdown IPI.
*/
void
pmap_qenter(vm_offset_t sva, vm_page_t *ma, int count)
{
pt_entry_t *endpte, oldpte, pa, *pte;
vm_page_t m;
int cache_bits;
oldpte = 0;
pte = vtopte(sva);
endpte = pte + count;
while (pte < endpte) {
m = *ma++;
cache_bits = pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0);
pa = VM_PAGE_TO_PHYS(m) | cache_bits;
if ((*pte & (PG_FRAME | X86_PG_PTE_CACHE)) != pa) {
oldpte |= *pte;
pte_store(pte, pa | pg_g | pg_nx | X86_PG_RW | X86_PG_V);
}
pte++;
}
if (__predict_false((oldpte & X86_PG_V) != 0))
pmap_invalidate_range(kernel_pmap, sva, sva + count *
PAGE_SIZE);
}
/*
* This routine tears out page mappings from the
* kernel -- it is meant only for temporary mappings.
* Note: SMP coherent. Uses a ranged shootdown IPI.
*/
void
pmap_qremove(vm_offset_t sva, int count)
{
vm_offset_t va;
va = sva;
while (count-- > 0) {
KASSERT(va >= VM_MIN_KERNEL_ADDRESS, ("usermode va %lx", va));
pmap_kremove(va);
va += PAGE_SIZE;
}
pmap_invalidate_range(kernel_pmap, sva, va);
}
/***************************************************
* Page table page management routines.....
***************************************************/
static __inline void
pmap_free_zero_pages(struct spglist *free)
{
vm_page_t m;
int count;
for (count = 0; (m = SLIST_FIRST(free)) != NULL; count++) {
SLIST_REMOVE_HEAD(free, plinks.s.ss);
/* Preserve the page's PG_ZERO setting. */
vm_page_free_toq(m);
}
atomic_subtract_int(&vm_cnt.v_wire_count, count);
}
/*
* Schedule the specified unused page table page to be freed. Specifically,
* add the page to the specified list of pages that will be released to the
* physical memory manager after the TLB has been updated.
*/
static __inline void
pmap_add_delayed_free_list(vm_page_t m, struct spglist *free,
boolean_t set_PG_ZERO)
{
if (set_PG_ZERO)
m->flags |= PG_ZERO;
else
m->flags &= ~PG_ZERO;
SLIST_INSERT_HEAD(free, m, plinks.s.ss);
}
/*
* Inserts the specified page table page into the specified pmap's collection
* of idle page table pages. Each of a pmap's page table pages is responsible
* for mapping a distinct range of virtual addresses. The pmap's collection is
* ordered by this virtual address range.
*/
static __inline int
pmap_insert_pt_page(pmap_t pmap, vm_page_t mpte)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
return (vm_radix_insert(&pmap->pm_root, mpte));
}
/*
* Removes the page table page mapping the specified virtual address from the
* specified pmap's collection of idle page table pages, and returns it.
* Otherwise, returns NULL if there is no page table page corresponding to the
* specified virtual address.
*/
static __inline vm_page_t
pmap_remove_pt_page(pmap_t pmap, vm_offset_t va)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
return (vm_radix_remove(&pmap->pm_root, pmap_pde_pindex(va)));
}
/*
* Decrements a page table page's wire count, which is used to record the
* number of valid page table entries within the page. If the wire count
* drops to zero, then the page table page is unmapped. Returns TRUE if the
* page table page was unmapped and FALSE otherwise.
*/
static inline boolean_t
pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{
--m->wire_count;
if (m->wire_count == 0) {
_pmap_unwire_ptp(pmap, va, m, free);
return (TRUE);
} else
return (FALSE);
}
static void
_pmap_unwire_ptp(pmap_t pmap, vm_offset_t va, vm_page_t m, struct spglist *free)
{
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* unmap the page table page
*/
if (m->pindex >= (NUPDE + NUPDPE)) {
/* PDP page */
pml4_entry_t *pml4;
pml4 = pmap_pml4e(pmap, va);
*pml4 = 0;
if (pmap->pm_pml4u != NULL && va <= VM_MAXUSER_ADDRESS) {
pml4 = &pmap->pm_pml4u[pmap_pml4e_index(va)];
*pml4 = 0;
}
} else if (m->pindex >= NUPDE) {
/* PD page */
pdp_entry_t *pdp;
pdp = pmap_pdpe(pmap, va);
*pdp = 0;
} else {
/* PTE page */
pd_entry_t *pd;
pd = pmap_pde(pmap, va);
*pd = 0;
}
pmap_resident_count_dec(pmap, 1);
if (m->pindex < NUPDE) {
/* We just released a PT, unhold the matching PD */
vm_page_t pdpg;
pdpg = PHYS_TO_VM_PAGE(*pmap_pdpe(pmap, va) & PG_FRAME);
pmap_unwire_ptp(pmap, va, pdpg, free);
}
if (m->pindex >= NUPDE && m->pindex < (NUPDE + NUPDPE)) {
/* We just released a PD, unhold the matching PDP */
vm_page_t pdppg;
pdppg = PHYS_TO_VM_PAGE(*pmap_pml4e(pmap, va) & PG_FRAME);
pmap_unwire_ptp(pmap, va, pdppg, free);
}
/*
* Put page on a list so that it is released after
* *ALL* TLB shootdown is done
*/
pmap_add_delayed_free_list(m, free, TRUE);
}
/*
* After removing a page table entry, this routine is used to
* conditionally free the page, and manage the hold/wire counts.
*/
static int
pmap_unuse_pt(pmap_t pmap, vm_offset_t va, pd_entry_t ptepde,
struct spglist *free)
{
vm_page_t mpte;
if (va >= VM_MAXUSER_ADDRESS)
return (0);
KASSERT(ptepde != 0, ("pmap_unuse_pt: ptepde != 0"));
mpte = PHYS_TO_VM_PAGE(ptepde & PG_FRAME);
return (pmap_unwire_ptp(pmap, va, mpte, free));
}
void
pmap_pinit0(pmap_t pmap)
{
int i;
PMAP_LOCK_INIT(pmap);
pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(KPML4phys);
pmap->pm_pml4u = NULL;
pmap->pm_cr3 = KPML4phys;
/* hack to keep pmap_pti_pcid_invalidate() alive */
pmap->pm_ucr3 = PMAP_NO_CR3;
pmap->pm_root.rt_root = 0;
CPU_ZERO(&pmap->pm_active);
TAILQ_INIT(&pmap->pm_pvchunk);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
pmap->pm_flags = pmap_flags;
CPU_FOREACH(i) {
pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
pmap->pm_pcids[i].pm_gen = 0;
if (!pti)
__pcpu[i].pc_kcr3 = PMAP_NO_CR3;
}
PCPU_SET(curpmap, kernel_pmap);
pmap_activate(curthread);
CPU_FILL(&kernel_pmap->pm_active);
}
void
pmap_pinit_pml4(vm_page_t pml4pg)
{
pml4_entry_t *pm_pml4;
int i;
pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
/* Wire in kernel global address entries. */
for (i = 0; i < NKPML4E; i++) {
pm_pml4[KPML4BASE + i] = (KPDPphys + ptoa(i)) | X86_PG_RW |
X86_PG_V;
}
for (i = 0; i < ndmpdpphys; i++) {
pm_pml4[DMPML4I + i] = (DMPDPphys + ptoa(i)) | X86_PG_RW |
X86_PG_V;
}
/* install self-referential address mapping entry(s) */
pm_pml4[PML4PML4I] = VM_PAGE_TO_PHYS(pml4pg) | X86_PG_V | X86_PG_RW |
X86_PG_A | X86_PG_M;
}
static void
pmap_pinit_pml4_pti(vm_page_t pml4pg)
{
pml4_entry_t *pm_pml4;
int i;
pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4pg));
for (i = 0; i < NPML4EPG; i++)
pm_pml4[i] = pti_pml4[i];
}
/*
* Initialize a preallocated and zeroed pmap structure,
* such as one in a vmspace structure.
*/
int
pmap_pinit_type(pmap_t pmap, enum pmap_type pm_type, int flags)
{
vm_page_t pml4pg, pml4pgu;
vm_paddr_t pml4phys;
int i;
/*
* allocate the page directory page
*/
pml4pg = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED | VM_ALLOC_ZERO | VM_ALLOC_WAITOK);
pml4phys = VM_PAGE_TO_PHYS(pml4pg);
pmap->pm_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(pml4phys);
CPU_FOREACH(i) {
pmap->pm_pcids[i].pm_pcid = PMAP_PCID_NONE;
pmap->pm_pcids[i].pm_gen = 0;
}
pmap->pm_cr3 = PMAP_NO_CR3; /* initialize to an invalid value */
pmap->pm_ucr3 = PMAP_NO_CR3;
pmap->pm_pml4u = NULL;
pmap->pm_type = pm_type;
if ((pml4pg->flags & PG_ZERO) == 0)
pagezero(pmap->pm_pml4);
/*
* Do not install the host kernel mappings in the nested page
* tables. These mappings are meaningless in the guest physical
* address space.
* Install minimal kernel mappings in PTI case.
*/
if (pm_type == PT_X86) {
pmap->pm_cr3 = pml4phys;
pmap_pinit_pml4(pml4pg);
if (pti) {
pml4pgu = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_WAITOK);
pmap->pm_pml4u = (pml4_entry_t *)PHYS_TO_DMAP(
VM_PAGE_TO_PHYS(pml4pgu));
pmap_pinit_pml4_pti(pml4pgu);
pmap->pm_ucr3 = VM_PAGE_TO_PHYS(pml4pgu);
}
}
pmap->pm_root.rt_root = 0;
CPU_ZERO(&pmap->pm_active);
TAILQ_INIT(&pmap->pm_pvchunk);
bzero(&pmap->pm_stats, sizeof pmap->pm_stats);
pmap->pm_flags = flags;
pmap->pm_eptgen = 0;
return (1);
}
int
pmap_pinit(pmap_t pmap)
{
return (pmap_pinit_type(pmap, PT_X86, pmap_flags));
}
/*
* This routine is called if the desired page table page does not exist.
*
* If page table page allocation fails, this routine may sleep before
* returning NULL. It sleeps only if a lock pointer was given.
*
* Note: If a page allocation fails at page table level two or three,
* one or two pages may be held during the wait, only to be released
* afterwards. This conservative approach is easily argued to avoid
* race conditions.
*/
static vm_page_t
_pmap_allocpte(pmap_t pmap, vm_pindex_t ptepindex, struct rwlock **lockp)
{
vm_page_t m, pdppg, pdpg;
pt_entry_t PG_A, PG_M, PG_RW, PG_V;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
/*
* Allocate a page table page.
*/
if ((m = vm_page_alloc(NULL, ptepindex, VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED | VM_ALLOC_ZERO)) == NULL) {
if (lockp != NULL) {
RELEASE_PV_LIST_LOCK(lockp);
PMAP_UNLOCK(pmap);
PMAP_ASSERT_NOT_IN_DI();
VM_WAIT;
PMAP_LOCK(pmap);
}
/*
* Indicate the need to retry. While waiting, the page table
* page may have been allocated.
*/
return (NULL);
}
if ((m->flags & PG_ZERO) == 0)
pmap_zero_page(m);
/*
* Map the pagetable page into the process address space, if
* it isn't already there.
*/
if (ptepindex >= (NUPDE + NUPDPE)) {
pml4_entry_t *pml4, *pml4u;
vm_pindex_t pml4index;
/* Wire up a new PDPE page */
pml4index = ptepindex - (NUPDE + NUPDPE);
pml4 = &pmap->pm_pml4[pml4index];
*pml4 = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
if (pmap->pm_pml4u != NULL && pml4index < NUPML4E) {
/*
* PTI: Make all user-space mappings in the
* kernel-mode page table no-execute so that
* we detect any programming errors that leave
* the kernel-mode page table active on return
* to user space.
*/
*pml4 |= pg_nx;
pml4u = &pmap->pm_pml4u[pml4index];
*pml4u = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V |
PG_A | PG_M;
}
} else if (ptepindex >= NUPDE) {
vm_pindex_t pml4index;
vm_pindex_t pdpindex;
pml4_entry_t *pml4;
pdp_entry_t *pdp;
/* Wire up a new PDE page */
pdpindex = ptepindex - NUPDE;
pml4index = pdpindex >> NPML4EPGSHIFT;
pml4 = &pmap->pm_pml4[pml4index];
if ((*pml4 & PG_V) == 0) {
/* Have to allocate a new pdp, recurse */
if (_pmap_allocpte(pmap, NUPDE + NUPDPE + pml4index,
lockp) == NULL) {
--m->wire_count;
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
vm_page_free_zero(m);
return (NULL);
}
} else {
/* Add reference to pdp page */
pdppg = PHYS_TO_VM_PAGE(*pml4 & PG_FRAME);
pdppg->wire_count++;
}
pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
/* Now find the pdp page */
pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
*pdp = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
} else {
vm_pindex_t pml4index;
vm_pindex_t pdpindex;
pml4_entry_t *pml4;
pdp_entry_t *pdp;
pd_entry_t *pd;
/* Wire up a new PTE page */
pdpindex = ptepindex >> NPDPEPGSHIFT;
pml4index = pdpindex >> NPML4EPGSHIFT;
/* First, find the pdp and check that its valid. */
pml4 = &pmap->pm_pml4[pml4index];
if ((*pml4 & PG_V) == 0) {
/* Have to allocate a new pd, recurse */
if (_pmap_allocpte(pmap, NUPDE + pdpindex,
lockp) == NULL) {
--m->wire_count;
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
vm_page_free_zero(m);
return (NULL);
}
pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
} else {
pdp = (pdp_entry_t *)PHYS_TO_DMAP(*pml4 & PG_FRAME);
pdp = &pdp[pdpindex & ((1ul << NPDPEPGSHIFT) - 1)];
if ((*pdp & PG_V) == 0) {
/* Have to allocate a new pd, recurse */
if (_pmap_allocpte(pmap, NUPDE + pdpindex,
lockp) == NULL) {
--m->wire_count;
atomic_subtract_int(&vm_cnt.v_wire_count,
1);
vm_page_free_zero(m);
return (NULL);
}
} else {
/* Add reference to the pd page */
pdpg = PHYS_TO_VM_PAGE(*pdp & PG_FRAME);
pdpg->wire_count++;
}
}
pd = (pd_entry_t *)PHYS_TO_DMAP(*pdp & PG_FRAME);
/* Now we know where the page directory page is */
pd = &pd[ptepindex & ((1ul << NPDEPGSHIFT) - 1)];
*pd = VM_PAGE_TO_PHYS(m) | PG_U | PG_RW | PG_V | PG_A | PG_M;
}
pmap_resident_count_inc(pmap, 1);
return (m);
}
static vm_page_t
pmap_allocpde(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
{
vm_pindex_t pdpindex, ptepindex;
pdp_entry_t *pdpe, PG_V;
vm_page_t pdpg;
PG_V = pmap_valid_bit(pmap);
retry:
pdpe = pmap_pdpe(pmap, va);
if (pdpe != NULL && (*pdpe & PG_V) != 0) {
/* Add a reference to the pd page. */
pdpg = PHYS_TO_VM_PAGE(*pdpe & PG_FRAME);
pdpg->wire_count++;
} else {
/* Allocate a pd page. */
ptepindex = pmap_pde_pindex(va);
pdpindex = ptepindex >> NPDPEPGSHIFT;
pdpg = _pmap_allocpte(pmap, NUPDE + pdpindex, lockp);
if (pdpg == NULL && lockp != NULL)
goto retry;
}
return (pdpg);
}
static vm_page_t
pmap_allocpte(pmap_t pmap, vm_offset_t va, struct rwlock **lockp)
{
vm_pindex_t ptepindex;
pd_entry_t *pd, PG_V;
vm_page_t m;
PG_V = pmap_valid_bit(pmap);
/*
* Calculate pagetable page index
*/
ptepindex = pmap_pde_pindex(va);
retry:
/*
* Get the page directory entry
*/
pd = pmap_pde(pmap, va);
/*
* This supports switching from a 2MB page to a
* normal 4K page.
*/
if (pd != NULL && (*pd & (PG_PS | PG_V)) == (PG_PS | PG_V)) {
if (!pmap_demote_pde_locked(pmap, pd, va, lockp)) {
/*
* Invalidation of the 2MB page mapping may have caused
* the deallocation of the underlying PD page.
*/
pd = NULL;
}
}
/*
* If the page table page is mapped, we just increment the
* hold count, and activate it.
*/
if (pd != NULL && (*pd & PG_V) != 0) {
m = PHYS_TO_VM_PAGE(*pd & PG_FRAME);
m->wire_count++;
} else {
/*
* Here if the pte page isn't mapped, or if it has been
* deallocated.
*/
m = _pmap_allocpte(pmap, ptepindex, lockp);
if (m == NULL && lockp != NULL)
goto retry;
}
return (m);
}
/***************************************************
* Pmap allocation/deallocation routines.
***************************************************/
/*
* Release any resources held by the given physical map.
* Called when a pmap initialized by pmap_pinit is being released.
* Should only be called if the map contains no valid mappings.
*/
void
pmap_release(pmap_t pmap)
{
vm_page_t m;
int i;
KASSERT(pmap->pm_stats.resident_count == 0,
("pmap_release: pmap resident count %ld != 0",
pmap->pm_stats.resident_count));
KASSERT(vm_radix_is_empty(&pmap->pm_root),
("pmap_release: pmap has reserved page table page(s)"));
KASSERT(CPU_EMPTY(&pmap->pm_active),
("releasing active pmap %p", pmap));
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml4));
for (i = 0; i < NKPML4E; i++) /* KVA */
pmap->pm_pml4[KPML4BASE + i] = 0;
for (i = 0; i < ndmpdpphys; i++)/* Direct Map */
pmap->pm_pml4[DMPML4I + i] = 0;
pmap->pm_pml4[PML4PML4I] = 0; /* Recursive Mapping */
m->wire_count--;
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
vm_page_free_zero(m);
if (pmap->pm_pml4u != NULL) {
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pmap->pm_pml4u));
m->wire_count--;
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
vm_page_free(m);
}
}
static int
kvm_size(SYSCTL_HANDLER_ARGS)
{
unsigned long ksize = VM_MAX_KERNEL_ADDRESS - VM_MIN_KERNEL_ADDRESS;
return sysctl_handle_long(oidp, &ksize, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_size, CTLTYPE_LONG|CTLFLAG_RD,
0, 0, kvm_size, "LU", "Size of KVM");
static int
kvm_free(SYSCTL_HANDLER_ARGS)
{
unsigned long kfree = VM_MAX_KERNEL_ADDRESS - kernel_vm_end;
return sysctl_handle_long(oidp, &kfree, 0, req);
}
SYSCTL_PROC(_vm, OID_AUTO, kvm_free, CTLTYPE_LONG|CTLFLAG_RD,
0, 0, kvm_free, "LU", "Amount of KVM free");
/*
* grow the number of kernel page table entries, if needed
*/
void
pmap_growkernel(vm_offset_t addr)
{
vm_paddr_t paddr;
vm_page_t nkpg;
pd_entry_t *pde, newpdir;
pdp_entry_t *pdpe;
mtx_assert(&kernel_map->system_mtx, MA_OWNED);
/*
* Return if "addr" is within the range of kernel page table pages
* that were preallocated during pmap bootstrap. Moreover, leave
* "kernel_vm_end" and the kernel page table as they were.
*
* The correctness of this action is based on the following
* argument: vm_map_insert() allocates contiguous ranges of the
* kernel virtual address space. It calls this function if a range
* ends after "kernel_vm_end". If the kernel is mapped between
* "kernel_vm_end" and "addr", then the range cannot begin at
* "kernel_vm_end". In fact, its beginning address cannot be less
* than the kernel. Thus, there is no immediate need to allocate
* any new kernel page table pages between "kernel_vm_end" and
* "KERNBASE".
*/
if (KERNBASE < addr && addr <= KERNBASE + nkpt * NBPDR)
return;
addr = roundup2(addr, NBPDR);
if (addr - 1 >= kernel_map->max_offset)
addr = kernel_map->max_offset;
while (kernel_vm_end < addr) {
pdpe = pmap_pdpe(kernel_pmap, kernel_vm_end);
if ((*pdpe & X86_PG_V) == 0) {
/* We need a new PDP entry */
nkpg = vm_page_alloc(NULL, kernel_vm_end >> PDPSHIFT,
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED | VM_ALLOC_ZERO);
if (nkpg == NULL)
panic("pmap_growkernel: no memory to grow kernel");
if ((nkpg->flags & PG_ZERO) == 0)
pmap_zero_page(nkpg);
paddr = VM_PAGE_TO_PHYS(nkpg);
*pdpe = (pdp_entry_t)(paddr | X86_PG_V | X86_PG_RW |
X86_PG_A | X86_PG_M);
continue; /* try again */
}
pde = pmap_pdpe_to_pde(pdpe, kernel_vm_end);
if ((*pde & X86_PG_V) != 0) {
kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
if (kernel_vm_end - 1 >= kernel_map->max_offset) {
kernel_vm_end = kernel_map->max_offset;
break;
}
continue;
}
nkpg = vm_page_alloc(NULL, pmap_pde_pindex(kernel_vm_end),
VM_ALLOC_INTERRUPT | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED |
VM_ALLOC_ZERO);
if (nkpg == NULL)
panic("pmap_growkernel: no memory to grow kernel");
if ((nkpg->flags & PG_ZERO) == 0)
pmap_zero_page(nkpg);
paddr = VM_PAGE_TO_PHYS(nkpg);
newpdir = paddr | X86_PG_V | X86_PG_RW | X86_PG_A | X86_PG_M;
pde_store(pde, newpdir);
kernel_vm_end = (kernel_vm_end + NBPDR) & ~PDRMASK;
if (kernel_vm_end - 1 >= kernel_map->max_offset) {
kernel_vm_end = kernel_map->max_offset;
break;
}
}
}
/***************************************************
* page management routines.
***************************************************/
CTASSERT(sizeof(struct pv_chunk) == PAGE_SIZE);
CTASSERT(_NPCM == 3);
CTASSERT(_NPCPV == 168);
static __inline struct pv_chunk *
pv_to_chunk(pv_entry_t pv)
{
return ((struct pv_chunk *)((uintptr_t)pv & ~(uintptr_t)PAGE_MASK));
}
#define PV_PMAP(pv) (pv_to_chunk(pv)->pc_pmap)
#define PC_FREE0 0xfffffffffffffffful
#define PC_FREE1 0xfffffffffffffffful
#define PC_FREE2 0x000000fffffffffful
static const uint64_t pc_freemask[_NPCM] = { PC_FREE0, PC_FREE1, PC_FREE2 };
#ifdef PV_STATS
static int pc_chunk_count, pc_chunk_allocs, pc_chunk_frees, pc_chunk_tryfail;
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_count, CTLFLAG_RD, &pc_chunk_count, 0,
"Current number of pv entry chunks");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_allocs, CTLFLAG_RD, &pc_chunk_allocs, 0,
"Current number of pv entry chunks allocated");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_frees, CTLFLAG_RD, &pc_chunk_frees, 0,
"Current number of pv entry chunks frees");
SYSCTL_INT(_vm_pmap, OID_AUTO, pc_chunk_tryfail, CTLFLAG_RD, &pc_chunk_tryfail, 0,
"Number of times tried to get a chunk page but failed.");
static long pv_entry_frees, pv_entry_allocs, pv_entry_count;
static int pv_entry_spare;
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_frees, CTLFLAG_RD, &pv_entry_frees, 0,
"Current number of pv entry frees");
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_allocs, CTLFLAG_RD, &pv_entry_allocs, 0,
"Current number of pv entry allocs");
SYSCTL_LONG(_vm_pmap, OID_AUTO, pv_entry_count, CTLFLAG_RD, &pv_entry_count, 0,
"Current number of pv entries");
SYSCTL_INT(_vm_pmap, OID_AUTO, pv_entry_spare, CTLFLAG_RD, &pv_entry_spare, 0,
"Current number of spare pv entries");
#endif
static void
reclaim_pv_chunk_leave_pmap(pmap_t pmap, pmap_t locked_pmap, bool start_di)
{
if (pmap == NULL)
return;
pmap_invalidate_all(pmap);
if (pmap != locked_pmap)
PMAP_UNLOCK(pmap);
if (start_di)
pmap_delayed_invl_finished();
}
/*
* We are in a serious low memory condition. Resort to
* drastic measures to free some pages so we can allocate
* another pv entry chunk.
*
* Returns NULL if PV entries were reclaimed from the specified pmap.
*
* We do not, however, unmap 2mpages because subsequent accesses will
* allocate per-page pv entries until repromotion occurs, thereby
* exacerbating the shortage of free pv entries.
*/
static vm_page_t
reclaim_pv_chunk(pmap_t locked_pmap, struct rwlock **lockp)
{
struct pv_chunk *pc, *pc_marker, *pc_marker_end;
struct pv_chunk_header pc_marker_b, pc_marker_end_b;
struct md_page *pvh;
pd_entry_t *pde;
pmap_t next_pmap, pmap;
pt_entry_t *pte, tpte;
pt_entry_t PG_G, PG_A, PG_M, PG_RW;
pv_entry_t pv;
vm_offset_t va;
vm_page_t m, m_pc;
struct spglist free;
uint64_t inuse;
int bit, field, freed;
bool start_di;
static int active_reclaims = 0;
PMAP_LOCK_ASSERT(locked_pmap, MA_OWNED);
KASSERT(lockp != NULL, ("reclaim_pv_chunk: lockp is NULL"));
pmap = NULL;
m_pc = NULL;
PG_G = PG_A = PG_M = PG_RW = 0;
SLIST_INIT(&free);
bzero(&pc_marker_b, sizeof(pc_marker_b));
bzero(&pc_marker_end_b, sizeof(pc_marker_end_b));
pc_marker = (struct pv_chunk *)&pc_marker_b;
pc_marker_end = (struct pv_chunk *)&pc_marker_end_b;
/*
* A delayed invalidation block should already be active if
* pmap_advise() or pmap_remove() called this function by way
* of pmap_demote_pde_locked().
*/
start_di = pmap_not_in_di();
mtx_lock(&pv_chunks_mutex);
active_reclaims++;
TAILQ_INSERT_HEAD(&pv_chunks, pc_marker, pc_lru);
TAILQ_INSERT_TAIL(&pv_chunks, pc_marker_end, pc_lru);
while ((pc = TAILQ_NEXT(pc_marker, pc_lru)) != pc_marker_end &&
SLIST_EMPTY(&free)) {
next_pmap = pc->pc_pmap;
if (next_pmap == NULL) {
/*
* The next chunk is a marker. However, it is
* not our marker, so active_reclaims must be
* > 1. Consequently, the next_chunk code
* will not rotate the pv_chunks list.
*/
goto next_chunk;
}
mtx_unlock(&pv_chunks_mutex);
/*
* A pv_chunk can only be removed from the pc_lru list
* when both pc_chunks_mutex is owned and the
* corresponding pmap is locked.
*/
if (pmap != next_pmap) {
reclaim_pv_chunk_leave_pmap(pmap, locked_pmap,
start_di);
pmap = next_pmap;
/* Avoid deadlock and lock recursion. */
if (pmap > locked_pmap) {
RELEASE_PV_LIST_LOCK(lockp);
PMAP_LOCK(pmap);
if (start_di)
pmap_delayed_invl_started();
mtx_lock(&pv_chunks_mutex);
continue;
} else if (pmap != locked_pmap) {
if (PMAP_TRYLOCK(pmap)) {
if (start_di)
pmap_delayed_invl_started();
mtx_lock(&pv_chunks_mutex);
continue;
} else {
pmap = NULL; /* pmap is not locked */
mtx_lock(&pv_chunks_mutex);
pc = TAILQ_NEXT(pc_marker, pc_lru);
if (pc == NULL ||
pc->pc_pmap != next_pmap)
continue;
goto next_chunk;
}
} else if (start_di)
pmap_delayed_invl_started();
PG_G = pmap_global_bit(pmap);
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
}
/*
* Destroy every non-wired, 4 KB page mapping in the chunk.
*/
freed = 0;
for (field = 0; field < _NPCM; field++) {
for (inuse = ~pc->pc_map[field] & pc_freemask[field];
inuse != 0; inuse &= ~(1UL << bit)) {
bit = bsfq(inuse);
pv = &pc->pc_pventry[field * 64 + bit];
va = pv->pv_va;
pde = pmap_pde(pmap, va);
if ((*pde & PG_PS) != 0)
continue;
pte = pmap_pde_to_pte(pde, va);
if ((*pte & PG_W) != 0)
continue;
tpte = pte_load_clear(pte);
if ((tpte & PG_G) != 0)
pmap_invalidate_page(pmap, va);
m = PHYS_TO_VM_PAGE(tpte & PG_FRAME);
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(m);
if ((tpte & PG_A) != 0)
vm_page_aflag_set(m, PGA_REFERENCED);
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
if (TAILQ_EMPTY(&m->md.pv_list) &&
(m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
if (TAILQ_EMPTY(&pvh->pv_list)) {
vm_page_aflag_clear(m,
PGA_WRITEABLE);
}
}
pmap_delayed_invl_page(m);
pc->pc_map[field] |= 1UL << bit;
pmap_unuse_pt(pmap, va, *pde, &free);
freed++;
}
}
if (freed == 0) {
mtx_lock(&pv_chunks_mutex);
goto next_chunk;
}
/* Every freed mapping is for a 4 KB page. */
pmap_resident_count_dec(pmap, freed);
PV_STAT(atomic_add_long(&pv_entry_frees, freed));
PV_STAT(atomic_add_int(&pv_entry_spare, freed));
PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
if (pc->pc_map[0] == PC_FREE0 && pc->pc_map[1] == PC_FREE1 &&
pc->pc_map[2] == PC_FREE2) {
PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
/* Entire chunk is free; return it. */
m_pc = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
dump_drop_page(m_pc->phys_addr);
mtx_lock(&pv_chunks_mutex);
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
break;
}
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
mtx_lock(&pv_chunks_mutex);
/* One freed pv entry in locked_pmap is sufficient. */
if (pmap == locked_pmap)
break;
next_chunk:
TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
TAILQ_INSERT_AFTER(&pv_chunks, pc, pc_marker, pc_lru);
if (active_reclaims == 1 && pmap != NULL) {
/*
* Rotate the pv chunks list so that we do not
* scan the same pv chunks that could not be
* freed (because they contained a wired
* and/or superpage mapping) on every
* invocation of reclaim_pv_chunk().
*/
while ((pc = TAILQ_FIRST(&pv_chunks)) != pc_marker) {
MPASS(pc->pc_pmap != NULL);
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
}
}
}
TAILQ_REMOVE(&pv_chunks, pc_marker, pc_lru);
TAILQ_REMOVE(&pv_chunks, pc_marker_end, pc_lru);
active_reclaims--;
mtx_unlock(&pv_chunks_mutex);
reclaim_pv_chunk_leave_pmap(pmap, locked_pmap, start_di);
if (m_pc == NULL && !SLIST_EMPTY(&free)) {
m_pc = SLIST_FIRST(&free);
SLIST_REMOVE_HEAD(&free, plinks.s.ss);
/* Recycle a freed page table page. */
m_pc->wire_count = 1;
}
pmap_free_zero_pages(&free);
return (m_pc);
}
/*
* free the pv_entry back to the free list
*/
static void
free_pv_entry(pmap_t pmap, pv_entry_t pv)
{
struct pv_chunk *pc;
int idx, field, bit;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(atomic_add_long(&pv_entry_frees, 1));
PV_STAT(atomic_add_int(&pv_entry_spare, 1));
PV_STAT(atomic_subtract_long(&pv_entry_count, 1));
pc = pv_to_chunk(pv);
idx = pv - &pc->pc_pventry[0];
field = idx / 64;
bit = idx % 64;
pc->pc_map[field] |= 1ul << bit;
if (pc->pc_map[0] != PC_FREE0 || pc->pc_map[1] != PC_FREE1 ||
pc->pc_map[2] != PC_FREE2) {
/* 98% of the time, pc is already at the head of the list. */
if (__predict_false(pc != TAILQ_FIRST(&pmap->pm_pvchunk))) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
}
return;
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
free_pv_chunk(pc);
}
static void
free_pv_chunk(struct pv_chunk *pc)
{
vm_page_t m;
mtx_lock(&pv_chunks_mutex);
TAILQ_REMOVE(&pv_chunks, pc, pc_lru);
mtx_unlock(&pv_chunks_mutex);
PV_STAT(atomic_subtract_int(&pv_entry_spare, _NPCPV));
PV_STAT(atomic_subtract_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_frees, 1));
/* entire chunk is free, return it */
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((vm_offset_t)pc));
dump_drop_page(m->phys_addr);
vm_page_unwire(m, PQ_NONE);
vm_page_free(m);
}
/*
* Returns a new PV entry, allocating a new PV chunk from the system when
* needed. If this PV chunk allocation fails and a PV list lock pointer was
* given, a PV chunk is reclaimed from an arbitrary pmap. Otherwise, NULL is
* returned.
*
* The given PV list lock may be released.
*/
static pv_entry_t
get_pv_entry(pmap_t pmap, struct rwlock **lockp)
{
int bit, field;
pv_entry_t pv;
struct pv_chunk *pc;
vm_page_t m;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PV_STAT(atomic_add_long(&pv_entry_allocs, 1));
retry:
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
if (pc != NULL) {
for (field = 0; field < _NPCM; field++) {
if (pc->pc_map[field]) {
bit = bsfq(pc->pc_map[field]);
break;
}
}
if (field < _NPCM) {
pv = &pc->pc_pventry[field * 64 + bit];
pc->pc_map[field] &= ~(1ul << bit);
/* If this was the last item, move it to tail */
if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 &&
pc->pc_map[2] == 0) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc,
pc_list);
}
PV_STAT(atomic_add_long(&pv_entry_count, 1));
PV_STAT(atomic_subtract_int(&pv_entry_spare, 1));
return (pv);
}
}
/* No free items, allocate another chunk */
m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED);
if (m == NULL) {
if (lockp == NULL) {
PV_STAT(pc_chunk_tryfail++);
return (NULL);
}
m = reclaim_pv_chunk(pmap, lockp);
if (m == NULL)
goto retry;
}
PV_STAT(atomic_add_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
dump_add_page(m->phys_addr);
pc = (void *)PHYS_TO_DMAP(m->phys_addr);
pc->pc_pmap = pmap;
pc->pc_map[0] = PC_FREE0 & ~1ul; /* preallocated bit 0 */
pc->pc_map[1] = PC_FREE1;
pc->pc_map[2] = PC_FREE2;
mtx_lock(&pv_chunks_mutex);
TAILQ_INSERT_TAIL(&pv_chunks, pc, pc_lru);
mtx_unlock(&pv_chunks_mutex);
pv = &pc->pc_pventry[0];
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
PV_STAT(atomic_add_long(&pv_entry_count, 1));
PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV - 1));
return (pv);
}
/*
* Returns the number of one bits within the given PV chunk map.
*
* The erratas for Intel processors state that "POPCNT Instruction May
* Take Longer to Execute Than Expected". It is believed that the
* issue is the spurious dependency on the destination register.
* Provide a hint to the register rename logic that the destination
* value is overwritten, by clearing it, as suggested in the
* optimization manual. It should be cheap for unaffected processors
* as well.
*
* Reference numbers for erratas are
* 4th Gen Core: HSD146
* 5th Gen Core: BDM85
* 6th Gen Core: SKL029
*/
static int
popcnt_pc_map_pq(uint64_t *map)
{
u_long result, tmp;
__asm __volatile("xorl %k0,%k0;popcntq %2,%0;"
"xorl %k1,%k1;popcntq %3,%1;addl %k1,%k0;"
"xorl %k1,%k1;popcntq %4,%1;addl %k1,%k0"
: "=&r" (result), "=&r" (tmp)
: "m" (map[0]), "m" (map[1]), "m" (map[2]));
return (result);
}
/*
* Ensure that the number of spare PV entries in the specified pmap meets or
* exceeds the given count, "needed".
*
* The given PV list lock may be released.
*/
static void
reserve_pv_entries(pmap_t pmap, int needed, struct rwlock **lockp)
{
struct pch new_tail;
struct pv_chunk *pc;
int avail, free;
vm_page_t m;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT(lockp != NULL, ("reserve_pv_entries: lockp is NULL"));
/*
* Newly allocated PV chunks must be stored in a private list until
* the required number of PV chunks have been allocated. Otherwise,
* reclaim_pv_chunk() could recycle one of these chunks. In
* contrast, these chunks must be added to the pmap upon allocation.
*/
TAILQ_INIT(&new_tail);
retry:
avail = 0;
TAILQ_FOREACH(pc, &pmap->pm_pvchunk, pc_list) {
#ifndef __POPCNT__
if ((cpu_feature2 & CPUID2_POPCNT) == 0)
bit_count((bitstr_t *)pc->pc_map, 0,
sizeof(pc->pc_map) * NBBY, &free);
else
#endif
free = popcnt_pc_map_pq(pc->pc_map);
if (free == 0)
break;
avail += free;
if (avail >= needed)
break;
}
for (; avail < needed; avail += _NPCPV) {
m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL | VM_ALLOC_NOOBJ |
VM_ALLOC_WIRED);
if (m == NULL) {
m = reclaim_pv_chunk(pmap, lockp);
if (m == NULL)
goto retry;
}
PV_STAT(atomic_add_int(&pc_chunk_count, 1));
PV_STAT(atomic_add_int(&pc_chunk_allocs, 1));
dump_add_page(m->phys_addr);
pc = (void *)PHYS_TO_DMAP(m->phys_addr);
pc->pc_pmap = pmap;
pc->pc_map[0] = PC_FREE0;
pc->pc_map[1] = PC_FREE1;
pc->pc_map[2] = PC_FREE2;
TAILQ_INSERT_HEAD(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&new_tail, pc, pc_lru);
PV_STAT(atomic_add_int(&pv_entry_spare, _NPCPV));
}
if (!TAILQ_EMPTY(&new_tail)) {
mtx_lock(&pv_chunks_mutex);
TAILQ_CONCAT(&pv_chunks, &new_tail, pc_lru);
mtx_unlock(&pv_chunks_mutex);
}
}
/*
* First find and then remove the pv entry for the specified pmap and virtual
* address from the specified pv list. Returns the pv entry if found and NULL
* otherwise. This operation can be performed on pv lists for either 4KB or
* 2MB page mappings.
*/
static __inline pv_entry_t
pmap_pvh_remove(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
pv_entry_t pv;
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
if (pmap == PV_PMAP(pv) && va == pv->pv_va) {
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
pvh->pv_gen++;
break;
}
}
return (pv);
}
/*
* After demotion from a 2MB page mapping to 512 4KB page mappings,
* destroy the pv entry for the 2MB page mapping and reinstantiate the pv
* entries for each of the 4KB page mappings.
*/
static void
pmap_pv_demote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
struct rwlock **lockp)
{
struct md_page *pvh;
struct pv_chunk *pc;
pv_entry_t pv;
vm_offset_t va_last;
vm_page_t m;
int bit, field;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT((pa & PDRMASK) == 0,
("pmap_pv_demote_pde: pa is not 2mpage aligned"));
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
/*
* Transfer the 2mpage's pv entry for this mapping to the first
* page's pv list. Once this transfer begins, the pv list lock
* must not be released until the last pv entry is reinstantiated.
*/
pvh = pa_to_pvh(pa);
va = trunc_2mpage(va);
pv = pmap_pvh_remove(pvh, pmap, va);
KASSERT(pv != NULL, ("pmap_pv_demote_pde: pv not found"));
m = PHYS_TO_VM_PAGE(pa);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
/* Instantiate the remaining NPTEPG - 1 pv entries. */
PV_STAT(atomic_add_long(&pv_entry_allocs, NPTEPG - 1));
va_last = va + NBPDR - PAGE_SIZE;
for (;;) {
pc = TAILQ_FIRST(&pmap->pm_pvchunk);
KASSERT(pc->pc_map[0] != 0 || pc->pc_map[1] != 0 ||
pc->pc_map[2] != 0, ("pmap_pv_demote_pde: missing spare"));
for (field = 0; field < _NPCM; field++) {
while (pc->pc_map[field]) {
bit = bsfq(pc->pc_map[field]);
pc->pc_map[field] &= ~(1ul << bit);
pv = &pc->pc_pventry[field * 64 + bit];
va += PAGE_SIZE;
pv->pv_va = va;
m++;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_pv_demote_pde: page %p is not managed", m));
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
if (va == va_last)
goto out;
}
}
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
}
out:
if (pc->pc_map[0] == 0 && pc->pc_map[1] == 0 && pc->pc_map[2] == 0) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
TAILQ_INSERT_TAIL(&pmap->pm_pvchunk, pc, pc_list);
}
PV_STAT(atomic_add_long(&pv_entry_count, NPTEPG - 1));
PV_STAT(atomic_subtract_int(&pv_entry_spare, NPTEPG - 1));
}
#if VM_NRESERVLEVEL > 0
/*
* After promotion from 512 4KB page mappings to a single 2MB page mapping,
* replace the many pv entries for the 4KB page mappings by a single pv entry
* for the 2MB page mapping.
*/
static void
pmap_pv_promote_pde(pmap_t pmap, vm_offset_t va, vm_paddr_t pa,
struct rwlock **lockp)
{
struct md_page *pvh;
pv_entry_t pv;
vm_offset_t va_last;
vm_page_t m;
KASSERT((pa & PDRMASK) == 0,
("pmap_pv_promote_pde: pa is not 2mpage aligned"));
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
/*
* Transfer the first page's pv entry for this mapping to the 2mpage's
* pv list. Aside from avoiding the cost of a call to get_pv_entry(),
* a transfer avoids the possibility that get_pv_entry() calls
* reclaim_pv_chunk() and that reclaim_pv_chunk() removes one of the
* mappings that is being promoted.
*/
m = PHYS_TO_VM_PAGE(pa);
va = trunc_2mpage(va);
pv = pmap_pvh_remove(&m->md, pmap, va);
KASSERT(pv != NULL, ("pmap_pv_promote_pde: pv not found"));
pvh = pa_to_pvh(pa);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
pvh->pv_gen++;
/* Free the remaining NPTEPG - 1 pv entries. */
va_last = va + NBPDR - PAGE_SIZE;
do {
m++;
va += PAGE_SIZE;
pmap_pvh_free(&m->md, pmap, va);
} while (va < va_last);
}
#endif /* VM_NRESERVLEVEL > 0 */
/*
* First find and then destroy the pv entry for the specified pmap and virtual
* address. This operation can be performed on pv lists for either 4KB or 2MB
* page mappings.
*/
static void
pmap_pvh_free(struct md_page *pvh, pmap_t pmap, vm_offset_t va)
{
pv_entry_t pv;
pv = pmap_pvh_remove(pvh, pmap, va);
KASSERT(pv != NULL, ("pmap_pvh_free: pv not found"));
free_pv_entry(pmap, pv);
}
/*
* Conditionally create the PV entry for a 4KB page mapping if the required
* memory can be allocated without resorting to reclamation.
*/
static boolean_t
pmap_try_insert_pv_entry(pmap_t pmap, vm_offset_t va, vm_page_t m,
struct rwlock **lockp)
{
pv_entry_t pv;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/* Pass NULL instead of the lock pointer to disable reclamation. */
if ((pv = get_pv_entry(pmap, NULL)) != NULL) {
pv->pv_va = va;
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
return (TRUE);
} else
return (FALSE);
}
/*
* Create the PV entry for a 2MB page mapping. Always returns true unless the
* flag PMAP_ENTER_NORECLAIM is specified. If that flag is specified, returns
* false if the PV entry cannot be allocated without resorting to reclamation.
*/
static bool
pmap_pv_insert_pde(pmap_t pmap, vm_offset_t va, pd_entry_t pde, u_int flags,
struct rwlock **lockp)
{
struct md_page *pvh;
pv_entry_t pv;
vm_paddr_t pa;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/* Pass NULL instead of the lock pointer to disable reclamation. */
if ((pv = get_pv_entry(pmap, (flags & PMAP_ENTER_NORECLAIM) != 0 ?
NULL : lockp)) == NULL)
return (false);
pv->pv_va = va;
pa = pde & PG_PS_FRAME;
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, pa);
pvh = pa_to_pvh(pa);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
pvh->pv_gen++;
return (true);
}
/*
* Fills a page table page with mappings to consecutive physical pages.
*/
static void
pmap_fill_ptp(pt_entry_t *firstpte, pt_entry_t newpte)
{
pt_entry_t *pte;
for (pte = firstpte; pte < firstpte + NPTEPG; pte++) {
*pte = newpte;
newpte += PAGE_SIZE;
}
}
/*
* Tries to demote a 2MB page mapping. If demotion fails, the 2MB page
* mapping is invalidated.
*/
static boolean_t
pmap_demote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
{
struct rwlock *lock;
boolean_t rv;
lock = NULL;
rv = pmap_demote_pde_locked(pmap, pde, va, &lock);
if (lock != NULL)
rw_wunlock(lock);
return (rv);
}
static boolean_t
pmap_demote_pde_locked(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
struct rwlock **lockp)
{
pd_entry_t newpde, oldpde;
pt_entry_t *firstpte, newpte;
pt_entry_t PG_A, PG_G, PG_M, PG_RW, PG_V;
vm_paddr_t mptepa;
vm_page_t mpte;
struct spglist free;
vm_offset_t sva;
int PG_PTE_CACHE;
PG_G = pmap_global_bit(pmap);
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldpde = *pde;
KASSERT((oldpde & (PG_PS | PG_V)) == (PG_PS | PG_V),
("pmap_demote_pde: oldpde is missing PG_PS and/or PG_V"));
if ((oldpde & PG_A) == 0 || (mpte = pmap_remove_pt_page(pmap, va)) ==
NULL) {
KASSERT((oldpde & PG_W) == 0,
("pmap_demote_pde: page table page for a wired mapping"
" is missing"));
/*
* Invalidate the 2MB page mapping and return "failure" if the
* mapping was never accessed or the allocation of the new
* page table page fails. If the 2MB page mapping belongs to
* the direct map region of the kernel's address space, then
* the page allocation request specifies the highest possible
* priority (VM_ALLOC_INTERRUPT). Otherwise, the priority is
* normal. Page table pages are preallocated for every other
* part of the kernel address space, so the direct map region
* is the only part of the kernel address space that must be
* handled here.
*/
if ((oldpde & PG_A) == 0 || (mpte = vm_page_alloc(NULL,
pmap_pde_pindex(va), (va >= DMAP_MIN_ADDRESS && va <
DMAP_MAX_ADDRESS ? VM_ALLOC_INTERRUPT : VM_ALLOC_NORMAL) |
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
SLIST_INIT(&free);
sva = trunc_2mpage(va);
pmap_remove_pde(pmap, pde, sva, &free, lockp);
if ((oldpde & PG_G) == 0)
pmap_invalidate_pde_page(pmap, sva, oldpde);
pmap_free_zero_pages(&free);
CTR2(KTR_PMAP, "pmap_demote_pde: failure for va %#lx"
" in pmap %p", va, pmap);
return (FALSE);
}
if (va < VM_MAXUSER_ADDRESS)
pmap_resident_count_inc(pmap, 1);
}
mptepa = VM_PAGE_TO_PHYS(mpte);
firstpte = (pt_entry_t *)PHYS_TO_DMAP(mptepa);
newpde = mptepa | PG_M | PG_A | (oldpde & PG_U) | PG_RW | PG_V;
KASSERT((oldpde & PG_A) != 0,
("pmap_demote_pde: oldpde is missing PG_A"));
KASSERT((oldpde & (PG_M | PG_RW)) != PG_RW,
("pmap_demote_pde: oldpde is missing PG_M"));
newpte = oldpde & ~PG_PS;
newpte = pmap_swap_pat(pmap, newpte);
/*
* If the page table page is new, initialize it.
*/
if (mpte->wire_count == 1) {
mpte->wire_count = NPTEPG;
pmap_fill_ptp(firstpte, newpte);
}
KASSERT((*firstpte & PG_FRAME) == (newpte & PG_FRAME),
("pmap_demote_pde: firstpte and newpte map different physical"
" addresses"));
/*
* If the mapping has changed attributes, update the page table
* entries.
*/
if ((*firstpte & PG_PTE_PROMOTE) != (newpte & PG_PTE_PROMOTE))
pmap_fill_ptp(firstpte, newpte);
/*
* The spare PV entries must be reserved prior to demoting the
* mapping, that is, prior to changing the PDE. Otherwise, the state
* of the PDE and the PV lists will be inconsistent, which can result
* in reclaim_pv_chunk() attempting to remove a PV entry from the
* wrong PV list and pmap_pv_demote_pde() failing to find the expected
* PV entry for the 2MB page mapping that is being demoted.
*/
if ((oldpde & PG_MANAGED) != 0)
reserve_pv_entries(pmap, NPTEPG - 1, lockp);
/*
* Demote the mapping. This pmap is locked. The old PDE has
* PG_A set. If the old PDE has PG_RW set, it also has PG_M
* set. Thus, there is no danger of a race with another
* processor changing the setting of PG_A and/or PG_M between
* the read above and the store below.
*/
if (workaround_erratum383)
pmap_update_pde(pmap, va, pde, newpde);
else
pde_store(pde, newpde);
/*
* Invalidate a stale recursive mapping of the page table page.
*/
if (va >= VM_MAXUSER_ADDRESS)
pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
/*
* Demote the PV entry.
*/
if ((oldpde & PG_MANAGED) != 0)
pmap_pv_demote_pde(pmap, va, oldpde & PG_PS_FRAME, lockp);
atomic_add_long(&pmap_pde_demotions, 1);
CTR2(KTR_PMAP, "pmap_demote_pde: success for va %#lx"
" in pmap %p", va, pmap);
return (TRUE);
}
/*
* pmap_remove_kernel_pde: Remove a kernel superpage mapping.
*/
static void
pmap_remove_kernel_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va)
{
pd_entry_t newpde;
vm_paddr_t mptepa;
vm_page_t mpte;
KASSERT(pmap == kernel_pmap, ("pmap %p is not kernel_pmap", pmap));
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
mpte = pmap_remove_pt_page(pmap, va);
if (mpte == NULL)
panic("pmap_remove_kernel_pde: Missing pt page.");
mptepa = VM_PAGE_TO_PHYS(mpte);
newpde = mptepa | X86_PG_M | X86_PG_A | X86_PG_RW | X86_PG_V;
/*
* Initialize the page table page.
*/
pagezero((void *)PHYS_TO_DMAP(mptepa));
/*
* Demote the mapping.
*/
if (workaround_erratum383)
pmap_update_pde(pmap, va, pde, newpde);
else
pde_store(pde, newpde);
/*
* Invalidate a stale recursive mapping of the page table page.
*/
pmap_invalidate_page(pmap, (vm_offset_t)vtopte(va));
}
/*
* pmap_remove_pde: do the things to unmap a superpage in a process
*/
static int
pmap_remove_pde(pmap_t pmap, pd_entry_t *pdq, vm_offset_t sva,
struct spglist *free, struct rwlock **lockp)
{
struct md_page *pvh;
pd_entry_t oldpde;
vm_offset_t eva, va;
vm_page_t m, mpte;
pt_entry_t PG_G, PG_A, PG_M, PG_RW;
PG_G = pmap_global_bit(pmap);
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT((sva & PDRMASK) == 0,
("pmap_remove_pde: sva is not 2mpage aligned"));
oldpde = pte_load_clear(pdq);
if (oldpde & PG_W)
pmap->pm_stats.wired_count -= NBPDR / PAGE_SIZE;
if ((oldpde & PG_G) != 0)
pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
if (oldpde & PG_MANAGED) {
CHANGE_PV_LIST_LOCK_TO_PHYS(lockp, oldpde & PG_PS_FRAME);
pvh = pa_to_pvh(oldpde & PG_PS_FRAME);
pmap_pvh_free(pvh, pmap, sva);
eva = sva + NBPDR;
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
va < eva; va += PAGE_SIZE, m++) {
if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(m);
if (oldpde & PG_A)
vm_page_aflag_set(m, PGA_REFERENCED);
if (TAILQ_EMPTY(&m->md.pv_list) &&
TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
pmap_delayed_invl_page(m);
}
}
if (pmap == kernel_pmap) {
pmap_remove_kernel_pde(pmap, pdq, sva);
} else {
mpte = pmap_remove_pt_page(pmap, sva);
if (mpte != NULL) {
pmap_resident_count_dec(pmap, 1);
KASSERT(mpte->wire_count == NPTEPG,
("pmap_remove_pde: pte page wire count error"));
mpte->wire_count = 0;
pmap_add_delayed_free_list(mpte, free, FALSE);
}
}
return (pmap_unuse_pt(pmap, sva, *pmap_pdpe(pmap, sva), free));
}
/*
* pmap_remove_pte: do the things to unmap a page in a process
*/
static int
pmap_remove_pte(pmap_t pmap, pt_entry_t *ptq, vm_offset_t va,
pd_entry_t ptepde, struct spglist *free, struct rwlock **lockp)
{
struct md_page *pvh;
pt_entry_t oldpte, PG_A, PG_M, PG_RW;
vm_page_t m;
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldpte = pte_load_clear(ptq);
if (oldpte & PG_W)
pmap->pm_stats.wired_count -= 1;
pmap_resident_count_dec(pmap, 1);
if (oldpte & PG_MANAGED) {
m = PHYS_TO_VM_PAGE(oldpte & PG_FRAME);
if ((oldpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(m);
if (oldpte & PG_A)
vm_page_aflag_set(m, PGA_REFERENCED);
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(lockp, m);
pmap_pvh_free(&m->md, pmap, va);
if (TAILQ_EMPTY(&m->md.pv_list) &&
(m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
if (TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
pmap_delayed_invl_page(m);
}
return (pmap_unuse_pt(pmap, va, ptepde, free));
}
/*
* Remove a single page from a process address space
*/
static void
pmap_remove_page(pmap_t pmap, vm_offset_t va, pd_entry_t *pde,
struct spglist *free)
{
struct rwlock *lock;
pt_entry_t *pte, PG_V;
PG_V = pmap_valid_bit(pmap);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if ((*pde & PG_V) == 0)
return;
pte = pmap_pde_to_pte(pde, va);
if ((*pte & PG_V) == 0)
return;
lock = NULL;
pmap_remove_pte(pmap, pte, va, *pde, free, &lock);
if (lock != NULL)
rw_wunlock(lock);
pmap_invalidate_page(pmap, va);
}
/*
* Removes the specified range of addresses from the page table page.
*/
static bool
pmap_remove_ptes(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
pd_entry_t *pde, struct spglist *free, struct rwlock **lockp)
{
pt_entry_t PG_G, *pte;
vm_offset_t va;
bool anyvalid;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PG_G = pmap_global_bit(pmap);
anyvalid = false;
va = eva;
for (pte = pmap_pde_to_pte(pde, sva); sva != eva; pte++,
sva += PAGE_SIZE) {
if (*pte == 0) {
if (va != eva) {
pmap_invalidate_range(pmap, va, sva);
va = eva;
}
continue;
}
if ((*pte & PG_G) == 0)
anyvalid = true;
else if (va == eva)
va = sva;
if (pmap_remove_pte(pmap, pte, sva, *pde, free, lockp)) {
sva += PAGE_SIZE;
break;
}
}
if (va != eva)
pmap_invalidate_range(pmap, va, sva);
return (anyvalid);
}
/*
* Remove the given range of addresses from the specified map.
*
* It is assumed that the start and end are properly
* rounded to the page size.
*/
void
pmap_remove(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
struct rwlock *lock;
vm_offset_t va_next;
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
pd_entry_t ptpaddr, *pde;
pt_entry_t PG_G, PG_V;
struct spglist free;
int anyvalid;
PG_G = pmap_global_bit(pmap);
PG_V = pmap_valid_bit(pmap);
/*
* Perform an unsynchronized read. This is, however, safe.
*/
if (pmap->pm_stats.resident_count == 0)
return;
anyvalid = 0;
SLIST_INIT(&free);
pmap_delayed_invl_started();
PMAP_LOCK(pmap);
/*
* special handling of removing one page. a very
* common operation and easy to short circuit some
* code.
*/
if (sva + PAGE_SIZE == eva) {
pde = pmap_pde(pmap, sva);
if (pde && (*pde & PG_PS) == 0) {
pmap_remove_page(pmap, sva, pde, &free);
goto out;
}
}
lock = NULL;
for (; sva < eva; sva = va_next) {
if (pmap->pm_stats.resident_count == 0)
break;
pml4e = pmap_pml4e(pmap, sva);
if ((*pml4e & PG_V) == 0) {
va_next = (sva + NBPML4) & ~PML4MASK;
if (va_next < sva)
va_next = eva;
continue;
}
pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
if ((*pdpe & PG_V) == 0) {
va_next = (sva + NBPDP) & ~PDPMASK;
if (va_next < sva)
va_next = eva;
continue;
}
/*
* Calculate index for next page table.
*/
va_next = (sva + NBPDR) & ~PDRMASK;
if (va_next < sva)
va_next = eva;
pde = pmap_pdpe_to_pde(pdpe, sva);
ptpaddr = *pde;
/*
* Weed out invalid mappings.
*/
if (ptpaddr == 0)
continue;
/*
* Check for large page.
*/
if ((ptpaddr & PG_PS) != 0) {
/*
* Are we removing the entire large page? If not,
* demote the mapping and fall through.
*/
if (sva + NBPDR == va_next && eva >= va_next) {
/*
* The TLB entry for a PG_G mapping is
* invalidated by pmap_remove_pde().
*/
if ((ptpaddr & PG_G) == 0)
anyvalid = 1;
pmap_remove_pde(pmap, pde, sva, &free, &lock);
continue;
} else if (!pmap_demote_pde_locked(pmap, pde, sva,
&lock)) {
/* The large page mapping was destroyed. */
continue;
} else
ptpaddr = *pde;
}
/*
* Limit our scan to either the end of the va represented
* by the current page table page, or to the end of the
* range being removed.
*/
if (va_next > eva)
va_next = eva;
if (pmap_remove_ptes(pmap, sva, va_next, pde, &free, &lock))
anyvalid = 1;
}
if (lock != NULL)
rw_wunlock(lock);
out:
if (anyvalid)
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
pmap_delayed_invl_finished();
pmap_free_zero_pages(&free);
}
/*
* Routine: pmap_remove_all
* Function:
* Removes this physical page from
* all physical maps in which it resides.
* Reflects back modify bits to the pager.
*
* Notes:
* Original versions of this routine were very
* inefficient because they iteratively called
* pmap_remove (slow...)
*/
void
pmap_remove_all(vm_page_t m)
{
struct md_page *pvh;
pv_entry_t pv;
pmap_t pmap;
struct rwlock *lock;
pt_entry_t *pte, tpte, PG_A, PG_M, PG_RW;
pd_entry_t *pde;
vm_offset_t va;
struct spglist free;
int pvh_gen, md_gen;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_all: page %p is not managed", m));
SLIST_INIT(&free);
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
pa_to_pvh(VM_PAGE_TO_PHYS(m));
retry:
rw_wlock(lock);
while ((pv = TAILQ_FIRST(&pvh->pv_list)) != NULL) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
rw_wunlock(lock);
PMAP_UNLOCK(pmap);
goto retry;
}
}
va = pv->pv_va;
pde = pmap_pde(pmap, va);
(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
PMAP_UNLOCK(pmap);
}
while ((pv = TAILQ_FIRST(&m->md.pv_list)) != NULL) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
md_gen = m->md.pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
rw_wunlock(lock);
PMAP_UNLOCK(pmap);
goto retry;
}
}
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
pmap_resident_count_dec(pmap, 1);
pde = pmap_pde(pmap, pv->pv_va);
KASSERT((*pde & PG_PS) == 0, ("pmap_remove_all: found"
" a 2mpage in page %p's pv list", m));
pte = pmap_pde_to_pte(pde, pv->pv_va);
tpte = pte_load_clear(pte);
if (tpte & PG_W)
pmap->pm_stats.wired_count--;
if (tpte & PG_A)
vm_page_aflag_set(m, PGA_REFERENCED);
/*
* Update the vm_page_t clean and reference bits.
*/
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(m);
pmap_unuse_pt(pmap, pv->pv_va, *pde, &free);
pmap_invalidate_page(pmap, pv->pv_va);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
free_pv_entry(pmap, pv);
PMAP_UNLOCK(pmap);
}
vm_page_aflag_clear(m, PGA_WRITEABLE);
rw_wunlock(lock);
pmap_delayed_invl_wait(m);
pmap_free_zero_pages(&free);
}
/*
* pmap_protect_pde: do the things to protect a 2mpage in a process
*/
static boolean_t
pmap_protect_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t sva, vm_prot_t prot)
{
pd_entry_t newpde, oldpde;
vm_offset_t eva, va;
vm_page_t m;
boolean_t anychanged;
pt_entry_t PG_G, PG_M, PG_RW;
PG_G = pmap_global_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
KASSERT((sva & PDRMASK) == 0,
("pmap_protect_pde: sva is not 2mpage aligned"));
anychanged = FALSE;
retry:
oldpde = newpde = *pde;
if ((oldpde & (PG_MANAGED | PG_M | PG_RW)) ==
(PG_MANAGED | PG_M | PG_RW)) {
eva = sva + NBPDR;
for (va = sva, m = PHYS_TO_VM_PAGE(oldpde & PG_PS_FRAME);
va < eva; va += PAGE_SIZE, m++)
vm_page_dirty(m);
}
if ((prot & VM_PROT_WRITE) == 0)
newpde &= ~(PG_RW | PG_M);
if ((prot & VM_PROT_EXECUTE) == 0)
newpde |= pg_nx;
if (newpde != oldpde) {
/*
* As an optimization to future operations on this PDE, clear
* PG_PROMOTED. The impending invalidation will remove any
* lingering 4KB page mappings from the TLB.
*/
if (!atomic_cmpset_long(pde, oldpde, newpde & ~PG_PROMOTED))
goto retry;
if ((oldpde & PG_G) != 0)
pmap_invalidate_pde_page(kernel_pmap, sva, oldpde);
else
anychanged = TRUE;
}
return (anychanged);
}
/*
* Set the physical protection on the
* specified range of this map as requested.
*/
void
pmap_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
vm_offset_t va_next;
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
pd_entry_t ptpaddr, *pde;
pt_entry_t *pte, PG_G, PG_M, PG_RW, PG_V;
boolean_t anychanged;
KASSERT((prot & ~VM_PROT_ALL) == 0, ("invalid prot %x", prot));
if (prot == VM_PROT_NONE) {
pmap_remove(pmap, sva, eva);
return;
}
if ((prot & (VM_PROT_WRITE|VM_PROT_EXECUTE)) ==
(VM_PROT_WRITE|VM_PROT_EXECUTE))
return;
PG_G = pmap_global_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
anychanged = FALSE;
/*
* Although this function delays and batches the invalidation
* of stale TLB entries, it does not need to call
* pmap_delayed_invl_started() and
* pmap_delayed_invl_finished(), because it does not
* ordinarily destroy mappings. Stale TLB entries from
* protection-only changes need only be invalidated before the
* pmap lock is released, because protection-only changes do
* not destroy PV entries. Even operations that iterate over
* a physical page's PV list of mappings, like
* pmap_remove_write(), acquire the pmap lock for each
* mapping. Consequently, for protection-only changes, the
* pmap lock suffices to synchronize both page table and TLB
* updates.
*
* This function only destroys a mapping if pmap_demote_pde()
* fails. In that case, stale TLB entries are immediately
* invalidated.
*/
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
pml4e = pmap_pml4e(pmap, sva);
if ((*pml4e & PG_V) == 0) {
va_next = (sva + NBPML4) & ~PML4MASK;
if (va_next < sva)
va_next = eva;
continue;
}
pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
if ((*pdpe & PG_V) == 0) {
va_next = (sva + NBPDP) & ~PDPMASK;
if (va_next < sva)
va_next = eva;
continue;
}
va_next = (sva + NBPDR) & ~PDRMASK;
if (va_next < sva)
va_next = eva;
pde = pmap_pdpe_to_pde(pdpe, sva);
ptpaddr = *pde;
/*
* Weed out invalid mappings.
*/
if (ptpaddr == 0)
continue;
/*
* Check for large page.
*/
if ((ptpaddr & PG_PS) != 0) {
/*
* Are we protecting the entire large page? If not,
* demote the mapping and fall through.
*/
if (sva + NBPDR == va_next && eva >= va_next) {
/*
* The TLB entry for a PG_G mapping is
* invalidated by pmap_protect_pde().
*/
if (pmap_protect_pde(pmap, pde, sva, prot))
anychanged = TRUE;
continue;
} else if (!pmap_demote_pde(pmap, pde, sva)) {
/*
* The large page mapping was destroyed.
*/
continue;
}
}
if (va_next > eva)
va_next = eva;
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
pt_entry_t obits, pbits;
vm_page_t m;
retry:
obits = pbits = *pte;
if ((pbits & PG_V) == 0)
continue;
if ((prot & VM_PROT_WRITE) == 0) {
if ((pbits & (PG_MANAGED | PG_M | PG_RW)) ==
(PG_MANAGED | PG_M | PG_RW)) {
m = PHYS_TO_VM_PAGE(pbits & PG_FRAME);
vm_page_dirty(m);
}
pbits &= ~(PG_RW | PG_M);
}
if ((prot & VM_PROT_EXECUTE) == 0)
pbits |= pg_nx;
if (pbits != obits) {
if (!atomic_cmpset_long(pte, obits, pbits))
goto retry;
if (obits & PG_G)
pmap_invalidate_page(pmap, sva);
else
anychanged = TRUE;
}
}
}
if (anychanged)
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
}
#if VM_NRESERVLEVEL > 0
/*
* Tries to promote the 512, contiguous 4KB page mappings that are within a
* single page table page (PTP) to a single 2MB page mapping. For promotion
* to occur, two conditions must be met: (1) the 4KB page mappings must map
* aligned, contiguous physical memory and (2) the 4KB page mappings must have
* identical characteristics.
*/
static void
pmap_promote_pde(pmap_t pmap, pd_entry_t *pde, vm_offset_t va,
struct rwlock **lockp)
{
pd_entry_t newpde;
pt_entry_t *firstpte, oldpte, pa, *pte;
pt_entry_t PG_G, PG_A, PG_M, PG_RW, PG_V;
vm_page_t mpte;
int PG_PTE_CACHE;
PG_A = pmap_accessed_bit(pmap);
PG_G = pmap_global_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
PG_PTE_CACHE = pmap_cache_mask(pmap, 0);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* Examine the first PTE in the specified PTP. Abort if this PTE is
* either invalid, unused, or does not map the first 4KB physical page
* within a 2MB page.
*/
firstpte = (pt_entry_t *)PHYS_TO_DMAP(*pde & PG_FRAME);
setpde:
newpde = *firstpte;
if ((newpde & ((PG_FRAME & PDRMASK) | PG_A | PG_V)) != (PG_A | PG_V)) {
atomic_add_long(&pmap_pde_p_failures, 1);
CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
" in pmap %p", va, pmap);
return;
}
if ((newpde & (PG_M | PG_RW)) == PG_RW) {
/*
* When PG_M is already clear, PG_RW can be cleared without
* a TLB invalidation.
*/
if (!atomic_cmpset_long(firstpte, newpde, newpde & ~PG_RW))
goto setpde;
newpde &= ~PG_RW;
}
/*
* Examine each of the other PTEs in the specified PTP. Abort if this
* PTE maps an unexpected 4KB physical page or does not have identical
* characteristics to the first PTE.
*/
pa = (newpde & (PG_PS_FRAME | PG_A | PG_V)) + NBPDR - PAGE_SIZE;
for (pte = firstpte + NPTEPG - 1; pte > firstpte; pte--) {
setpte:
oldpte = *pte;
if ((oldpte & (PG_FRAME | PG_A | PG_V)) != pa) {
atomic_add_long(&pmap_pde_p_failures, 1);
CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
" in pmap %p", va, pmap);
return;
}
if ((oldpte & (PG_M | PG_RW)) == PG_RW) {
/*
* When PG_M is already clear, PG_RW can be cleared
* without a TLB invalidation.
*/
if (!atomic_cmpset_long(pte, oldpte, oldpte & ~PG_RW))
goto setpte;
oldpte &= ~PG_RW;
CTR2(KTR_PMAP, "pmap_promote_pde: protect for va %#lx"
" in pmap %p", (oldpte & PG_FRAME & PDRMASK) |
(va & ~PDRMASK), pmap);
}
if ((oldpte & PG_PTE_PROMOTE) != (newpde & PG_PTE_PROMOTE)) {
atomic_add_long(&pmap_pde_p_failures, 1);
CTR2(KTR_PMAP, "pmap_promote_pde: failure for va %#lx"
" in pmap %p", va, pmap);
return;
}
pa -= PAGE_SIZE;
}
/*
* Save the page table page in its current state until the PDE
* mapping the superpage is demoted by pmap_demote_pde() or
* destroyed by pmap_remove_pde().
*/
mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
KASSERT(mpte >= vm_page_array &&
mpte < &vm_page_array[vm_page_array_size],
("pmap_promote_pde: page table page is out of range"));
KASSERT(mpte->pindex == pmap_pde_pindex(va),
("pmap_promote_pde: page table page's pindex is wrong"));
if (pmap_insert_pt_page(pmap, mpte)) {
atomic_add_long(&pmap_pde_p_failures, 1);
CTR2(KTR_PMAP,
"pmap_promote_pde: failure for va %#lx in pmap %p", va,
pmap);
return;
}
/*
* Promote the pv entries.
*/
if ((newpde & PG_MANAGED) != 0)
pmap_pv_promote_pde(pmap, va, newpde & PG_PS_FRAME, lockp);
/*
* Propagate the PAT index to its proper position.
*/
newpde = pmap_swap_pat(pmap, newpde);
/*
* Map the superpage.
*/
if (workaround_erratum383)
pmap_update_pde(pmap, va, pde, PG_PS | newpde);
else
pde_store(pde, PG_PROMOTED | PG_PS | newpde);
atomic_add_long(&pmap_pde_promotions, 1);
CTR2(KTR_PMAP, "pmap_promote_pde: success for va %#lx"
" in pmap %p", va, pmap);
}
#endif /* VM_NRESERVLEVEL > 0 */
/*
* Insert the given physical page (p) at
* the specified virtual address (v) in the
* target physical map with the protection requested.
*
* If specified, the page will be wired down, meaning
* that the related pte can not be reclaimed.
*
* NB: This is the only routine which MAY NOT lazy-evaluate
* or lose information. That is, this routine must actually
* insert this page into the given map NOW.
*
* When destroying both a page table and PV entry, this function
* performs the TLB invalidation before releasing the PV list
* lock, so we do not need pmap_delayed_invl_page() calls here.
*/
int
pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
u_int flags, int8_t psind)
{
struct rwlock *lock;
pd_entry_t *pde;
pt_entry_t *pte, PG_G, PG_A, PG_M, PG_RW, PG_V;
pt_entry_t newpte, origpte;
pv_entry_t pv;
vm_paddr_t opa, pa;
vm_page_t mpte, om;
int rv;
boolean_t nosleep;
PG_A = pmap_accessed_bit(pmap);
PG_G = pmap_global_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
va = trunc_page(va);
KASSERT(va <= VM_MAX_KERNEL_ADDRESS, ("pmap_enter: toobig"));
KASSERT(va < UPT_MIN_ADDRESS || va >= UPT_MAX_ADDRESS,
("pmap_enter: invalid to pmap_enter page table pages (va: 0x%lx)",
va));
KASSERT((m->oflags & VPO_UNMANAGED) != 0 || va < kmi.clean_sva ||
va >= kmi.clean_eva,
("pmap_enter: managed mapping within the clean submap"));
if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
VM_OBJECT_ASSERT_LOCKED(m->object);
KASSERT((flags & PMAP_ENTER_RESERVED) == 0,
("pmap_enter: flags %u has reserved bits set", flags));
pa = VM_PAGE_TO_PHYS(m);
newpte = (pt_entry_t)(pa | PG_A | PG_V);
if ((flags & VM_PROT_WRITE) != 0)
newpte |= PG_M;
if ((prot & VM_PROT_WRITE) != 0)
newpte |= PG_RW;
KASSERT((newpte & (PG_M | PG_RW)) != PG_M,
("pmap_enter: flags includes VM_PROT_WRITE but prot doesn't"));
if ((prot & VM_PROT_EXECUTE) == 0)
newpte |= pg_nx;
if ((flags & PMAP_ENTER_WIRED) != 0)
newpte |= PG_W;
if (va < VM_MAXUSER_ADDRESS)
newpte |= PG_U;
if (pmap == kernel_pmap)
newpte |= PG_G;
newpte |= pmap_cache_bits(pmap, m->md.pat_mode, psind > 0);
/*
* Set modified bit gratuitously for writeable mappings if
* the page is unmanaged. We do not want to take a fault
* to do the dirty bit accounting for these mappings.
*/
if ((m->oflags & VPO_UNMANAGED) != 0) {
if ((newpte & PG_RW) != 0)
newpte |= PG_M;
} else
newpte |= PG_MANAGED;
lock = NULL;
PMAP_LOCK(pmap);
if (psind == 1) {
/* Assert the required virtual and physical alignment. */
KASSERT((va & PDRMASK) == 0, ("pmap_enter: va unaligned"));
KASSERT(m->psind > 0, ("pmap_enter: m->psind < psind"));
rv = pmap_enter_pde(pmap, va, newpte | PG_PS, flags, m, &lock);
goto out;
}
mpte = NULL;
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
retry:
pde = pmap_pde(pmap, va);
if (pde != NULL && (*pde & PG_V) != 0 && ((*pde & PG_PS) == 0 ||
pmap_demote_pde_locked(pmap, pde, va, &lock))) {
pte = pmap_pde_to_pte(pde, va);
if (va < VM_MAXUSER_ADDRESS && mpte == NULL) {
mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
mpte->wire_count++;
}
} else if (va < VM_MAXUSER_ADDRESS) {
/*
* Here if the pte page isn't mapped, or if it has been
* deallocated.
*/
nosleep = (flags & PMAP_ENTER_NOSLEEP) != 0;
mpte = _pmap_allocpte(pmap, pmap_pde_pindex(va),
nosleep ? NULL : &lock);
if (mpte == NULL && nosleep) {
rv = KERN_RESOURCE_SHORTAGE;
goto out;
}
goto retry;
} else
panic("pmap_enter: invalid page directory va=%#lx", va);
origpte = *pte;
/*
* Is the specified virtual address already mapped?
*/
if ((origpte & PG_V) != 0) {
/*
* Wiring change, just update stats. We don't worry about
* wiring PT pages as they remain resident as long as there
* are valid mappings in them. Hence, if a user page is wired,
* the PT page will be also.
*/
if ((newpte & PG_W) != 0 && (origpte & PG_W) == 0)
pmap->pm_stats.wired_count++;
else if ((newpte & PG_W) == 0 && (origpte & PG_W) != 0)
pmap->pm_stats.wired_count--;
/*
* Remove the extra PT page reference.
*/
if (mpte != NULL) {
mpte->wire_count--;
KASSERT(mpte->wire_count > 0,
("pmap_enter: missing reference to page table page,"
" va: 0x%lx", va));
}
/*
* Has the physical page changed?
*/
opa = origpte & PG_FRAME;
if (opa == pa) {
/*
* No, might be a protection or wiring change.
*/
if ((origpte & PG_MANAGED) != 0 &&
(newpte & PG_RW) != 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
if (((origpte ^ newpte) & ~(PG_M | PG_A)) == 0)
goto unchanged;
goto validate;
}
} else {
/*
* Increment the counters.
*/
if ((newpte & PG_W) != 0)
pmap->pm_stats.wired_count++;
pmap_resident_count_inc(pmap, 1);
}
/*
* Enter on the PV list if part of our managed memory.
*/
if ((newpte & PG_MANAGED) != 0) {
pv = get_pv_entry(pmap, &lock);
pv->pv_va = va;
CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, pa);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
if ((newpte & PG_RW) != 0)
vm_page_aflag_set(m, PGA_WRITEABLE);
}
/*
* Update the PTE.
*/
if ((origpte & PG_V) != 0) {
validate:
origpte = pte_load_store(pte, newpte);
opa = origpte & PG_FRAME;
if (opa != pa) {
if ((origpte & PG_MANAGED) != 0) {
om = PHYS_TO_VM_PAGE(opa);
if ((origpte & (PG_M | PG_RW)) == (PG_M |
PG_RW))
vm_page_dirty(om);
if ((origpte & PG_A) != 0)
vm_page_aflag_set(om, PGA_REFERENCED);
CHANGE_PV_LIST_LOCK_TO_PHYS(&lock, opa);
pmap_pvh_free(&om->md, pmap, va);
if ((om->aflags & PGA_WRITEABLE) != 0 &&
TAILQ_EMPTY(&om->md.pv_list) &&
((om->flags & PG_FICTITIOUS) != 0 ||
TAILQ_EMPTY(&pa_to_pvh(opa)->pv_list)))
vm_page_aflag_clear(om, PGA_WRITEABLE);
}
} else if ((newpte & PG_M) == 0 && (origpte & (PG_M |
PG_RW)) == (PG_M | PG_RW)) {
if ((origpte & PG_MANAGED) != 0)
vm_page_dirty(m);
/*
* Although the PTE may still have PG_RW set, TLB
* invalidation may nonetheless be required because
* the PTE no longer has PG_M set.
*/
} else if ((origpte & PG_NX) != 0 || (newpte & PG_NX) == 0) {
/*
* This PTE change does not require TLB invalidation.
*/
goto unchanged;
}
if ((origpte & PG_A) != 0)
pmap_invalidate_page(pmap, va);
} else
pte_store(pte, newpte);
unchanged:
#if VM_NRESERVLEVEL > 0
/*
* If both the page table page and the reservation are fully
* populated, then attempt promotion.
*/
if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
pmap_ps_enabled(pmap) &&
(m->flags & PG_FICTITIOUS) == 0 &&
vm_reserv_level_iffullpop(m) == 0)
pmap_promote_pde(pmap, pde, va, &lock);
#endif
rv = KERN_SUCCESS;
out:
if (lock != NULL)
rw_wunlock(lock);
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* Tries to create a read- and/or execute-only 2MB page mapping. Returns true
* if successful. Returns false if (1) a page table page cannot be allocated
* without sleeping, (2) a mapping already exists at the specified virtual
* address, or (3) a PV entry cannot be allocated without reclaiming another
* PV entry.
*/
static bool
pmap_enter_2mpage(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
struct rwlock **lockp)
{
pd_entry_t newpde;
pt_entry_t PG_V;
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
PG_V = pmap_valid_bit(pmap);
newpde = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 1) |
PG_PS | PG_V;
if ((m->oflags & VPO_UNMANAGED) == 0)
newpde |= PG_MANAGED;
if ((prot & VM_PROT_EXECUTE) == 0)
newpde |= pg_nx;
if (va < VM_MAXUSER_ADDRESS)
newpde |= PG_U;
return (pmap_enter_pde(pmap, va, newpde, PMAP_ENTER_NOSLEEP |
PMAP_ENTER_NOREPLACE | PMAP_ENTER_NORECLAIM, NULL, lockp) ==
KERN_SUCCESS);
}
/*
* Tries to create the specified 2MB page mapping. Returns KERN_SUCCESS if
* the mapping was created, and either KERN_FAILURE or KERN_RESOURCE_SHORTAGE
* otherwise. Returns KERN_FAILURE if PMAP_ENTER_NOREPLACE was specified and
* a mapping already exists at the specified virtual address. Returns
* KERN_RESOURCE_SHORTAGE if PMAP_ENTER_NOSLEEP was specified and a page table
* page allocation failed. Returns KERN_RESOURCE_SHORTAGE if
* PMAP_ENTER_NORECLAIM was specified and a PV entry allocation failed.
*
* The parameter "m" is only used when creating a managed, writeable mapping.
*/
static int
pmap_enter_pde(pmap_t pmap, vm_offset_t va, pd_entry_t newpde, u_int flags,
vm_page_t m, struct rwlock **lockp)
{
struct spglist free;
pd_entry_t oldpde, *pde;
pt_entry_t PG_G, PG_RW, PG_V;
vm_page_t mt, pdpg;
PG_G = pmap_global_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
KASSERT((newpde & (pmap_modified_bit(pmap) | PG_RW)) != PG_RW,
("pmap_enter_pde: newpde is missing PG_M"));
PG_V = pmap_valid_bit(pmap);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
if ((pdpg = pmap_allocpde(pmap, va, (flags & PMAP_ENTER_NOSLEEP) != 0 ?
NULL : lockp)) == NULL) {
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
" in pmap %p", va, pmap);
return (KERN_RESOURCE_SHORTAGE);
}
pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
pde = &pde[pmap_pde_index(va)];
oldpde = *pde;
if ((oldpde & PG_V) != 0) {
KASSERT(pdpg->wire_count > 1,
("pmap_enter_pde: pdpg's wire count is too low"));
if ((flags & PMAP_ENTER_NOREPLACE) != 0) {
pdpg->wire_count--;
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
" in pmap %p", va, pmap);
return (KERN_FAILURE);
}
/* Break the existing mapping(s). */
SLIST_INIT(&free);
if ((oldpde & PG_PS) != 0) {
/*
* The reference to the PD page that was acquired by
* pmap_allocpde() ensures that it won't be freed.
* However, if the PDE resulted from a promotion, then
* a reserved PT page could be freed.
*/
(void)pmap_remove_pde(pmap, pde, va, &free, lockp);
if ((oldpde & PG_G) == 0)
pmap_invalidate_pde_page(pmap, va, oldpde);
} else {
pmap_delayed_invl_started();
if (pmap_remove_ptes(pmap, va, va + NBPDR, pde, &free,
lockp))
pmap_invalidate_all(pmap);
pmap_delayed_invl_finished();
}
pmap_free_zero_pages(&free);
if (va >= VM_MAXUSER_ADDRESS) {
mt = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
if (pmap_insert_pt_page(pmap, mt)) {
/*
* XXX Currently, this can't happen because
* we do not perform pmap_enter(psind == 1)
* on the kernel pmap.
*/
panic("pmap_enter_pde: trie insert failed");
}
} else
KASSERT(*pde == 0, ("pmap_enter_pde: non-zero pde %p",
pde));
}
if ((newpde & PG_MANAGED) != 0) {
/*
* Abort this mapping if its PV entry could not be created.
*/
if (!pmap_pv_insert_pde(pmap, va, newpde, flags, lockp)) {
SLIST_INIT(&free);
if (pmap_unwire_ptp(pmap, va, pdpg, &free)) {
/*
* Although "va" is not mapped, paging-
* structure caches could nonetheless have
* entries that refer to the freed page table
* pages. Invalidate those entries.
*/
pmap_invalidate_page(pmap, va);
pmap_free_zero_pages(&free);
}
CTR2(KTR_PMAP, "pmap_enter_pde: failure for va %#lx"
" in pmap %p", va, pmap);
return (KERN_RESOURCE_SHORTAGE);
}
if ((newpde & PG_RW) != 0) {
for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
vm_page_aflag_set(mt, PGA_WRITEABLE);
}
}
/*
* Increment counters.
*/
if ((newpde & PG_W) != 0)
pmap->pm_stats.wired_count += NBPDR / PAGE_SIZE;
pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
/*
* Map the superpage. (This is not a promoted mapping; there will not
* be any lingering 4KB page mappings in the TLB.)
*/
pde_store(pde, newpde);
atomic_add_long(&pmap_pde_mappings, 1);
CTR2(KTR_PMAP, "pmap_enter_pde: success for va %#lx"
" in pmap %p", va, pmap);
return (KERN_SUCCESS);
}
/*
* Maps a sequence of resident pages belonging to the same object.
* The sequence begins with the given page m_start. This page is
* mapped at the given virtual address start. Each subsequent page is
* mapped at a virtual address that is offset from start by the same
* amount as the page is offset from m_start within the object. The
* last page in the sequence is the page with the largest offset from
* m_start that can be mapped at a virtual address less than the given
* virtual address end. Not every virtual page between start and end
* is mapped; only those for which a resident page exists with the
* corresponding offset from m_start are mapped.
*/
void
pmap_enter_object(pmap_t pmap, vm_offset_t start, vm_offset_t end,
vm_page_t m_start, vm_prot_t prot)
{
struct rwlock *lock;
vm_offset_t va;
vm_page_t m, mpte;
vm_pindex_t diff, psize;
VM_OBJECT_ASSERT_LOCKED(m_start->object);
psize = atop(end - start);
mpte = NULL;
m = m_start;
lock = NULL;
PMAP_LOCK(pmap);
while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
va = start + ptoa(diff);
if ((va & PDRMASK) == 0 && va + NBPDR <= end &&
m->psind == 1 && pmap_ps_enabled(pmap) &&
pmap_enter_2mpage(pmap, va, m, prot, &lock))
m = &m[NBPDR / PAGE_SIZE - 1];
else
mpte = pmap_enter_quick_locked(pmap, va, m, prot,
mpte, &lock);
m = TAILQ_NEXT(m, listq);
}
if (lock != NULL)
rw_wunlock(lock);
PMAP_UNLOCK(pmap);
}
/*
* this code makes some *MAJOR* assumptions:
* 1. Current pmap & pmap exists.
* 2. Not wired.
* 3. Read access.
* 4. No page table pages.
* but is *MUCH* faster than pmap_enter...
*/
void
pmap_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot)
{
struct rwlock *lock;
lock = NULL;
PMAP_LOCK(pmap);
(void)pmap_enter_quick_locked(pmap, va, m, prot, NULL, &lock);
if (lock != NULL)
rw_wunlock(lock);
PMAP_UNLOCK(pmap);
}
static vm_page_t
pmap_enter_quick_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
vm_prot_t prot, vm_page_t mpte, struct rwlock **lockp)
{
struct spglist free;
pt_entry_t *pte, PG_V;
vm_paddr_t pa;
KASSERT(va < kmi.clean_sva || va >= kmi.clean_eva ||
(m->oflags & VPO_UNMANAGED) != 0,
("pmap_enter_quick_locked: managed mapping within the clean submap"));
PG_V = pmap_valid_bit(pmap);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
/*
* In the case that a page table page is not
* resident, we are creating it here.
*/
if (va < VM_MAXUSER_ADDRESS) {
vm_pindex_t ptepindex;
pd_entry_t *ptepa;
/*
* Calculate pagetable page index
*/
ptepindex = pmap_pde_pindex(va);
if (mpte && (mpte->pindex == ptepindex)) {
mpte->wire_count++;
} else {
/*
* Get the page directory entry
*/
ptepa = pmap_pde(pmap, va);
/*
* If the page table page is mapped, we just increment
* the hold count, and activate it. Otherwise, we
* attempt to allocate a page table page. If this
* attempt fails, we don't retry. Instead, we give up.
*/
if (ptepa && (*ptepa & PG_V) != 0) {
if (*ptepa & PG_PS)
return (NULL);
mpte = PHYS_TO_VM_PAGE(*ptepa & PG_FRAME);
mpte->wire_count++;
} else {
/*
* Pass NULL instead of the PV list lock
* pointer, because we don't intend to sleep.
*/
mpte = _pmap_allocpte(pmap, ptepindex, NULL);
if (mpte == NULL)
return (mpte);
}
}
pte = (pt_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mpte));
pte = &pte[pmap_pte_index(va)];
} else {
mpte = NULL;
pte = vtopte(va);
}
if (*pte) {
if (mpte != NULL) {
mpte->wire_count--;
mpte = NULL;
}
return (mpte);
}
/*
* Enter on the PV list if part of our managed memory.
*/
if ((m->oflags & VPO_UNMANAGED) == 0 &&
!pmap_try_insert_pv_entry(pmap, va, m, lockp)) {
if (mpte != NULL) {
SLIST_INIT(&free);
if (pmap_unwire_ptp(pmap, va, mpte, &free)) {
/*
* Although "va" is not mapped, paging-
* structure caches could nonetheless have
* entries that refer to the freed page table
* pages. Invalidate those entries.
*/
pmap_invalidate_page(pmap, va);
pmap_free_zero_pages(&free);
}
mpte = NULL;
}
return (mpte);
}
/*
* Increment counters
*/
pmap_resident_count_inc(pmap, 1);
pa = VM_PAGE_TO_PHYS(m) | pmap_cache_bits(pmap, m->md.pat_mode, 0);
if ((prot & VM_PROT_EXECUTE) == 0)
pa |= pg_nx;
/*
* Now validate mapping with RO protection
*/
if ((m->oflags & VPO_UNMANAGED) != 0)
pte_store(pte, pa | PG_V | PG_U);
else
pte_store(pte, pa | PG_V | PG_U | PG_MANAGED);
return (mpte);
}
/*
* Make a temporary mapping for a physical address. This is only intended
* to be used for panic dumps.
*/
void *
pmap_kenter_temporary(vm_paddr_t pa, int i)
{
vm_offset_t va;
va = (vm_offset_t)crashdumpmap + (i * PAGE_SIZE);
pmap_kenter(va, pa);
invlpg(va);
return ((void *)crashdumpmap);
}
/*
* This code maps large physical mmap regions into the
* processor address space. Note that some shortcuts
* are taken, but the code works.
*/
void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
vm_pindex_t pindex, vm_size_t size)
{
pd_entry_t *pde;
pt_entry_t PG_A, PG_M, PG_RW, PG_V;
vm_paddr_t pa, ptepa;
vm_page_t p, pdpg;
int pat_mode;
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
VM_OBJECT_ASSERT_WLOCKED(object);
KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
("pmap_object_init_pt: non-device object"));
if ((addr & (NBPDR - 1)) == 0 && (size & (NBPDR - 1)) == 0) {
if (!pmap_ps_enabled(pmap))
return;
if (!vm_object_populate(object, pindex, pindex + atop(size)))
return;
p = vm_page_lookup(object, pindex);
KASSERT(p->valid == VM_PAGE_BITS_ALL,
("pmap_object_init_pt: invalid page %p", p));
pat_mode = p->md.pat_mode;
/*
* Abort the mapping if the first page is not physically
* aligned to a 2MB page boundary.
*/
ptepa = VM_PAGE_TO_PHYS(p);
if (ptepa & (NBPDR - 1))
return;
/*
* Skip the first page. Abort the mapping if the rest of
* the pages are not physically contiguous or have differing
* memory attributes.
*/
p = TAILQ_NEXT(p, listq);
for (pa = ptepa + PAGE_SIZE; pa < ptepa + size;
pa += PAGE_SIZE) {
KASSERT(p->valid == VM_PAGE_BITS_ALL,
("pmap_object_init_pt: invalid page %p", p));
if (pa != VM_PAGE_TO_PHYS(p) ||
pat_mode != p->md.pat_mode)
return;
p = TAILQ_NEXT(p, listq);
}
/*
* Map using 2MB pages. Since "ptepa" is 2M aligned and
* "size" is a multiple of 2M, adding the PAT setting to "pa"
* will not affect the termination of this loop.
*/
PMAP_LOCK(pmap);
for (pa = ptepa | pmap_cache_bits(pmap, pat_mode, 1);
pa < ptepa + size; pa += NBPDR) {
pdpg = pmap_allocpde(pmap, addr, NULL);
if (pdpg == NULL) {
/*
* The creation of mappings below is only an
* optimization. If a page directory page
* cannot be allocated without blocking,
* continue on to the next mapping rather than
* blocking.
*/
addr += NBPDR;
continue;
}
pde = (pd_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pdpg));
pde = &pde[pmap_pde_index(addr)];
if ((*pde & PG_V) == 0) {
pde_store(pde, pa | PG_PS | PG_M | PG_A |
PG_U | PG_RW | PG_V);
pmap_resident_count_inc(pmap, NBPDR / PAGE_SIZE);
atomic_add_long(&pmap_pde_mappings, 1);
} else {
/* Continue on if the PDE is already valid. */
pdpg->wire_count--;
KASSERT(pdpg->wire_count > 0,
("pmap_object_init_pt: missing reference "
"to page directory page, va: 0x%lx", addr));
}
addr += NBPDR;
}
PMAP_UNLOCK(pmap);
}
}
/*
* Clear the wired attribute from the mappings for the specified range of
* addresses in the given pmap. Every valid mapping within that range
* must have the wired attribute set. In contrast, invalid mappings
* cannot have the wired attribute set, so they are ignored.
*
* The wired attribute of the page table entry is not a hardware
* feature, so there is no need to invalidate any TLB entries.
* Since pmap_demote_pde() for the wired entry must never fail,
* pmap_delayed_invl_started()/finished() calls around the
* function are not needed.
*/
void
pmap_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
{
vm_offset_t va_next;
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
pd_entry_t *pde;
pt_entry_t *pte, PG_V;
PG_V = pmap_valid_bit(pmap);
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
pml4e = pmap_pml4e(pmap, sva);
if ((*pml4e & PG_V) == 0) {
va_next = (sva + NBPML4) & ~PML4MASK;
if (va_next < sva)
va_next = eva;
continue;
}
pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
if ((*pdpe & PG_V) == 0) {
va_next = (sva + NBPDP) & ~PDPMASK;
if (va_next < sva)
va_next = eva;
continue;
}
va_next = (sva + NBPDR) & ~PDRMASK;
if (va_next < sva)
va_next = eva;
pde = pmap_pdpe_to_pde(pdpe, sva);
if ((*pde & PG_V) == 0)
continue;
if ((*pde & PG_PS) != 0) {
if ((*pde & PG_W) == 0)
panic("pmap_unwire: pde %#jx is missing PG_W",
(uintmax_t)*pde);
/*
* Are we unwiring the entire large page? If not,
* demote the mapping and fall through.
*/
if (sva + NBPDR == va_next && eva >= va_next) {
atomic_clear_long(pde, PG_W);
pmap->pm_stats.wired_count -= NBPDR /
PAGE_SIZE;
continue;
} else if (!pmap_demote_pde(pmap, pde, sva))
panic("pmap_unwire: demotion failed");
}
if (va_next > eva)
va_next = eva;
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
if ((*pte & PG_V) == 0)
continue;
if ((*pte & PG_W) == 0)
panic("pmap_unwire: pte %#jx is missing PG_W",
(uintmax_t)*pte);
/*
* PG_W must be cleared atomically. Although the pmap
* lock synchronizes access to PG_W, another processor
* could be setting PG_M and/or PG_A concurrently.
*/
atomic_clear_long(pte, PG_W);
pmap->pm_stats.wired_count--;
}
}
PMAP_UNLOCK(pmap);
}
/*
* Copy the range specified by src_addr/len
* from the source map to the range dst_addr/len
* in the destination map.
*
* This routine is only advisory and need not do anything.
*/
void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr, vm_size_t len,
vm_offset_t src_addr)
{
struct rwlock *lock;
struct spglist free;
vm_offset_t addr;
vm_offset_t end_addr = src_addr + len;
vm_offset_t va_next;
vm_page_t dst_pdpg, dstmpte, srcmpte;
pt_entry_t PG_A, PG_M, PG_V;
if (dst_addr != src_addr)
return;
if (dst_pmap->pm_type != src_pmap->pm_type)
return;
/*
* EPT page table entries that require emulation of A/D bits are
* sensitive to clearing the PG_A bit (aka EPT_PG_READ). Although
* we clear PG_M (aka EPT_PG_WRITE) concomitantly, the PG_U bit
* (aka EPT_PG_EXECUTE) could still be set. Since some EPT
* implementations flag an EPT misconfiguration for exec-only
* mappings we skip this function entirely for emulated pmaps.
*/
if (pmap_emulate_ad_bits(dst_pmap))
return;
lock = NULL;
if (dst_pmap < src_pmap) {
PMAP_LOCK(dst_pmap);
PMAP_LOCK(src_pmap);
} else {
PMAP_LOCK(src_pmap);
PMAP_LOCK(dst_pmap);
}
PG_A = pmap_accessed_bit(dst_pmap);
PG_M = pmap_modified_bit(dst_pmap);
PG_V = pmap_valid_bit(dst_pmap);
for (addr = src_addr; addr < end_addr; addr = va_next) {
pt_entry_t *src_pte, *dst_pte;
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
pd_entry_t srcptepaddr, *pde;
KASSERT(addr < UPT_MIN_ADDRESS,
("pmap_copy: invalid to pmap_copy page tables"));
pml4e = pmap_pml4e(src_pmap, addr);
if ((*pml4e & PG_V) == 0) {
va_next = (addr + NBPML4) & ~PML4MASK;
if (va_next < addr)
va_next = end_addr;
continue;
}
pdpe = pmap_pml4e_to_pdpe(pml4e, addr);
if ((*pdpe & PG_V) == 0) {
va_next = (addr + NBPDP) & ~PDPMASK;
if (va_next < addr)
va_next = end_addr;
continue;
}
va_next = (addr + NBPDR) & ~PDRMASK;
if (va_next < addr)
va_next = end_addr;
pde = pmap_pdpe_to_pde(pdpe, addr);
srcptepaddr = *pde;
if (srcptepaddr == 0)
continue;
if (srcptepaddr & PG_PS) {
if ((addr & PDRMASK) != 0 || addr + NBPDR > end_addr)
continue;
dst_pdpg = pmap_allocpde(dst_pmap, addr, NULL);
if (dst_pdpg == NULL)
break;
pde = (pd_entry_t *)
PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dst_pdpg));
pde = &pde[pmap_pde_index(addr)];
if (*pde == 0 && ((srcptepaddr & PG_MANAGED) == 0 ||
pmap_pv_insert_pde(dst_pmap, addr, srcptepaddr,
PMAP_ENTER_NORECLAIM, &lock))) {
*pde = srcptepaddr & ~PG_W;
pmap_resident_count_inc(dst_pmap, NBPDR / PAGE_SIZE);
atomic_add_long(&pmap_pde_mappings, 1);
} else
dst_pdpg->wire_count--;
continue;
}
srcptepaddr &= PG_FRAME;
srcmpte = PHYS_TO_VM_PAGE(srcptepaddr);
KASSERT(srcmpte->wire_count > 0,
("pmap_copy: source page table page is unused"));
if (va_next > end_addr)
va_next = end_addr;
src_pte = (pt_entry_t *)PHYS_TO_DMAP(srcptepaddr);
src_pte = &src_pte[pmap_pte_index(addr)];
dstmpte = NULL;
while (addr < va_next) {
pt_entry_t ptetemp;
ptetemp = *src_pte;
/*
* we only virtual copy managed pages
*/
if ((ptetemp & PG_MANAGED) != 0) {
if (dstmpte != NULL &&
dstmpte->pindex == pmap_pde_pindex(addr))
dstmpte->wire_count++;
else if ((dstmpte = pmap_allocpte(dst_pmap,
addr, NULL)) == NULL)
goto out;
dst_pte = (pt_entry_t *)
PHYS_TO_DMAP(VM_PAGE_TO_PHYS(dstmpte));
dst_pte = &dst_pte[pmap_pte_index(addr)];
if (*dst_pte == 0 &&
pmap_try_insert_pv_entry(dst_pmap, addr,
PHYS_TO_VM_PAGE(ptetemp & PG_FRAME),
&lock)) {
/*
* Clear the wired, modified, and
* accessed (referenced) bits
* during the copy.
*/
*dst_pte = ptetemp & ~(PG_W | PG_M |
PG_A);
pmap_resident_count_inc(dst_pmap, 1);
} else {
SLIST_INIT(&free);
if (pmap_unwire_ptp(dst_pmap, addr,
dstmpte, &free)) {
/*
* Although "addr" is not
* mapped, paging-structure
* caches could nonetheless
* have entries that refer to
* the freed page table pages.
* Invalidate those entries.
*/
pmap_invalidate_page(dst_pmap,
addr);
pmap_free_zero_pages(&free);
}
goto out;
}
if (dstmpte->wire_count >= srcmpte->wire_count)
break;
}
addr += PAGE_SIZE;
src_pte++;
}
}
out:
if (lock != NULL)
rw_wunlock(lock);
PMAP_UNLOCK(src_pmap);
PMAP_UNLOCK(dst_pmap);
}
/*
* pmap_zero_page zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*/
void
pmap_zero_page(vm_page_t m)
{
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
pagezero((void *)va);
}
/*
* pmap_zero_page_area zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents.
*
* off and size may not cover an area beyond a single hardware page.
*/
void
pmap_zero_page_area(vm_page_t m, int off, int size)
{
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
if (off == 0 && size == PAGE_SIZE)
pagezero((void *)va);
else
bzero((char *)va + off, size);
}
/*
* pmap_zero_page_idle zeros the specified hardware page by mapping
* the page into KVM and using bzero to clear its contents. This
* is intended to be called from the vm_pagezero process only and
* outside of Giant.
*/
void
pmap_zero_page_idle(vm_page_t m)
{
vm_offset_t va = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
pagezero((void *)va);
}
/*
* pmap_copy_page copies the specified (machine independent)
* page by mapping the page into virtual memory and using
* bcopy to copy the page, one machine dependent page at a
* time.
*/
void
pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
{
vm_offset_t src = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(msrc));
vm_offset_t dst = PHYS_TO_DMAP(VM_PAGE_TO_PHYS(mdst));
pagecopy((void *)src, (void *)dst);
}
int unmapped_buf_allowed = 1;
void
pmap_copy_pages(vm_page_t ma[], vm_offset_t a_offset, vm_page_t mb[],
vm_offset_t b_offset, int xfersize)
{
void *a_cp, *b_cp;
vm_page_t pages[2];
vm_offset_t vaddr[2], a_pg_offset, b_pg_offset;
int cnt;
boolean_t mapped;
while (xfersize > 0) {
a_pg_offset = a_offset & PAGE_MASK;
pages[0] = ma[a_offset >> PAGE_SHIFT];
b_pg_offset = b_offset & PAGE_MASK;
pages[1] = mb[b_offset >> PAGE_SHIFT];
cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
cnt = min(cnt, PAGE_SIZE - b_pg_offset);
mapped = pmap_map_io_transient(pages, vaddr, 2, FALSE);
a_cp = (char *)vaddr[0] + a_pg_offset;
b_cp = (char *)vaddr[1] + b_pg_offset;
bcopy(a_cp, b_cp, cnt);
if (__predict_false(mapped))
pmap_unmap_io_transient(pages, vaddr, 2, FALSE);
a_offset += cnt;
b_offset += cnt;
xfersize -= cnt;
}
}
/*
* Returns true if the pmap's pv is one of the first
* 16 pvs linked to from this page. This count may
* be changed upwards or downwards in the future; it
* is only necessary that true be returned for a small
* subset of pmaps for proper page aging.
*/
boolean_t
pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
{
struct md_page *pvh;
struct rwlock *lock;
pv_entry_t pv;
int loops = 0;
boolean_t rv;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_page_exists_quick: page %p is not managed", m));
rv = FALSE;
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
if (PV_PMAP(pv) == pmap) {
rv = TRUE;
break;
}
loops++;
if (loops >= 16)
break;
}
if (!rv && loops < 16 && (m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
if (PV_PMAP(pv) == pmap) {
rv = TRUE;
break;
}
loops++;
if (loops >= 16)
break;
}
}
rw_runlock(lock);
return (rv);
}
/*
* pmap_page_wired_mappings:
*
* Return the number of managed mappings to the given physical page
* that are wired.
*/
int
pmap_page_wired_mappings(vm_page_t m)
{
struct rwlock *lock;
struct md_page *pvh;
pmap_t pmap;
pt_entry_t *pte;
pv_entry_t pv;
int count, md_gen, pvh_gen;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (0);
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
restart:
count = 0;
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
pte = pmap_pte(pmap, pv->pv_va);
if ((*pte & PG_W) != 0)
count++;
PMAP_UNLOCK(pmap);
}
if ((m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
pvh_gen = pvh->pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen ||
pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
pte = pmap_pde(pmap, pv->pv_va);
if ((*pte & PG_W) != 0)
count++;
PMAP_UNLOCK(pmap);
}
}
rw_runlock(lock);
return (count);
}
/*
* Returns TRUE if the given page is mapped individually or as part of
* a 2mpage. Otherwise, returns FALSE.
*/
boolean_t
pmap_page_is_mapped(vm_page_t m)
{
struct rwlock *lock;
boolean_t rv;
if ((m->oflags & VPO_UNMANAGED) != 0)
return (FALSE);
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
rv = !TAILQ_EMPTY(&m->md.pv_list) ||
((m->flags & PG_FICTITIOUS) == 0 &&
!TAILQ_EMPTY(&pa_to_pvh(VM_PAGE_TO_PHYS(m))->pv_list));
rw_runlock(lock);
return (rv);
}
/*
* Destroy all managed, non-wired mappings in the given user-space
* pmap. This pmap cannot be active on any processor besides the
* caller.
*
* This function cannot be applied to the kernel pmap. Moreover, it
* is not intended for general use. It is only to be used during
* process termination. Consequently, it can be implemented in ways
* that make it faster than pmap_remove(). First, it can more quickly
* destroy mappings by iterating over the pmap's collection of PV
* entries, rather than searching the page table. Second, it doesn't
* have to test and clear the page table entries atomically, because
* no processor is currently accessing the user address space. In
* particular, a page table entry's dirty bit won't change state once
* this function starts.
*
* Although this function destroys all of the pmap's managed,
* non-wired mappings, it can delay and batch the invalidation of TLB
* entries without calling pmap_delayed_invl_started() and
* pmap_delayed_invl_finished(). Because the pmap is not active on
* any other processor, none of these TLB entries will ever be used
* before their eventual invalidation. Consequently, there is no need
* for either pmap_remove_all() or pmap_remove_write() to wait for
* that eventual TLB invalidation.
*/
void
pmap_remove_pages(pmap_t pmap)
{
pd_entry_t ptepde;
pt_entry_t *pte, tpte;
pt_entry_t PG_M, PG_RW, PG_V;
struct spglist free;
vm_page_t m, mpte, mt;
pv_entry_t pv;
struct md_page *pvh;
struct pv_chunk *pc, *npc;
struct rwlock *lock;
int64_t bit;
uint64_t inuse, bitmask;
int allfree, field, freed, idx;
boolean_t superpage;
vm_paddr_t pa;
/*
* Assert that the given pmap is only active on the current
* CPU. Unfortunately, we cannot block another CPU from
* activating the pmap while this function is executing.
*/
KASSERT(pmap == PCPU_GET(curpmap), ("non-current pmap %p", pmap));
#ifdef INVARIANTS
{
cpuset_t other_cpus;
other_cpus = all_cpus;
critical_enter();
CPU_CLR(PCPU_GET(cpuid), &other_cpus);
CPU_AND(&other_cpus, &pmap->pm_active);
critical_exit();
KASSERT(CPU_EMPTY(&other_cpus), ("pmap active %p", pmap));
}
#endif
lock = NULL;
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
SLIST_INIT(&free);
PMAP_LOCK(pmap);
TAILQ_FOREACH_SAFE(pc, &pmap->pm_pvchunk, pc_list, npc) {
allfree = 1;
freed = 0;
for (field = 0; field < _NPCM; field++) {
inuse = ~pc->pc_map[field] & pc_freemask[field];
while (inuse != 0) {
bit = bsfq(inuse);
bitmask = 1UL << bit;
idx = field * 64 + bit;
pv = &pc->pc_pventry[idx];
inuse &= ~bitmask;
pte = pmap_pdpe(pmap, pv->pv_va);
ptepde = *pte;
pte = pmap_pdpe_to_pde(pte, pv->pv_va);
tpte = *pte;
if ((tpte & (PG_PS | PG_V)) == PG_V) {
superpage = FALSE;
ptepde = tpte;
pte = (pt_entry_t *)PHYS_TO_DMAP(tpte &
PG_FRAME);
pte = &pte[pmap_pte_index(pv->pv_va)];
tpte = *pte;
} else {
/*
* Keep track whether 'tpte' is a
* superpage explicitly instead of
* relying on PG_PS being set.
*
* This is because PG_PS is numerically
* identical to PG_PTE_PAT and thus a
* regular page could be mistaken for
* a superpage.
*/
superpage = TRUE;
}
if ((tpte & PG_V) == 0) {
panic("bad pte va %lx pte %lx",
pv->pv_va, tpte);
}
/*
* We cannot remove wired pages from a process' mapping at this time
*/
if (tpte & PG_W) {
allfree = 0;
continue;
}
if (superpage)
pa = tpte & PG_PS_FRAME;
else
pa = tpte & PG_FRAME;
m = PHYS_TO_VM_PAGE(pa);
KASSERT(m->phys_addr == pa,
("vm_page_t %p phys_addr mismatch %016jx %016jx",
m, (uintmax_t)m->phys_addr,
(uintmax_t)tpte));
KASSERT((m->flags & PG_FICTITIOUS) != 0 ||
m < &vm_page_array[vm_page_array_size],
("pmap_remove_pages: bad tpte %#jx",
(uintmax_t)tpte));
pte_clear(pte);
/*
* Update the vm_page_t clean/reference bits.
*/
if ((tpte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
if (superpage) {
for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
vm_page_dirty(mt);
} else
vm_page_dirty(m);
}
CHANGE_PV_LIST_LOCK_TO_VM_PAGE(&lock, m);
/* Mark free */
pc->pc_map[field] |= bitmask;
if (superpage) {
pmap_resident_count_dec(pmap, NBPDR / PAGE_SIZE);
pvh = pa_to_pvh(tpte & PG_PS_FRAME);
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
pvh->pv_gen++;
if (TAILQ_EMPTY(&pvh->pv_list)) {
for (mt = m; mt < &m[NBPDR / PAGE_SIZE]; mt++)
if ((mt->aflags & PGA_WRITEABLE) != 0 &&
TAILQ_EMPTY(&mt->md.pv_list))
vm_page_aflag_clear(mt, PGA_WRITEABLE);
}
mpte = pmap_remove_pt_page(pmap, pv->pv_va);
if (mpte != NULL) {
pmap_resident_count_dec(pmap, 1);
KASSERT(mpte->wire_count == NPTEPG,
("pmap_remove_pages: pte page wire count error"));
mpte->wire_count = 0;
pmap_add_delayed_free_list(mpte, &free, FALSE);
}
} else {
pmap_resident_count_dec(pmap, 1);
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
if ((m->aflags & PGA_WRITEABLE) != 0 &&
TAILQ_EMPTY(&m->md.pv_list) &&
(m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
if (TAILQ_EMPTY(&pvh->pv_list))
vm_page_aflag_clear(m, PGA_WRITEABLE);
}
}
pmap_unuse_pt(pmap, pv->pv_va, ptepde, &free);
freed++;
}
}
PV_STAT(atomic_add_long(&pv_entry_frees, freed));
PV_STAT(atomic_add_int(&pv_entry_spare, freed));
PV_STAT(atomic_subtract_long(&pv_entry_count, freed));
if (allfree) {
TAILQ_REMOVE(&pmap->pm_pvchunk, pc, pc_list);
free_pv_chunk(pc);
}
}
if (lock != NULL)
rw_wunlock(lock);
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
pmap_free_zero_pages(&free);
}
static boolean_t
pmap_page_test_mappings(vm_page_t m, boolean_t accessed, boolean_t modified)
{
struct rwlock *lock;
pv_entry_t pv;
struct md_page *pvh;
pt_entry_t *pte, mask;
pt_entry_t PG_A, PG_M, PG_RW, PG_V;
pmap_t pmap;
int md_gen, pvh_gen;
boolean_t rv;
rv = FALSE;
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_rlock(lock);
restart:
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
pte = pmap_pte(pmap, pv->pv_va);
mask = 0;
if (modified) {
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
mask |= PG_RW | PG_M;
}
if (accessed) {
PG_A = pmap_accessed_bit(pmap);
PG_V = pmap_valid_bit(pmap);
mask |= PG_V | PG_A;
}
rv = (*pte & mask) == mask;
PMAP_UNLOCK(pmap);
if (rv)
goto out;
}
if ((m->flags & PG_FICTITIOUS) == 0) {
pvh = pa_to_pvh(VM_PAGE_TO_PHYS(m));
TAILQ_FOREACH(pv, &pvh->pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
pvh_gen = pvh->pv_gen;
rw_runlock(lock);
PMAP_LOCK(pmap);
rw_rlock(lock);
if (md_gen != m->md.pv_gen ||
pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
pte = pmap_pde(pmap, pv->pv_va);
mask = 0;
if (modified) {
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
mask |= PG_RW | PG_M;
}
if (accessed) {
PG_A = pmap_accessed_bit(pmap);
PG_V = pmap_valid_bit(pmap);
mask |= PG_V | PG_A;
}
rv = (*pte & mask) == mask;
PMAP_UNLOCK(pmap);
if (rv)
goto out;
}
}
out:
rw_runlock(lock);
return (rv);
}
/*
* pmap_is_modified:
*
* Return whether or not the specified physical page was modified
* in any physical maps.
*/
boolean_t
pmap_is_modified(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_modified: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* concurrently set while the object is locked. Thus, if PGA_WRITEABLE
* is clear, no PTEs can have PG_M set.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return (FALSE);
return (pmap_page_test_mappings(m, FALSE, TRUE));
}
/*
* pmap_is_prefaultable:
*
* Return whether or not the specified virtual address is eligible
* for prefault.
*/
boolean_t
pmap_is_prefaultable(pmap_t pmap, vm_offset_t addr)
{
pd_entry_t *pde;
pt_entry_t *pte, PG_V;
boolean_t rv;
PG_V = pmap_valid_bit(pmap);
rv = FALSE;
PMAP_LOCK(pmap);
pde = pmap_pde(pmap, addr);
if (pde != NULL && (*pde & (PG_PS | PG_V)) == PG_V) {
pte = pmap_pde_to_pte(pde, addr);
rv = (*pte & PG_V) == 0;
}
PMAP_UNLOCK(pmap);
return (rv);
}
/*
* pmap_is_referenced:
*
* Return whether or not the specified physical page was referenced
* in any physical maps.
*/
boolean_t
pmap_is_referenced(vm_page_t m)
{
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_is_referenced: page %p is not managed", m));
return (pmap_page_test_mappings(m, TRUE, FALSE));
}
/*
* Clear the write and modified bits in each of the given page's mappings.
*/
void
pmap_remove_write(vm_page_t m)
{
struct md_page *pvh;
pmap_t pmap;
struct rwlock *lock;
pv_entry_t next_pv, pv;
pd_entry_t *pde;
pt_entry_t oldpte, *pte, PG_M, PG_RW;
vm_offset_t va;
int pvh_gen, md_gen;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_remove_write: page %p is not managed", m));
/*
* If the page is not exclusive busied, then PGA_WRITEABLE cannot be
* set by another thread while the object is locked. Thus,
* if PGA_WRITEABLE is clear, no page table entries need updating.
*/
VM_OBJECT_ASSERT_WLOCKED(m->object);
if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
return;
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
pa_to_pvh(VM_PAGE_TO_PHYS(m));
retry_pv_loop:
rw_wlock(lock);
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
rw_wunlock(lock);
goto retry_pv_loop;
}
}
PG_RW = pmap_rw_bit(pmap);
va = pv->pv_va;
pde = pmap_pde(pmap, va);
if ((*pde & PG_RW) != 0)
(void)pmap_demote_pde_locked(pmap, pde, va, &lock);
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
("inconsistent pv lock %p %p for page %p",
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
PMAP_UNLOCK(pmap);
}
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
md_gen = m->md.pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen ||
md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
rw_wunlock(lock);
goto retry_pv_loop;
}
}
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
pde = pmap_pde(pmap, pv->pv_va);
KASSERT((*pde & PG_PS) == 0,
("pmap_remove_write: found a 2mpage in page %p's pv list",
m));
pte = pmap_pde_to_pte(pde, pv->pv_va);
retry:
oldpte = *pte;
if (oldpte & PG_RW) {
if (!atomic_cmpset_long(pte, oldpte, oldpte &
~(PG_RW | PG_M)))
goto retry;
if ((oldpte & PG_M) != 0)
vm_page_dirty(m);
pmap_invalidate_page(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
rw_wunlock(lock);
vm_page_aflag_clear(m, PGA_WRITEABLE);
pmap_delayed_invl_wait(m);
}
static __inline boolean_t
safe_to_clear_referenced(pmap_t pmap, pt_entry_t pte)
{
if (!pmap_emulate_ad_bits(pmap))
return (TRUE);
KASSERT(pmap->pm_type == PT_EPT, ("invalid pm_type %d", pmap->pm_type));
/*
* XWR = 010 or 110 will cause an unconditional EPT misconfiguration
* so we don't let the referenced (aka EPT_PG_READ) bit to be cleared
* if the EPT_PG_WRITE bit is set.
*/
if ((pte & EPT_PG_WRITE) != 0)
return (FALSE);
/*
* XWR = 100 is allowed only if the PMAP_SUPPORTS_EXEC_ONLY is set.
*/
if ((pte & EPT_PG_EXECUTE) == 0 ||
((pmap->pm_flags & PMAP_SUPPORTS_EXEC_ONLY) != 0))
return (TRUE);
else
return (FALSE);
}
/*
* pmap_ts_referenced:
*
* Return a count of reference bits for a page, clearing those bits.
* It is not necessary for every reference bit to be cleared, but it
* is necessary that 0 only be returned when there are truly no
* reference bits set.
*
* As an optimization, update the page's dirty field if a modified bit is
* found while counting reference bits. This opportunistic update can be
* performed at low cost and can eliminate the need for some future calls
* to pmap_is_modified(). However, since this function stops after
* finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
* dirty pages. Those dirty pages will only be detected by a future call
* to pmap_is_modified().
*
* A DI block is not needed within this function, because
* invalidations are performed before the PV list lock is
* released.
*/
int
pmap_ts_referenced(vm_page_t m)
{
struct md_page *pvh;
pv_entry_t pv, pvf;
pmap_t pmap;
struct rwlock *lock;
pd_entry_t oldpde, *pde;
pt_entry_t *pte, PG_A, PG_M, PG_RW;
vm_offset_t va;
vm_paddr_t pa;
int cleared, md_gen, not_cleared, pvh_gen;
struct spglist free;
boolean_t demoted;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_ts_referenced: page %p is not managed", m));
SLIST_INIT(&free);
cleared = 0;
pa = VM_PAGE_TO_PHYS(m);
lock = PHYS_TO_PV_LIST_LOCK(pa);
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy : pa_to_pvh(pa);
rw_wlock(lock);
retry:
not_cleared = 0;
if ((pvf = TAILQ_FIRST(&pvh->pv_list)) == NULL)
goto small_mappings;
pv = pvf;
do {
if (pvf == NULL)
pvf = pv;
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto retry;
}
}
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
va = pv->pv_va;
pde = pmap_pde(pmap, pv->pv_va);
oldpde = *pde;
if ((oldpde & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
/*
* Although "oldpde" is mapping a 2MB page, because
* this function is called at a 4KB page granularity,
* we only update the 4KB page under test.
*/
vm_page_dirty(m);
}
if ((oldpde & PG_A) != 0) {
/*
* Since this reference bit is shared by 512 4KB
* pages, it should not be cleared every time it is
* tested. Apply a simple "hash" function on the
* physical page number, the virtual superpage number,
* and the pmap address to select one 4KB page out of
* the 512 on which testing the reference bit will
* result in clearing that reference bit. This
* function is designed to avoid the selection of the
* same 4KB page for every 2MB page mapping.
*
* On demotion, a mapping that hasn't been referenced
* is simply destroyed. To avoid the possibility of a
* subsequent page fault on a demoted wired mapping,
* always leave its reference bit set. Moreover,
* since the superpage is wired, the current state of
* its reference bit won't affect page replacement.
*/
if ((((pa >> PAGE_SHIFT) ^ (pv->pv_va >> PDRSHIFT) ^
(uintptr_t)pmap) & (NPTEPG - 1)) == 0 &&
(oldpde & PG_W) == 0) {
if (safe_to_clear_referenced(pmap, oldpde)) {
atomic_clear_long(pde, PG_A);
pmap_invalidate_page(pmap, pv->pv_va);
demoted = FALSE;
} else if (pmap_demote_pde_locked(pmap, pde,
pv->pv_va, &lock)) {
/*
* Remove the mapping to a single page
* so that a subsequent access may
* repromote. Since the underlying
* page table page is fully populated,
* this removal never frees a page
* table page.
*/
demoted = TRUE;
va += VM_PAGE_TO_PHYS(m) - (oldpde &
PG_PS_FRAME);
pte = pmap_pde_to_pte(pde, va);
pmap_remove_pte(pmap, pte, va, *pde,
NULL, &lock);
pmap_invalidate_page(pmap, va);
} else
demoted = TRUE;
if (demoted) {
/*
* The superpage mapping was removed
* entirely and therefore 'pv' is no
* longer valid.
*/
if (pvf == pv)
pvf = NULL;
pv = NULL;
}
cleared++;
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
("inconsistent pv lock %p %p for page %p",
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
} else
not_cleared++;
}
PMAP_UNLOCK(pmap);
/* Rotate the PV list if it has more than one entry. */
if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
TAILQ_REMOVE(&pvh->pv_list, pv, pv_next);
TAILQ_INSERT_TAIL(&pvh->pv_list, pv, pv_next);
pvh->pv_gen++;
}
if (cleared + not_cleared >= PMAP_TS_REFERENCED_MAX)
goto out;
} while ((pv = TAILQ_FIRST(&pvh->pv_list)) != pvf);
small_mappings:
if ((pvf = TAILQ_FIRST(&m->md.pv_list)) == NULL)
goto out;
pv = pvf;
do {
if (pvf == NULL)
pvf = pv;
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
md_gen = m->md.pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto retry;
}
}
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
pde = pmap_pde(pmap, pv->pv_va);
KASSERT((*pde & PG_PS) == 0,
("pmap_ts_referenced: found a 2mpage in page %p's pv list",
m));
pte = pmap_pde_to_pte(pde, pv->pv_va);
if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
vm_page_dirty(m);
if ((*pte & PG_A) != 0) {
if (safe_to_clear_referenced(pmap, *pte)) {
atomic_clear_long(pte, PG_A);
pmap_invalidate_page(pmap, pv->pv_va);
cleared++;
} else if ((*pte & PG_W) == 0) {
/*
* Wired pages cannot be paged out so
* doing accessed bit emulation for
* them is wasted effort. We do the
* hard work for unwired pages only.
*/
pmap_remove_pte(pmap, pte, pv->pv_va,
*pde, &free, &lock);
pmap_invalidate_page(pmap, pv->pv_va);
cleared++;
if (pvf == pv)
pvf = NULL;
pv = NULL;
KASSERT(lock == VM_PAGE_TO_PV_LIST_LOCK(m),
("inconsistent pv lock %p %p for page %p",
lock, VM_PAGE_TO_PV_LIST_LOCK(m), m));
} else
not_cleared++;
}
PMAP_UNLOCK(pmap);
/* Rotate the PV list if it has more than one entry. */
if (pv != NULL && TAILQ_NEXT(pv, pv_next) != NULL) {
TAILQ_REMOVE(&m->md.pv_list, pv, pv_next);
TAILQ_INSERT_TAIL(&m->md.pv_list, pv, pv_next);
m->md.pv_gen++;
}
} while ((pv = TAILQ_FIRST(&m->md.pv_list)) != pvf && cleared +
not_cleared < PMAP_TS_REFERENCED_MAX);
out:
rw_wunlock(lock);
pmap_free_zero_pages(&free);
return (cleared + not_cleared);
}
/*
* Apply the given advice to the specified range of addresses within the
* given pmap. Depending on the advice, clear the referenced and/or
* modified flags in each mapping and set the mapped page's dirty field.
*/
void
pmap_advise(pmap_t pmap, vm_offset_t sva, vm_offset_t eva, int advice)
{
struct rwlock *lock;
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
pd_entry_t oldpde, *pde;
pt_entry_t *pte, PG_A, PG_G, PG_M, PG_RW, PG_V;
vm_offset_t va, va_next;
vm_page_t m;
boolean_t anychanged;
if (advice != MADV_DONTNEED && advice != MADV_FREE)
return;
/*
* A/D bit emulation requires an alternate code path when clearing
* the modified and accessed bits below. Since this function is
* advisory in nature we skip it entirely for pmaps that require
* A/D bit emulation.
*/
if (pmap_emulate_ad_bits(pmap))
return;
PG_A = pmap_accessed_bit(pmap);
PG_G = pmap_global_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
anychanged = FALSE;
pmap_delayed_invl_started();
PMAP_LOCK(pmap);
for (; sva < eva; sva = va_next) {
pml4e = pmap_pml4e(pmap, sva);
if ((*pml4e & PG_V) == 0) {
va_next = (sva + NBPML4) & ~PML4MASK;
if (va_next < sva)
va_next = eva;
continue;
}
pdpe = pmap_pml4e_to_pdpe(pml4e, sva);
if ((*pdpe & PG_V) == 0) {
va_next = (sva + NBPDP) & ~PDPMASK;
if (va_next < sva)
va_next = eva;
continue;
}
va_next = (sva + NBPDR) & ~PDRMASK;
if (va_next < sva)
va_next = eva;
pde = pmap_pdpe_to_pde(pdpe, sva);
oldpde = *pde;
if ((oldpde & PG_V) == 0)
continue;
else if ((oldpde & PG_PS) != 0) {
if ((oldpde & PG_MANAGED) == 0)
continue;
lock = NULL;
if (!pmap_demote_pde_locked(pmap, pde, sva, &lock)) {
if (lock != NULL)
rw_wunlock(lock);
/*
* The large page mapping was destroyed.
*/
continue;
}
/*
* Unless the page mappings are wired, remove the
* mapping to a single page so that a subsequent
* access may repromote. Since the underlying page
* table page is fully populated, this removal never
* frees a page table page.
*/
if ((oldpde & PG_W) == 0) {
pte = pmap_pde_to_pte(pde, sva);
KASSERT((*pte & PG_V) != 0,
("pmap_advise: invalid PTE"));
pmap_remove_pte(pmap, pte, sva, *pde, NULL,
&lock);
anychanged = TRUE;
}
if (lock != NULL)
rw_wunlock(lock);
}
if (va_next > eva)
va_next = eva;
va = va_next;
for (pte = pmap_pde_to_pte(pde, sva); sva != va_next; pte++,
sva += PAGE_SIZE) {
if ((*pte & (PG_MANAGED | PG_V)) != (PG_MANAGED | PG_V))
goto maybe_invlrng;
else if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
if (advice == MADV_DONTNEED) {
/*
* Future calls to pmap_is_modified()
* can be avoided by making the page
* dirty now.
*/
m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
vm_page_dirty(m);
}
atomic_clear_long(pte, PG_M | PG_A);
} else if ((*pte & PG_A) != 0)
atomic_clear_long(pte, PG_A);
else
goto maybe_invlrng;
if ((*pte & PG_G) != 0) {
if (va == va_next)
va = sva;
} else
anychanged = TRUE;
continue;
maybe_invlrng:
if (va != va_next) {
pmap_invalidate_range(pmap, va, sva);
va = va_next;
}
}
if (va != va_next)
pmap_invalidate_range(pmap, va, sva);
}
if (anychanged)
pmap_invalidate_all(pmap);
PMAP_UNLOCK(pmap);
pmap_delayed_invl_finished();
}
/*
* Clear the modify bits on the specified physical page.
*/
void
pmap_clear_modify(vm_page_t m)
{
struct md_page *pvh;
pmap_t pmap;
pv_entry_t next_pv, pv;
pd_entry_t oldpde, *pde;
pt_entry_t oldpte, *pte, PG_M, PG_RW, PG_V;
struct rwlock *lock;
vm_offset_t va;
int md_gen, pvh_gen;
KASSERT((m->oflags & VPO_UNMANAGED) == 0,
("pmap_clear_modify: page %p is not managed", m));
VM_OBJECT_ASSERT_WLOCKED(m->object);
KASSERT(!vm_page_xbusied(m),
("pmap_clear_modify: page %p is exclusive busied", m));
/*
* If the page is not PGA_WRITEABLE, then no PTEs can have PG_M set.
* If the object containing the page is locked and the page is not
* exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
*/
if ((m->aflags & PGA_WRITEABLE) == 0)
return;
pvh = (m->flags & PG_FICTITIOUS) != 0 ? &pv_dummy :
pa_to_pvh(VM_PAGE_TO_PHYS(m));
lock = VM_PAGE_TO_PV_LIST_LOCK(m);
rw_wlock(lock);
restart:
TAILQ_FOREACH_SAFE(pv, &pvh->pv_list, pv_next, next_pv) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
va = pv->pv_va;
pde = pmap_pde(pmap, va);
oldpde = *pde;
if ((oldpde & PG_RW) != 0) {
if (pmap_demote_pde_locked(pmap, pde, va, &lock)) {
if ((oldpde & PG_W) == 0) {
/*
* Write protect the mapping to a
* single page so that a subsequent
* write access may repromote.
*/
va += VM_PAGE_TO_PHYS(m) - (oldpde &
PG_PS_FRAME);
pte = pmap_pde_to_pte(pde, va);
oldpte = *pte;
if ((oldpte & PG_V) != 0) {
while (!atomic_cmpset_long(pte,
oldpte,
oldpte & ~(PG_M | PG_RW)))
oldpte = *pte;
vm_page_dirty(m);
pmap_invalidate_page(pmap, va);
}
}
}
}
PMAP_UNLOCK(pmap);
}
TAILQ_FOREACH(pv, &m->md.pv_list, pv_next) {
pmap = PV_PMAP(pv);
if (!PMAP_TRYLOCK(pmap)) {
md_gen = m->md.pv_gen;
pvh_gen = pvh->pv_gen;
rw_wunlock(lock);
PMAP_LOCK(pmap);
rw_wlock(lock);
if (pvh_gen != pvh->pv_gen || md_gen != m->md.pv_gen) {
PMAP_UNLOCK(pmap);
goto restart;
}
}
PG_M = pmap_modified_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
pde = pmap_pde(pmap, pv->pv_va);
KASSERT((*pde & PG_PS) == 0, ("pmap_clear_modify: found"
" a 2mpage in page %p's pv list", m));
pte = pmap_pde_to_pte(pde, pv->pv_va);
if ((*pte & (PG_M | PG_RW)) == (PG_M | PG_RW)) {
atomic_clear_long(pte, PG_M);
pmap_invalidate_page(pmap, pv->pv_va);
}
PMAP_UNLOCK(pmap);
}
rw_wunlock(lock);
}
/*
* Miscellaneous support routines follow
*/
/* Adjust the cache mode for a 4KB page mapped via a PTE. */
static __inline void
pmap_pte_attr(pt_entry_t *pte, int cache_bits, int mask)
{
u_int opte, npte;
/*
* The cache mode bits are all in the low 32-bits of the
* PTE, so we can just spin on updating the low 32-bits.
*/
do {
opte = *(u_int *)pte;
npte = opte & ~mask;
npte |= cache_bits;
} while (npte != opte && !atomic_cmpset_int((u_int *)pte, opte, npte));
}
/* Adjust the cache mode for a 2MB page mapped via a PDE. */
static __inline void
pmap_pde_attr(pd_entry_t *pde, int cache_bits, int mask)
{
u_int opde, npde;
/*
* The cache mode bits are all in the low 32-bits of the
* PDE, so we can just spin on updating the low 32-bits.
*/
do {
opde = *(u_int *)pde;
npde = opde & ~mask;
npde |= cache_bits;
} while (npde != opde && !atomic_cmpset_int((u_int *)pde, opde, npde));
}
/*
* Map a set of physical memory pages into the kernel virtual
* address space. Return a pointer to where it is mapped. This
* routine is intended to be used for mapping device memory,
* NOT real memory.
*/
void *
pmap_mapdev_attr(vm_paddr_t pa, vm_size_t size, int mode)
{
struct pmap_preinit_mapping *ppim;
vm_offset_t va, offset;
vm_size_t tmpsize;
int i;
offset = pa & PAGE_MASK;
size = round_page(offset + size);
pa = trunc_page(pa);
if (!pmap_initialized) {
va = 0;
for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
ppim = pmap_preinit_mapping + i;
if (ppim->va == 0) {
ppim->pa = pa;
ppim->sz = size;
ppim->mode = mode;
ppim->va = virtual_avail;
virtual_avail += size;
va = ppim->va;
break;
}
}
if (va == 0)
panic("%s: too many preinit mappings", __func__);
} else {
/*
* If we have a preinit mapping, re-use it.
*/
for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
ppim = pmap_preinit_mapping + i;
if (ppim->pa == pa && ppim->sz == size &&
ppim->mode == mode)
return ((void *)(ppim->va + offset));
}
/*
* If the specified range of physical addresses fits within
* the direct map window, use the direct map.
*/
if (pa < dmaplimit && pa + size < dmaplimit) {
va = PHYS_TO_DMAP(pa);
if (!pmap_change_attr(va, size, mode))
return ((void *)(va + offset));
}
va = kva_alloc(size);
if (va == 0)
panic("%s: Couldn't allocate KVA", __func__);
}
for (tmpsize = 0; tmpsize < size; tmpsize += PAGE_SIZE)
pmap_kenter_attr(va + tmpsize, pa + tmpsize, mode);
pmap_invalidate_range(kernel_pmap, va, va + tmpsize);
pmap_invalidate_cache_range(va, va + tmpsize, FALSE);
return ((void *)(va + offset));
}
void *
pmap_mapdev(vm_paddr_t pa, vm_size_t size)
{
return (pmap_mapdev_attr(pa, size, PAT_UNCACHEABLE));
}
void *
pmap_mapbios(vm_paddr_t pa, vm_size_t size)
{
return (pmap_mapdev_attr(pa, size, PAT_WRITE_BACK));
}
void
pmap_unmapdev(vm_offset_t va, vm_size_t size)
{
struct pmap_preinit_mapping *ppim;
vm_offset_t offset;
int i;
/* If we gave a direct map region in pmap_mapdev, do nothing */
if (va >= DMAP_MIN_ADDRESS && va < DMAP_MAX_ADDRESS)
return;
offset = va & PAGE_MASK;
size = round_page(offset + size);
va = trunc_page(va);
for (i = 0; i < PMAP_PREINIT_MAPPING_COUNT; i++) {
ppim = pmap_preinit_mapping + i;
if (ppim->va == va && ppim->sz == size) {
if (pmap_initialized)
return;
ppim->pa = 0;
ppim->va = 0;
ppim->sz = 0;
ppim->mode = 0;
if (va + size == virtual_avail)
virtual_avail = va;
return;
}
}
if (pmap_initialized)
kva_free(va, size);
}
/*
* Tries to demote a 1GB page mapping.
*/
static boolean_t
pmap_demote_pdpe(pmap_t pmap, pdp_entry_t *pdpe, vm_offset_t va)
{
pdp_entry_t newpdpe, oldpdpe;
pd_entry_t *firstpde, newpde, *pde;
pt_entry_t PG_A, PG_M, PG_RW, PG_V;
vm_paddr_t pdpgpa;
vm_page_t pdpg;
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
PMAP_LOCK_ASSERT(pmap, MA_OWNED);
oldpdpe = *pdpe;
KASSERT((oldpdpe & (PG_PS | PG_V)) == (PG_PS | PG_V),
("pmap_demote_pdpe: oldpdpe is missing PG_PS and/or PG_V"));
if ((pdpg = vm_page_alloc(NULL, va >> PDPSHIFT, VM_ALLOC_INTERRUPT |
VM_ALLOC_NOOBJ | VM_ALLOC_WIRED)) == NULL) {
CTR2(KTR_PMAP, "pmap_demote_pdpe: failure for va %#lx"
" in pmap %p", va, pmap);
return (FALSE);
}
pdpgpa = VM_PAGE_TO_PHYS(pdpg);
firstpde = (pd_entry_t *)PHYS_TO_DMAP(pdpgpa);
newpdpe = pdpgpa | PG_M | PG_A | (oldpdpe & PG_U) | PG_RW | PG_V;
KASSERT((oldpdpe & PG_A) != 0,
("pmap_demote_pdpe: oldpdpe is missing PG_A"));
KASSERT((oldpdpe & (PG_M | PG_RW)) != PG_RW,
("pmap_demote_pdpe: oldpdpe is missing PG_M"));
newpde = oldpdpe;
/*
* Initialize the page directory page.
*/
for (pde = firstpde; pde < firstpde + NPDEPG; pde++) {
*pde = newpde;
newpde += NBPDR;
}
/*
* Demote the mapping.
*/
*pdpe = newpdpe;
/*
* Invalidate a stale recursive mapping of the page directory page.
*/
pmap_invalidate_page(pmap, (vm_offset_t)vtopde(va));
pmap_pdpe_demotions++;
CTR2(KTR_PMAP, "pmap_demote_pdpe: success for va %#lx"
" in pmap %p", va, pmap);
return (TRUE);
}
/*
* Sets the memory attribute for the specified page.
*/
void
pmap_page_set_memattr(vm_page_t m, vm_memattr_t ma)
{
m->md.pat_mode = ma;
/*
* If "m" is a normal page, update its direct mapping. This update
* can be relied upon to perform any cache operations that are
* required for data coherence.
*/
if ((m->flags & PG_FICTITIOUS) == 0 &&
pmap_change_attr(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)), PAGE_SIZE,
m->md.pat_mode))
panic("memory attribute change on the direct map failed");
}
/*
* Changes the specified virtual address range's memory type to that given by
* the parameter "mode". The specified virtual address range must be
* completely contained within either the direct map or the kernel map. If
* the virtual address range is contained within the kernel map, then the
* memory type for each of the corresponding ranges of the direct map is also
* changed. (The corresponding ranges of the direct map are those ranges that
* map the same physical pages as the specified virtual address range.) These
* changes to the direct map are necessary because Intel describes the
* behavior of their processors as "undefined" if two or more mappings to the
* same physical page have different memory types.
*
* Returns zero if the change completed successfully, and either EINVAL or
* ENOMEM if the change failed. Specifically, EINVAL is returned if some part
* of the virtual address range was not mapped, and ENOMEM is returned if
* there was insufficient memory available to complete the change. In the
* latter case, the memory type may have been changed on some part of the
* virtual address range or the direct map.
*/
int
pmap_change_attr(vm_offset_t va, vm_size_t size, int mode)
{
int error;
PMAP_LOCK(kernel_pmap);
error = pmap_change_attr_locked(va, size, mode);
PMAP_UNLOCK(kernel_pmap);
return (error);
}
static int
pmap_change_attr_locked(vm_offset_t va, vm_size_t size, int mode)
{
vm_offset_t base, offset, tmpva;
vm_paddr_t pa_start, pa_end, pa_end1;
pdp_entry_t *pdpe;
pd_entry_t *pde;
pt_entry_t *pte;
int cache_bits_pte, cache_bits_pde, error;
boolean_t changed;
PMAP_LOCK_ASSERT(kernel_pmap, MA_OWNED);
base = trunc_page(va);
offset = va & PAGE_MASK;
size = round_page(offset + size);
/*
* Only supported on kernel virtual addresses, including the direct
* map but excluding the recursive map.
*/
if (base < DMAP_MIN_ADDRESS)
return (EINVAL);
cache_bits_pde = pmap_cache_bits(kernel_pmap, mode, 1);
cache_bits_pte = pmap_cache_bits(kernel_pmap, mode, 0);
changed = FALSE;
/*
* Pages that aren't mapped aren't supported. Also break down 2MB pages
* into 4KB pages if required.
*/
for (tmpva = base; tmpva < base + size; ) {
pdpe = pmap_pdpe(kernel_pmap, tmpva);
if (pdpe == NULL || *pdpe == 0)
return (EINVAL);
if (*pdpe & PG_PS) {
/*
* If the current 1GB page already has the required
* memory type, then we need not demote this page. Just
* increment tmpva to the next 1GB page frame.
*/
if ((*pdpe & X86_PG_PDE_CACHE) == cache_bits_pde) {
tmpva = trunc_1gpage(tmpva) + NBPDP;
continue;
}
/*
* If the current offset aligns with a 1GB page frame
* and there is at least 1GB left within the range, then
* we need not break down this page into 2MB pages.
*/
if ((tmpva & PDPMASK) == 0 &&
tmpva + PDPMASK < base + size) {
tmpva += NBPDP;
continue;
}
if (!pmap_demote_pdpe(kernel_pmap, pdpe, tmpva))
return (ENOMEM);
}
pde = pmap_pdpe_to_pde(pdpe, tmpva);
if (*pde == 0)
return (EINVAL);
if (*pde & PG_PS) {
/*
* If the current 2MB page already has the required
* memory type, then we need not demote this page. Just
* increment tmpva to the next 2MB page frame.
*/
if ((*pde & X86_PG_PDE_CACHE) == cache_bits_pde) {
tmpva = trunc_2mpage(tmpva) + NBPDR;
continue;
}
/*
* If the current offset aligns with a 2MB page frame
* and there is at least 2MB left within the range, then
* we need not break down this page into 4KB pages.
*/
if ((tmpva & PDRMASK) == 0 &&
tmpva + PDRMASK < base + size) {
tmpva += NBPDR;
continue;
}
if (!pmap_demote_pde(kernel_pmap, pde, tmpva))
return (ENOMEM);
}
pte = pmap_pde_to_pte(pde, tmpva);
if (*pte == 0)
return (EINVAL);
tmpva += PAGE_SIZE;
}
error = 0;
/*
* Ok, all the pages exist, so run through them updating their
* cache mode if required.
*/
pa_start = pa_end = 0;
for (tmpva = base; tmpva < base + size; ) {
pdpe = pmap_pdpe(kernel_pmap, tmpva);
if (*pdpe & PG_PS) {
if ((*pdpe & X86_PG_PDE_CACHE) != cache_bits_pde) {
pmap_pde_attr(pdpe, cache_bits_pde,
X86_PG_PDE_CACHE);
changed = TRUE;
}
if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
(*pdpe & PG_PS_FRAME) < dmaplimit) {
if (pa_start == pa_end) {
/* Start physical address run. */
pa_start = *pdpe & PG_PS_FRAME;
pa_end = pa_start + NBPDP;
} else if (pa_end == (*pdpe & PG_PS_FRAME))
pa_end += NBPDP;
else {
/* Run ended, update direct map. */
error = pmap_change_attr_locked(
PHYS_TO_DMAP(pa_start),
pa_end - pa_start, mode);
if (error != 0)
break;
/* Start physical address run. */
pa_start = *pdpe & PG_PS_FRAME;
pa_end = pa_start + NBPDP;
}
}
tmpva = trunc_1gpage(tmpva) + NBPDP;
continue;
}
pde = pmap_pdpe_to_pde(pdpe, tmpva);
if (*pde & PG_PS) {
if ((*pde & X86_PG_PDE_CACHE) != cache_bits_pde) {
pmap_pde_attr(pde, cache_bits_pde,
X86_PG_PDE_CACHE);
changed = TRUE;
}
if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
(*pde & PG_PS_FRAME) < dmaplimit) {
if (pa_start == pa_end) {
/* Start physical address run. */
pa_start = *pde & PG_PS_FRAME;
pa_end = pa_start + NBPDR;
} else if (pa_end == (*pde & PG_PS_FRAME))
pa_end += NBPDR;
else {
/* Run ended, update direct map. */
error = pmap_change_attr_locked(
PHYS_TO_DMAP(pa_start),
pa_end - pa_start, mode);
if (error != 0)
break;
/* Start physical address run. */
pa_start = *pde & PG_PS_FRAME;
pa_end = pa_start + NBPDR;
}
}
tmpva = trunc_2mpage(tmpva) + NBPDR;
} else {
pte = pmap_pde_to_pte(pde, tmpva);
if ((*pte & X86_PG_PTE_CACHE) != cache_bits_pte) {
pmap_pte_attr(pte, cache_bits_pte,
X86_PG_PTE_CACHE);
changed = TRUE;
}
if (tmpva >= VM_MIN_KERNEL_ADDRESS &&
(*pte & PG_FRAME) < dmaplimit) {
if (pa_start == pa_end) {
/* Start physical address run. */
pa_start = *pte & PG_FRAME;
pa_end = pa_start + PAGE_SIZE;
} else if (pa_end == (*pte & PG_FRAME))
pa_end += PAGE_SIZE;
else {
/* Run ended, update direct map. */
error = pmap_change_attr_locked(
PHYS_TO_DMAP(pa_start),
pa_end - pa_start, mode);
if (error != 0)
break;
/* Start physical address run. */
pa_start = *pte & PG_FRAME;
pa_end = pa_start + PAGE_SIZE;
}
}
tmpva += PAGE_SIZE;
}
}
if (error == 0 && pa_start != pa_end && pa_start < dmaplimit) {
pa_end1 = MIN(pa_end, dmaplimit);
if (pa_start != pa_end1)
error = pmap_change_attr_locked(PHYS_TO_DMAP(pa_start),
pa_end1 - pa_start, mode);
}
/*
* Flush CPU caches if required to make sure any data isn't cached that
* shouldn't be, etc.
*/
if (changed) {
pmap_invalidate_range(kernel_pmap, base, tmpva);
pmap_invalidate_cache_range(base, tmpva, FALSE);
}
return (error);
}
/*
* Demotes any mapping within the direct map region that covers more than the
* specified range of physical addresses. This range's size must be a power
* of two and its starting address must be a multiple of its size. Since the
* demotion does not change any attributes of the mapping, a TLB invalidation
* is not mandatory. The caller may, however, request a TLB invalidation.
*/
void
pmap_demote_DMAP(vm_paddr_t base, vm_size_t len, boolean_t invalidate)
{
pdp_entry_t *pdpe;
pd_entry_t *pde;
vm_offset_t va;
boolean_t changed;
if (len == 0)
return;
KASSERT(powerof2(len), ("pmap_demote_DMAP: len is not a power of 2"));
KASSERT((base & (len - 1)) == 0,
("pmap_demote_DMAP: base is not a multiple of len"));
if (len < NBPDP && base < dmaplimit) {
va = PHYS_TO_DMAP(base);
changed = FALSE;
PMAP_LOCK(kernel_pmap);
pdpe = pmap_pdpe(kernel_pmap, va);
if ((*pdpe & X86_PG_V) == 0)
panic("pmap_demote_DMAP: invalid PDPE");
if ((*pdpe & PG_PS) != 0) {
if (!pmap_demote_pdpe(kernel_pmap, pdpe, va))
panic("pmap_demote_DMAP: PDPE failed");
changed = TRUE;
}
if (len < NBPDR) {
pde = pmap_pdpe_to_pde(pdpe, va);
if ((*pde & X86_PG_V) == 0)
panic("pmap_demote_DMAP: invalid PDE");
if ((*pde & PG_PS) != 0) {
if (!pmap_demote_pde(kernel_pmap, pde, va))
panic("pmap_demote_DMAP: PDE failed");
changed = TRUE;
}
}
if (changed && invalidate)
pmap_invalidate_page(kernel_pmap, va);
PMAP_UNLOCK(kernel_pmap);
}
}
/*
* perform the pmap work for mincore
*/
int
pmap_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *locked_pa)
{
pd_entry_t *pdep;
pt_entry_t pte, PG_A, PG_M, PG_RW, PG_V;
vm_paddr_t pa;
int val;
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
PMAP_LOCK(pmap);
retry:
pdep = pmap_pde(pmap, addr);
if (pdep != NULL && (*pdep & PG_V)) {
if (*pdep & PG_PS) {
pte = *pdep;
/* Compute the physical address of the 4KB page. */
pa = ((*pdep & PG_PS_FRAME) | (addr & PDRMASK)) &
PG_FRAME;
val = MINCORE_SUPER;
} else {
pte = *pmap_pde_to_pte(pdep, addr);
pa = pte & PG_FRAME;
val = 0;
}
} else {
pte = 0;
pa = 0;
val = 0;
}
if ((pte & PG_V) != 0) {
val |= MINCORE_INCORE;
if ((pte & (PG_M | PG_RW)) == (PG_M | PG_RW))
val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER;
if ((pte & PG_A) != 0)
val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER;
}
if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) !=
(MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) &&
(pte & (PG_MANAGED | PG_V)) == (PG_MANAGED | PG_V)) {
/* Ensure that "PHYS_TO_VM_PAGE(pa)->object" doesn't change. */
if (vm_page_pa_tryrelock(pmap, pa, locked_pa))
goto retry;
} else
PA_UNLOCK_COND(*locked_pa);
PMAP_UNLOCK(pmap);
return (val);
}
static uint64_t
pmap_pcid_alloc(pmap_t pmap, u_int cpuid)
{
uint32_t gen, new_gen, pcid_next;
CRITICAL_ASSERT(curthread);
gen = PCPU_GET(pcid_gen);
if (pmap->pm_pcids[cpuid].pm_pcid == PMAP_PCID_KERN)
return (pti ? 0 : CR3_PCID_SAVE);
if (pmap->pm_pcids[cpuid].pm_gen == gen)
return (CR3_PCID_SAVE);
pcid_next = PCPU_GET(pcid_next);
KASSERT((!pti && pcid_next <= PMAP_PCID_OVERMAX) ||
(pti && pcid_next <= PMAP_PCID_OVERMAX_KERN),
("cpu %d pcid_next %#x", cpuid, pcid_next));
if ((!pti && pcid_next == PMAP_PCID_OVERMAX) ||
(pti && pcid_next == PMAP_PCID_OVERMAX_KERN)) {
new_gen = gen + 1;
if (new_gen == 0)
new_gen = 1;
PCPU_SET(pcid_gen, new_gen);
pcid_next = PMAP_PCID_KERN + 1;
} else {
new_gen = gen;
}
pmap->pm_pcids[cpuid].pm_pcid = pcid_next;
pmap->pm_pcids[cpuid].pm_gen = new_gen;
PCPU_SET(pcid_next, pcid_next + 1);
return (0);
}
void
pmap_activate_sw(struct thread *td)
{
pmap_t oldpmap, pmap;
struct invpcid_descr d;
uint64_t cached, cr3, kcr3, kern_pti_cached, ucr3;
register_t rflags;
u_int cpuid;
oldpmap = PCPU_GET(curpmap);
pmap = vmspace_pmap(td->td_proc->p_vmspace);
if (oldpmap == pmap)
return;
cpuid = PCPU_GET(cpuid);
#ifdef SMP
CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
#else
CPU_SET(cpuid, &pmap->pm_active);
#endif
cr3 = rcr3();
if (pmap_pcid_enabled) {
cached = pmap_pcid_alloc(pmap, cpuid);
KASSERT(pmap->pm_pcids[cpuid].pm_pcid >= 0 &&
pmap->pm_pcids[cpuid].pm_pcid < PMAP_PCID_OVERMAX,
("pmap %p cpu %d pcid %#x", pmap, cpuid,
pmap->pm_pcids[cpuid].pm_pcid));
KASSERT(pmap->pm_pcids[cpuid].pm_pcid != PMAP_PCID_KERN ||
pmap == kernel_pmap,
("non-kernel pmap thread %p pmap %p cpu %d pcid %#x",
td, pmap, cpuid, pmap->pm_pcids[cpuid].pm_pcid));
/*
* If the INVPCID instruction is not available,
* invltlb_pcid_handler() is used for handle
* invalidate_all IPI, which checks for curpmap ==
* smp_tlb_pmap. Below operations sequence has a
* window where %CR3 is loaded with the new pmap's
* PML4 address, but curpmap value is not yet updated.
* This causes invltlb IPI handler, called between the
* updates, to execute as NOP, which leaves stale TLB
* entries.
*
* Note that the most typical use of
* pmap_activate_sw(), from the context switch, is
* immune to this race, because interrupts are
* disabled (while the thread lock is owned), and IPI
* happends after curpmap is updated. Protect other
* callers in a similar way, by disabling interrupts
* around the %cr3 register reload and curpmap
* assignment.
*/
if (!invpcid_works)
rflags = intr_disable();
kern_pti_cached = pti ? 0 : cached;
if (!kern_pti_cached || (cr3 & ~CR3_PCID_MASK) != pmap->pm_cr3) {
load_cr3(pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid |
kern_pti_cached);
}
PCPU_SET(curpmap, pmap);
if (pti) {
kcr3 = pmap->pm_cr3 | pmap->pm_pcids[cpuid].pm_pcid;
ucr3 = pmap->pm_ucr3 | pmap->pm_pcids[cpuid].pm_pcid |
PMAP_PCID_USER_PT;
if (!cached && pmap->pm_ucr3 != PMAP_NO_CR3) {
/*
* Manually invalidate translations cached
* from the user page table. They are not
* flushed by reload of cr3 with the kernel
* page table pointer above.
*/
if (invpcid_works) {
d.pcid = PMAP_PCID_USER_PT |
pmap->pm_pcids[cpuid].pm_pcid;
d.pad = 0;
d.addr = 0;
invpcid(&d, INVPCID_CTX);
} else {
pmap_pti_pcid_invalidate(ucr3, kcr3);
}
}
PCPU_SET(kcr3, kcr3 | CR3_PCID_SAVE);
PCPU_SET(ucr3, ucr3 | CR3_PCID_SAVE);
}
if (!invpcid_works)
intr_restore(rflags);
if (cached)
PCPU_INC(pm_save_cnt);
} else if (cr3 != pmap->pm_cr3) {
load_cr3(pmap->pm_cr3);
PCPU_SET(curpmap, pmap);
if (pti) {
PCPU_SET(kcr3, pmap->pm_cr3);
PCPU_SET(ucr3, pmap->pm_ucr3);
}
}
#ifdef SMP
CPU_CLR_ATOMIC(cpuid, &oldpmap->pm_active);
#else
CPU_CLR(cpuid, &oldpmap->pm_active);
#endif
}
void
pmap_activate(struct thread *td)
{
critical_enter();
pmap_activate_sw(td);
critical_exit();
}
void
pmap_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz)
{
}
/*
* Increase the starting virtual address of the given mapping if a
* different alignment might result in more superpage mappings.
*/
void
pmap_align_superpage(vm_object_t object, vm_ooffset_t offset,
vm_offset_t *addr, vm_size_t size)
{
vm_offset_t superpage_offset;
if (size < NBPDR)
return;
if (object != NULL && (object->flags & OBJ_COLORED) != 0)
offset += ptoa(object->pg_color);
superpage_offset = offset & PDRMASK;
if (size - ((NBPDR - superpage_offset) & PDRMASK) < NBPDR ||
(*addr & PDRMASK) == superpage_offset)
return;
if ((*addr & PDRMASK) < superpage_offset)
*addr = (*addr & ~PDRMASK) + superpage_offset;
else
*addr = ((*addr + PDRMASK) & ~PDRMASK) + superpage_offset;
}
#ifdef INVARIANTS
static unsigned long num_dirty_emulations;
SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_dirty_emulations, CTLFLAG_RW,
&num_dirty_emulations, 0, NULL);
static unsigned long num_accessed_emulations;
SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_accessed_emulations, CTLFLAG_RW,
&num_accessed_emulations, 0, NULL);
static unsigned long num_superpage_accessed_emulations;
SYSCTL_ULONG(_vm_pmap, OID_AUTO, num_superpage_accessed_emulations, CTLFLAG_RW,
&num_superpage_accessed_emulations, 0, NULL);
static unsigned long ad_emulation_superpage_promotions;
SYSCTL_ULONG(_vm_pmap, OID_AUTO, ad_emulation_superpage_promotions, CTLFLAG_RW,
&ad_emulation_superpage_promotions, 0, NULL);
#endif /* INVARIANTS */
int
pmap_emulate_accessed_dirty(pmap_t pmap, vm_offset_t va, int ftype)
{
int rv;
struct rwlock *lock;
#if VM_NRESERVLEVEL > 0
vm_page_t m, mpte;
#endif
pd_entry_t *pde;
pt_entry_t *pte, PG_A, PG_M, PG_RW, PG_V;
KASSERT(ftype == VM_PROT_READ || ftype == VM_PROT_WRITE,
("pmap_emulate_accessed_dirty: invalid fault type %d", ftype));
if (!pmap_emulate_ad_bits(pmap))
return (-1);
PG_A = pmap_accessed_bit(pmap);
PG_M = pmap_modified_bit(pmap);
PG_V = pmap_valid_bit(pmap);
PG_RW = pmap_rw_bit(pmap);
rv = -1;
lock = NULL;
PMAP_LOCK(pmap);
pde = pmap_pde(pmap, va);
if (pde == NULL || (*pde & PG_V) == 0)
goto done;
if ((*pde & PG_PS) != 0) {
if (ftype == VM_PROT_READ) {
#ifdef INVARIANTS
atomic_add_long(&num_superpage_accessed_emulations, 1);
#endif
*pde |= PG_A;
rv = 0;
}
goto done;
}
pte = pmap_pde_to_pte(pde, va);
if ((*pte & PG_V) == 0)
goto done;
if (ftype == VM_PROT_WRITE) {
if ((*pte & PG_RW) == 0)
goto done;
/*
* Set the modified and accessed bits simultaneously.
*
* Intel EPT PTEs that do software emulation of A/D bits map
* PG_A and PG_M to EPT_PG_READ and EPT_PG_WRITE respectively.
* An EPT misconfiguration is triggered if the PTE is writable
* but not readable (WR=10). This is avoided by setting PG_A
* and PG_M simultaneously.
*/
*pte |= PG_M | PG_A;
} else {
*pte |= PG_A;
}
#if VM_NRESERVLEVEL > 0
/* try to promote the mapping */
if (va < VM_MAXUSER_ADDRESS)
mpte = PHYS_TO_VM_PAGE(*pde & PG_FRAME);
else
mpte = NULL;
m = PHYS_TO_VM_PAGE(*pte & PG_FRAME);
if ((mpte == NULL || mpte->wire_count == NPTEPG) &&
pmap_ps_enabled(pmap) &&
(m->flags & PG_FICTITIOUS) == 0 &&
vm_reserv_level_iffullpop(m) == 0) {
pmap_promote_pde(pmap, pde, va, &lock);
#ifdef INVARIANTS
atomic_add_long(&ad_emulation_superpage_promotions, 1);
#endif
}
#endif
#ifdef INVARIANTS
if (ftype == VM_PROT_WRITE)
atomic_add_long(&num_dirty_emulations, 1);
else
atomic_add_long(&num_accessed_emulations, 1);
#endif
rv = 0; /* success */
done:
if (lock != NULL)
rw_wunlock(lock);
PMAP_UNLOCK(pmap);
return (rv);
}
void
pmap_get_mapping(pmap_t pmap, vm_offset_t va, uint64_t *ptr, int *num)
{
pml4_entry_t *pml4;
pdp_entry_t *pdp;
pd_entry_t *pde;
pt_entry_t *pte, PG_V;
int idx;
idx = 0;
PG_V = pmap_valid_bit(pmap);
PMAP_LOCK(pmap);
pml4 = pmap_pml4e(pmap, va);
ptr[idx++] = *pml4;
if ((*pml4 & PG_V) == 0)
goto done;
pdp = pmap_pml4e_to_pdpe(pml4, va);
ptr[idx++] = *pdp;
if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0)
goto done;
pde = pmap_pdpe_to_pde(pdp, va);
ptr[idx++] = *pde;
if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0)
goto done;
pte = pmap_pde_to_pte(pde, va);
ptr[idx++] = *pte;
done:
PMAP_UNLOCK(pmap);
*num = idx;
}
/**
* Get the kernel virtual address of a set of physical pages. If there are
* physical addresses not covered by the DMAP perform a transient mapping
* that will be removed when calling pmap_unmap_io_transient.
*
* \param page The pages the caller wishes to obtain the virtual
* address on the kernel memory map.
* \param vaddr On return contains the kernel virtual memory address
* of the pages passed in the page parameter.
* \param count Number of pages passed in.
* \param can_fault TRUE if the thread using the mapped pages can take
* page faults, FALSE otherwise.
*
* \returns TRUE if the caller must call pmap_unmap_io_transient when
* finished or FALSE otherwise.
*
*/
boolean_t
pmap_map_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
boolean_t can_fault)
{
vm_paddr_t paddr;
boolean_t needs_mapping;
pt_entry_t *pte;
int cache_bits, error, i;
/*
* Allocate any KVA space that we need, this is done in a separate
* loop to prevent calling vmem_alloc while pinned.
*/
needs_mapping = FALSE;
for (i = 0; i < count; i++) {
paddr = VM_PAGE_TO_PHYS(page[i]);
if (__predict_false(paddr >= dmaplimit)) {
error = vmem_alloc(kernel_arena, PAGE_SIZE,
M_BESTFIT | M_WAITOK, &vaddr[i]);
KASSERT(error == 0, ("vmem_alloc failed: %d", error));
needs_mapping = TRUE;
} else {
vaddr[i] = PHYS_TO_DMAP(paddr);
}
}
/* Exit early if everything is covered by the DMAP */
if (!needs_mapping)
return (FALSE);
/*
* NB: The sequence of updating a page table followed by accesses
* to the corresponding pages used in the !DMAP case is subject to
* the situation described in the "AMD64 Architecture Programmer's
* Manual Volume 2: System Programming" rev. 3.23, "7.3.1 Special
* Coherency Considerations". Therefore, issuing the INVLPG right
* after modifying the PTE bits is crucial.
*/
if (!can_fault)
sched_pin();
for (i = 0; i < count; i++) {
paddr = VM_PAGE_TO_PHYS(page[i]);
if (paddr >= dmaplimit) {
if (can_fault) {
/*
* Slow path, since we can get page faults
* while mappings are active don't pin the
* thread to the CPU and instead add a global
* mapping visible to all CPUs.
*/
pmap_qenter(vaddr[i], &page[i], 1);
} else {
pte = vtopte(vaddr[i]);
cache_bits = pmap_cache_bits(kernel_pmap,
page[i]->md.pat_mode, 0);
pte_store(pte, paddr | X86_PG_RW | X86_PG_V |
cache_bits);
invlpg(vaddr[i]);
}
}
}
return (needs_mapping);
}
void
pmap_unmap_io_transient(vm_page_t page[], vm_offset_t vaddr[], int count,
boolean_t can_fault)
{
vm_paddr_t paddr;
int i;
if (!can_fault)
sched_unpin();
for (i = 0; i < count; i++) {
paddr = VM_PAGE_TO_PHYS(page[i]);
if (paddr >= dmaplimit) {
if (can_fault)
pmap_qremove(vaddr[i], 1);
vmem_free(kernel_arena, vaddr[i], PAGE_SIZE);
}
}
}
vm_offset_t
pmap_quick_enter_page(vm_page_t m)
{
vm_paddr_t paddr;
paddr = VM_PAGE_TO_PHYS(m);
if (paddr < dmaplimit)
return (PHYS_TO_DMAP(paddr));
mtx_lock_spin(&qframe_mtx);
KASSERT(*vtopte(qframe) == 0, ("qframe busy"));
pte_store(vtopte(qframe), paddr | X86_PG_RW | X86_PG_V | X86_PG_A |
X86_PG_M | pmap_cache_bits(kernel_pmap, m->md.pat_mode, 0));
return (qframe);
}
void
pmap_quick_remove_page(vm_offset_t addr)
{
if (addr != qframe)
return;
pte_store(vtopte(qframe), 0);
invlpg(qframe);
mtx_unlock_spin(&qframe_mtx);
}
static vm_page_t
pmap_pti_alloc_page(void)
{
vm_page_t m;
VM_OBJECT_ASSERT_WLOCKED(pti_obj);
m = vm_page_grab(pti_obj, pti_pg_idx++, VM_ALLOC_NOBUSY |
VM_ALLOC_WIRED | VM_ALLOC_ZERO);
return (m);
}
static bool
pmap_pti_free_page(vm_page_t m)
{
KASSERT(m->wire_count > 0, ("page %p not wired", m));
m->wire_count--;
if (m->wire_count != 0)
return (false);
atomic_subtract_int(&vm_cnt.v_wire_count, 1);
vm_page_free_zero(m);
return (true);
}
static void
pmap_pti_init(void)
{
vm_page_t pml4_pg;
pdp_entry_t *pdpe;
vm_offset_t va;
int i;
if (!pti)
return;
pti_obj = vm_pager_allocate(OBJT_PHYS, NULL, 0, VM_PROT_ALL, 0, NULL);
VM_OBJECT_WLOCK(pti_obj);
pml4_pg = pmap_pti_alloc_page();
pti_pml4 = (pml4_entry_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(pml4_pg));
for (va = VM_MIN_KERNEL_ADDRESS; va <= VM_MAX_KERNEL_ADDRESS &&
va >= VM_MIN_KERNEL_ADDRESS && va > NBPML4; va += NBPML4) {
pdpe = pmap_pti_pdpe(va);
pmap_pti_wire_pte(pdpe);
}
pmap_pti_add_kva_locked((vm_offset_t)&__pcpu[0],
(vm_offset_t)&__pcpu[0] + sizeof(__pcpu[0]) * MAXCPU, false);
pmap_pti_add_kva_locked((vm_offset_t)gdt, (vm_offset_t)gdt +
sizeof(struct user_segment_descriptor) * NGDT * MAXCPU, false);
pmap_pti_add_kva_locked((vm_offset_t)idt, (vm_offset_t)idt +
sizeof(struct gate_descriptor) * NIDT, false);
pmap_pti_add_kva_locked((vm_offset_t)common_tss,
(vm_offset_t)common_tss + sizeof(struct amd64tss) * MAXCPU, false);
CPU_FOREACH(i) {
/* Doublefault stack IST 1 */
va = common_tss[i].tss_ist1;
pmap_pti_add_kva_locked(va - PAGE_SIZE, va, false);
/* NMI stack IST 2 */
va = common_tss[i].tss_ist2 + sizeof(struct nmi_pcpu);
pmap_pti_add_kva_locked(va - PAGE_SIZE, va, false);
/* MC# stack IST 3 */
va = common_tss[i].tss_ist3 + sizeof(struct nmi_pcpu);
pmap_pti_add_kva_locked(va - PAGE_SIZE, va, false);
/* DB# stack IST 4 */
va = common_tss[i].tss_ist4 + sizeof(struct nmi_pcpu);
pmap_pti_add_kva_locked(va - PAGE_SIZE, va, false);
}
pmap_pti_add_kva_locked((vm_offset_t)kernphys + KERNBASE,
(vm_offset_t)etext, true);
pti_finalized = true;
VM_OBJECT_WUNLOCK(pti_obj);
}
SYSINIT(pmap_pti, SI_SUB_CPU + 1, SI_ORDER_ANY, pmap_pti_init, NULL);
static pdp_entry_t *
pmap_pti_pdpe(vm_offset_t va)
{
pml4_entry_t *pml4e;
pdp_entry_t *pdpe;
vm_page_t m;
vm_pindex_t pml4_idx;
vm_paddr_t mphys;
VM_OBJECT_ASSERT_WLOCKED(pti_obj);
pml4_idx = pmap_pml4e_index(va);
pml4e = &pti_pml4[pml4_idx];
m = NULL;
if (*pml4e == 0) {
if (pti_finalized)
panic("pml4 alloc after finalization\n");
m = pmap_pti_alloc_page();
if (*pml4e != 0) {
pmap_pti_free_page(m);
mphys = *pml4e & ~PAGE_MASK;
} else {
mphys = VM_PAGE_TO_PHYS(m);
*pml4e = mphys | X86_PG_RW | X86_PG_V;
}
} else {
mphys = *pml4e & ~PAGE_MASK;
}
pdpe = (pdp_entry_t *)PHYS_TO_DMAP(mphys) + pmap_pdpe_index(va);
return (pdpe);
}
static void
pmap_pti_wire_pte(void *pte)
{
vm_page_t m;
VM_OBJECT_ASSERT_WLOCKED(pti_obj);
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
m->wire_count++;
}
static void
pmap_pti_unwire_pde(void *pde, bool only_ref)
{
vm_page_t m;
VM_OBJECT_ASSERT_WLOCKED(pti_obj);
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pde));
MPASS(m->wire_count > 0);
MPASS(only_ref || m->wire_count > 1);
pmap_pti_free_page(m);
}
static void
pmap_pti_unwire_pte(void *pte, vm_offset_t va)
{
vm_page_t m;
pd_entry_t *pde;
VM_OBJECT_ASSERT_WLOCKED(pti_obj);
m = PHYS_TO_VM_PAGE(DMAP_TO_PHYS((uintptr_t)pte));
MPASS(m->wire_count > 0);
if (pmap_pti_free_page(m)) {
pde = pmap_pti_pde(va);
MPASS((*pde & (X86_PG_PS | X86_PG_V)) == X86_PG_V);
*pde = 0;
pmap_pti_unwire_pde(pde, false);
}
}
static pd_entry_t *
pmap_pti_pde(vm_offset_t va)
{
pdp_entry_t *pdpe;
pd_entry_t *pde;
vm_page_t m;
vm_pindex_t pd_idx;
vm_paddr_t mphys;
VM_OBJECT_ASSERT_WLOCKED(pti_obj);
pdpe = pmap_pti_pdpe(va);
if (*pdpe == 0) {
m = pmap_pti_alloc_page();
if (*pdpe != 0) {
pmap_pti_free_page(m);
MPASS((*pdpe & X86_PG_PS) == 0);
mphys = *pdpe & ~PAGE_MASK;
} else {
mphys = VM_PAGE_TO_PHYS(m);
*pdpe = mphys | X86_PG_RW | X86_PG_V;
}
} else {
MPASS((*pdpe & X86_PG_PS) == 0);
mphys = *pdpe & ~PAGE_MASK;
}
pde = (pd_entry_t *)PHYS_TO_DMAP(mphys);
pd_idx = pmap_pde_index(va);
pde += pd_idx;
return (pde);
}
static pt_entry_t *
pmap_pti_pte(vm_offset_t va, bool *unwire_pde)
{
pd_entry_t *pde;
pt_entry_t *pte;
vm_page_t m;
vm_paddr_t mphys;
VM_OBJECT_ASSERT_WLOCKED(pti_obj);
pde = pmap_pti_pde(va);
if (unwire_pde != NULL) {
*unwire_pde = true;
pmap_pti_wire_pte(pde);
}
if (*pde == 0) {
m = pmap_pti_alloc_page();
if (*pde != 0) {
pmap_pti_free_page(m);
MPASS((*pde & X86_PG_PS) == 0);
mphys = *pde & ~(PAGE_MASK | pg_nx);
} else {
mphys = VM_PAGE_TO_PHYS(m);
*pde = mphys | X86_PG_RW | X86_PG_V;
if (unwire_pde != NULL)
*unwire_pde = false;
}
} else {
MPASS((*pde & X86_PG_PS) == 0);
mphys = *pde & ~(PAGE_MASK | pg_nx);
}
pte = (pt_entry_t *)PHYS_TO_DMAP(mphys);
pte += pmap_pte_index(va);
return (pte);
}
static void
pmap_pti_add_kva_locked(vm_offset_t sva, vm_offset_t eva, bool exec)
{
vm_paddr_t pa;
pd_entry_t *pde;
pt_entry_t *pte, ptev;
bool unwire_pde;
VM_OBJECT_ASSERT_WLOCKED(pti_obj);
sva = trunc_page(sva);
MPASS(sva > VM_MAXUSER_ADDRESS);
eva = round_page(eva);
MPASS(sva < eva);
for (; sva < eva; sva += PAGE_SIZE) {
pte = pmap_pti_pte(sva, &unwire_pde);
pa = pmap_kextract(sva);
ptev = pa | X86_PG_RW | X86_PG_V | X86_PG_A | X86_PG_G |
(exec ? 0 : pg_nx) | pmap_cache_bits(kernel_pmap,
VM_MEMATTR_DEFAULT, FALSE);
if (*pte == 0) {
pte_store(pte, ptev);
pmap_pti_wire_pte(pte);
} else {
KASSERT(!pti_finalized,
("pti overlap after fin %#lx %#lx %#lx",
sva, *pte, ptev));
KASSERT(*pte == ptev,
("pti non-identical pte after fin %#lx %#lx %#lx",
sva, *pte, ptev));
}
if (unwire_pde) {
pde = pmap_pti_pde(sva);
pmap_pti_unwire_pde(pde, true);
}
}
}
void
pmap_pti_add_kva(vm_offset_t sva, vm_offset_t eva, bool exec)
{
if (!pti)
return;
VM_OBJECT_WLOCK(pti_obj);
pmap_pti_add_kva_locked(sva, eva, exec);
VM_OBJECT_WUNLOCK(pti_obj);
}
void
pmap_pti_remove_kva(vm_offset_t sva, vm_offset_t eva)
{
pt_entry_t *pte;
vm_offset_t va;
if (!pti)
return;
sva = rounddown2(sva, PAGE_SIZE);
MPASS(sva > VM_MAXUSER_ADDRESS);
eva = roundup2(eva, PAGE_SIZE);
MPASS(sva < eva);
VM_OBJECT_WLOCK(pti_obj);
for (va = sva; va < eva; va += PAGE_SIZE) {
pte = pmap_pti_pte(va, NULL);
KASSERT((*pte & X86_PG_V) != 0,
("invalid pte va %#lx pte %#lx pt %#lx", va,
(u_long)pte, *pte));
pte_clear(pte);
pmap_pti_unwire_pte(pte, va);
}
pmap_invalidate_range(kernel_pmap, sva, eva);
VM_OBJECT_WUNLOCK(pti_obj);
}
#include "opt_ddb.h"
#ifdef DDB
#include <ddb/ddb.h>
DB_SHOW_COMMAND(pte, pmap_print_pte)
{
pmap_t pmap;
pml4_entry_t *pml4;
pdp_entry_t *pdp;
pd_entry_t *pde;
pt_entry_t *pte, PG_V;
vm_offset_t va;
if (have_addr) {
va = (vm_offset_t)addr;
pmap = PCPU_GET(curpmap); /* XXX */
} else {
db_printf("show pte addr\n");
return;
}
PG_V = pmap_valid_bit(pmap);
pml4 = pmap_pml4e(pmap, va);
db_printf("VA %#016lx pml4e %#016lx", va, *pml4);
if ((*pml4 & PG_V) == 0) {
db_printf("\n");
return;
}
pdp = pmap_pml4e_to_pdpe(pml4, va);
db_printf(" pdpe %#016lx", *pdp);
if ((*pdp & PG_V) == 0 || (*pdp & PG_PS) != 0) {
db_printf("\n");
return;
}
pde = pmap_pdpe_to_pde(pdp, va);
db_printf(" pde %#016lx", *pde);
if ((*pde & PG_V) == 0 || (*pde & PG_PS) != 0) {
db_printf("\n");
return;
}
pte = pmap_pde_to_pte(pde, va);
db_printf(" pte %#016lx\n", *pte);
}
DB_SHOW_COMMAND(phys2dmap, pmap_phys2dmap)
{
vm_paddr_t a;
if (have_addr) {
a = (vm_paddr_t)addr;
db_printf("0x%jx\n", (uintmax_t)PHYS_TO_DMAP(a));
} else {
db_printf("show phys2dmap addr\n");
}
}
#endif