netdata/libnetdata/dictionary/dictionary.c

3312 lines
125 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#define DICTIONARY_INTERNALS
#include "../libnetdata.h"
#include <Judy.h>
// runtime flags of the dictionary - must be checked with atomics
typedef enum {
DICT_FLAG_NONE = 0,
DICT_FLAG_DESTROYED = (1 << 0), // this dictionary has been destroyed
} DICT_FLAGS;
#define dict_flag_check(dict, flag) (__atomic_load_n(&((dict)->flags), __ATOMIC_SEQ_CST) & (flag))
#define dict_flag_set(dict, flag) __atomic_or_fetch(&((dict)->flags), flag, __ATOMIC_SEQ_CST)
#define dict_flag_clear(dict, flag) __atomic_and_fetch(&((dict)->flags), ~(flag), __ATOMIC_SEQ_CST)
// flags macros
#define is_dictionary_destroyed(dict) dict_flag_check(dict, DICT_FLAG_DESTROYED)
// configuration options macros
#define is_dictionary_single_threaded(dict) ((dict)->options & DICT_OPTION_SINGLE_THREADED)
#define is_view_dictionary(dict) ((dict)->master)
#define is_master_dictionary(dict) (!is_view_dictionary(dict))
typedef enum item_options {
ITEM_OPTION_NONE = 0,
ITEM_OPTION_ALLOCATED_NAME = (1 << 0), // the name pointer is a STRING
// IMPORTANT: This is 1-bit - to add more change ITEM_OPTIONS_BITS
} ITEM_OPTIONS;
typedef enum item_flags {
ITEM_FLAG_NONE = 0,
ITEM_FLAG_DELETED = (1 << 0), // this item is deleted, so it is not available for traversal
// IMPORTANT: This is 8-bit
} ITEM_FLAGS;
#define item_flag_check(item, flag) (__atomic_load_n(&((item)->flags), __ATOMIC_SEQ_CST) & (flag))
#define item_flag_set(item, flag) __atomic_or_fetch(&((item)->flags), flag, __ATOMIC_SEQ_CST)
#define item_flag_clear(item, flag) __atomic_and_fetch(&((item)->flags), ~(flag), __ATOMIC_SEQ_CST)
#define item_shared_flag_check(item, flag) (__atomic_load_n(&((item)->shared->flags), __ATOMIC_SEQ_CST) & (flag))
#define item_shared_flag_set(item, flag) __atomic_or_fetch(&((item)->shared->flags), flag, __ATOMIC_SEQ_CST)
#define item_shared_flag_clear(item, flag) __atomic_and_fetch(&((item)->shared->flags), ~(flag), __ATOMIC_SEQ_CST)
#define REFCOUNT_DELETING (-100)
#define ITEM_FLAGS_TYPE uint8_t
#define KEY_LEN_TYPE uint32_t
#define VALUE_LEN_TYPE uint32_t
#define ITEM_OPTIONS_BITS 1
#define KEY_LEN_BITS ((sizeof(KEY_LEN_TYPE) * 8) - (sizeof(ITEM_FLAGS_TYPE) * 8) - ITEM_OPTIONS_BITS)
#define KEY_LEN_MAX ((1 << KEY_LEN_BITS) - 1)
#define VALUE_LEN_BITS ((sizeof(VALUE_LEN_TYPE) * 8) - (sizeof(ITEM_FLAGS_TYPE) * 8))
#define VALUE_LEN_MAX ((1 << VALUE_LEN_BITS) - 1)
/*
* Every item in the dictionary has the following structure.
*/
typedef int32_t REFCOUNT;
typedef struct dictionary_item_shared {
void *value; // the value of the dictionary item
// the order of the following items is important!
// The total of their storage should be 64-bits
REFCOUNT links; // how many links this item has
VALUE_LEN_TYPE value_len:VALUE_LEN_BITS; // the size of the value
ITEM_FLAGS_TYPE flags; // shared flags
} DICTIONARY_ITEM_SHARED;
struct dictionary_item {
#ifdef NETDATA_INTERNAL_CHECKS
DICTIONARY *dict;
#endif
DICTIONARY_ITEM_SHARED *shared;
struct dictionary_item *next; // a double linked list to allow fast insertions and deletions
struct dictionary_item *prev;
union {
STRING *string_name; // the name of the dictionary item
char *caller_name; // the user supplied string pointer
// void *key_ptr; // binary key pointer
};
// the order of the following items is important!
// The total of their storage should be 64-bits
REFCOUNT refcount; // the private reference counter
KEY_LEN_TYPE key_len:KEY_LEN_BITS; // the size of key indexed (for strings, including the null terminator)
// this is (2^23 - 1) = 8.388.607 bytes max key length.
ITEM_OPTIONS options:ITEM_OPTIONS_BITS; // permanent configuration options
// (no atomic operations on this - they never change)
ITEM_FLAGS_TYPE flags; // runtime changing flags for this item (atomic operations on this)
// cannot be a bit field because of atomics.
};
struct dictionary_hooks {
REFCOUNT links;
usec_t last_master_deletion_us;
void (*ins_callback)(const DICTIONARY_ITEM *item, void *value, void *data);
void *ins_callback_data;
bool (*conflict_callback)(const DICTIONARY_ITEM *item, void *old_value, void *new_value, void *data);
void *conflict_callback_data;
void (*react_callback)(const DICTIONARY_ITEM *item, void *value, void *data);
void *react_callback_data;
void (*del_callback)(const DICTIONARY_ITEM *item, void *value, void *data);
void *del_callback_data;
};
struct dictionary_stats dictionary_stats_category_other = {
.name = "other",
};
struct dictionary {
#ifdef NETDATA_INTERNAL_CHECKS
const char *creation_function;
const char *creation_file;
size_t creation_line;
#endif
usec_t last_gc_run_us;
DICT_OPTIONS options; // the configuration flags of the dictionary (they never change - no atomics)
DICT_FLAGS flags; // run time flags for the dictionary (they change all the time - atomics needed)
struct { // support for multiple indexing engines
Pvoid_t JudyHSArray; // the hash table
netdata_rwlock_t rwlock; // protect the index
} index;
struct {
DICTIONARY_ITEM *list; // the double linked list of all items in the dictionary
netdata_rwlock_t rwlock; // protect the linked-list
pid_t writer_pid; // the gettid() of the writer
size_t writer_depth; // nesting of write locks
} items;
struct dictionary_hooks *hooks; // pointer to external function callbacks to be called at certain points
struct dictionary_stats *stats; // statistics data, when DICT_OPTION_STATS is set
DICTIONARY *master; // the master dictionary
DICTIONARY *next; // linked list for delayed destruction (garbage collection of whole dictionaries)
size_t version; // the current version of the dictionary
// it is incremented when:
// - item added
// - item removed
// - item value reset
// - conflict callback returns true
// - function dictionary_version_increment() is called
long int entries; // how many items are currently in the index (the linked list may have more)
long int referenced_items; // how many items of the dictionary are currently being used by 3rd parties
long int pending_deletion_items; // how many items of the dictionary have been deleted, but have not been removed yet
};
// forward definitions of functions used in reverse order in the code
static void garbage_collect_pending_deletes(DICTIONARY *dict);
static inline void item_linked_list_remove(DICTIONARY *dict, DICTIONARY_ITEM *item);
static size_t item_free_with_hooks(DICTIONARY *dict, DICTIONARY_ITEM *item);
static inline const char *item_get_name(const DICTIONARY_ITEM *item);
static bool item_is_not_referenced_and_can_be_removed(DICTIONARY *dict, DICTIONARY_ITEM *item);
static inline int hashtable_delete_unsafe(DICTIONARY *dict, const char *name, size_t name_len, void *item);
static void item_release(DICTIONARY *dict, DICTIONARY_ITEM *item);
#define ITEM_OK 0
#define ITEM_MARKED_FOR_DELETION (-1) // the item is marked for deletion
#define ITEM_IS_CURRENTLY_BEING_DELETED (-2) // the item is currently being deleted
#define item_check_and_acquire(dict, item) (item_check_and_acquire_advanced(dict, item, false) == ITEM_OK)
static int item_check_and_acquire_advanced(DICTIONARY *dict, DICTIONARY_ITEM *item, bool having_index_lock);
// ----------------------------------------------------------------------------
// memory statistics
static inline void DICTIONARY_STATS_PLUS_MEMORY(DICTIONARY *dict, size_t key_size, size_t item_size, size_t value_size) {
if(key_size)
__atomic_fetch_add(&dict->stats->memory.indexed, (long)key_size, __ATOMIC_RELAXED);
if(item_size)
__atomic_fetch_add(&dict->stats->memory.dict, (long)item_size, __ATOMIC_RELAXED);
if(value_size)
__atomic_fetch_add(&dict->stats->memory.values, (long)value_size, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_MINUS_MEMORY(DICTIONARY *dict, size_t key_size, size_t item_size, size_t value_size) {
if(key_size)
__atomic_fetch_sub(&dict->stats->memory.indexed, (long)key_size, __ATOMIC_RELAXED);
if(item_size)
__atomic_fetch_sub(&dict->stats->memory.dict, (long)item_size, __ATOMIC_RELAXED);
if(value_size)
__atomic_fetch_sub(&dict->stats->memory.values, (long)value_size, __ATOMIC_RELAXED);
}
// ----------------------------------------------------------------------------
// callbacks registration
static inline void dictionary_hooks_allocate(DICTIONARY *dict) {
if(dict->hooks) return;
dict->hooks = callocz(1, sizeof(struct dictionary_hooks));
dict->hooks->links = 1;
DICTIONARY_STATS_PLUS_MEMORY(dict, 0, sizeof(struct dictionary_hooks), 0);
}
static inline size_t dictionary_hooks_free(DICTIONARY *dict) {
if(!dict->hooks) return 0;
REFCOUNT links = __atomic_sub_fetch(&dict->hooks->links, 1, __ATOMIC_SEQ_CST);
if(links == 0) {
freez(dict->hooks);
dict->hooks = NULL;
DICTIONARY_STATS_MINUS_MEMORY(dict, 0, sizeof(struct dictionary_hooks), 0);
return sizeof(struct dictionary_hooks);
}
return 0;
}
void dictionary_register_insert_callback(DICTIONARY *dict, void (*ins_callback)(const DICTIONARY_ITEM *item, void *value, void *data), void *data) {
if(unlikely(is_view_dictionary(dict)))
fatal("DICTIONARY: called %s() on a view.", __FUNCTION__ );
dictionary_hooks_allocate(dict);
dict->hooks->ins_callback = ins_callback;
dict->hooks->ins_callback_data = data;
}
void dictionary_register_conflict_callback(DICTIONARY *dict, bool (*conflict_callback)(const DICTIONARY_ITEM *item, void *old_value, void *new_value, void *data), void *data) {
if(unlikely(is_view_dictionary(dict)))
fatal("DICTIONARY: called %s() on a view.", __FUNCTION__ );
dictionary_hooks_allocate(dict);
dict->hooks->conflict_callback = conflict_callback;
dict->hooks->conflict_callback_data = data;
}
void dictionary_register_react_callback(DICTIONARY *dict, void (*react_callback)(const DICTIONARY_ITEM *item, void *value, void *data), void *data) {
if(unlikely(is_view_dictionary(dict)))
fatal("DICTIONARY: called %s() on a view.", __FUNCTION__ );
dictionary_hooks_allocate(dict);
dict->hooks->react_callback = react_callback;
dict->hooks->react_callback_data = data;
}
void dictionary_register_delete_callback(DICTIONARY *dict, void (*del_callback)(const DICTIONARY_ITEM *item, void *value, void *data), void *data) {
if(unlikely(is_view_dictionary(dict)))
fatal("DICTIONARY: called %s() on a view.", __FUNCTION__ );
dictionary_hooks_allocate(dict);
dict->hooks->del_callback = del_callback;
dict->hooks->del_callback_data = data;
}
// ----------------------------------------------------------------------------
// dictionary statistics API
size_t dictionary_version(DICTIONARY *dict) {
if(unlikely(!dict)) return 0;
// this is required for views to return the right number
garbage_collect_pending_deletes(dict);
return __atomic_load_n(&dict->version, __ATOMIC_SEQ_CST);
}
size_t dictionary_entries(DICTIONARY *dict) {
if(unlikely(!dict)) return 0;
// this is required for views to return the right number
garbage_collect_pending_deletes(dict);
long int entries = __atomic_load_n(&dict->entries, __ATOMIC_SEQ_CST);
if(entries < 0)
fatal("DICTIONARY: entries is negative: %ld", entries);
return entries;
}
size_t dictionary_referenced_items(DICTIONARY *dict) {
if(unlikely(!dict)) return 0;
long int referenced_items = __atomic_load_n(&dict->referenced_items, __ATOMIC_SEQ_CST);
if(referenced_items < 0)
fatal("DICTIONARY: referenced items is negative: %ld", referenced_items);
return referenced_items;
}
long int dictionary_stats_for_registry(DICTIONARY *dict) {
if(unlikely(!dict)) return 0;
return (dict->stats->memory.indexed + dict->stats->memory.dict);
}
void dictionary_version_increment(DICTIONARY *dict) {
__atomic_fetch_add(&dict->version, 1, __ATOMIC_SEQ_CST);
}
// ----------------------------------------------------------------------------
// internal statistics API
static inline void DICTIONARY_STATS_SEARCHES_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->ops.searches, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_ENTRIES_PLUS1(DICTIONARY *dict) {
// statistics
__atomic_fetch_add(&dict->stats->items.entries, 1, __ATOMIC_RELAXED);
__atomic_fetch_add(&dict->stats->items.referenced, 1, __ATOMIC_RELAXED);
__atomic_fetch_add(&dict->stats->ops.inserts, 1, __ATOMIC_RELAXED);
if(unlikely(is_dictionary_single_threaded(dict))) {
dict->version++;
dict->entries++;
dict->referenced_items++;
}
else {
__atomic_fetch_add(&dict->version, 1, __ATOMIC_SEQ_CST);
__atomic_fetch_add(&dict->entries, 1, __ATOMIC_SEQ_CST);
__atomic_fetch_add(&dict->referenced_items, 1, __ATOMIC_SEQ_CST);
}
}
static inline void DICTIONARY_ENTRIES_MINUS1(DICTIONARY *dict) {
// statistics
__atomic_fetch_add(&dict->stats->ops.deletes, 1, __ATOMIC_RELAXED);
__atomic_fetch_sub(&dict->stats->items.entries, 1, __ATOMIC_RELAXED);
if(unlikely(is_dictionary_single_threaded(dict))) {
dict->version++;
dict->entries--;
}
else {
__atomic_fetch_add(&dict->version, 1, __ATOMIC_SEQ_CST);
__atomic_fetch_sub(&dict->entries, 1, __ATOMIC_SEQ_CST);
}
}
static inline void DICTIONARY_VALUE_RESETS_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->ops.resets, 1, __ATOMIC_RELAXED);
if(unlikely(is_dictionary_single_threaded(dict)))
dict->version++;
else
__atomic_fetch_add(&dict->version, 1, __ATOMIC_SEQ_CST);
}
static inline void DICTIONARY_STATS_TRAVERSALS_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->ops.traversals, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_WALKTHROUGHS_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->ops.walkthroughs, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_CHECK_SPINS_PLUS(DICTIONARY *dict, size_t count) {
__atomic_fetch_add(&dict->stats->spin_locks.use, count, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_INSERT_SPINS_PLUS(DICTIONARY *dict, size_t count) {
__atomic_fetch_add(&dict->stats->spin_locks.insert, count, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_SEARCH_IGNORES_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->spin_locks.search, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_CALLBACK_INSERTS_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->callbacks.inserts, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_CALLBACK_CONFLICTS_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->callbacks.conflicts, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_CALLBACK_REACTS_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->callbacks.reacts, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_CALLBACK_DELETES_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->callbacks.deletes, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_GARBAGE_COLLECTIONS_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->ops.garbage_collections, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_DICT_CREATIONS_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->dictionaries.active, 1, __ATOMIC_RELAXED);
__atomic_fetch_add(&dict->stats->ops.creations, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_DICT_DESTRUCTIONS_PLUS1(DICTIONARY *dict) {
__atomic_fetch_sub(&dict->stats->dictionaries.active, 1, __ATOMIC_RELAXED);
__atomic_fetch_add(&dict->stats->ops.destructions, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_DICT_DESTROY_QUEUED_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->dictionaries.deleted, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_DICT_DESTROY_QUEUED_MINUS1(DICTIONARY *dict) {
__atomic_fetch_sub(&dict->stats->dictionaries.deleted, 1, __ATOMIC_RELAXED);
}
static inline void DICTIONARY_STATS_DICT_FLUSHES_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->ops.flushes, 1, __ATOMIC_RELAXED);
}
static inline long int DICTIONARY_REFERENCED_ITEMS_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->items.referenced, 1, __ATOMIC_RELAXED);
if(unlikely(is_dictionary_single_threaded(dict)))
return ++dict->referenced_items;
else
return __atomic_add_fetch(&dict->referenced_items, 1, __ATOMIC_SEQ_CST);
}
static inline long int DICTIONARY_REFERENCED_ITEMS_MINUS1(DICTIONARY *dict) {
__atomic_fetch_sub(&dict->stats->items.referenced, 1, __ATOMIC_RELAXED);
if(unlikely(is_dictionary_single_threaded(dict)))
return --dict->referenced_items;
else
return __atomic_sub_fetch(&dict->referenced_items, 1, __ATOMIC_SEQ_CST);
}
static inline long int DICTIONARY_PENDING_DELETES_PLUS1(DICTIONARY *dict) {
__atomic_fetch_add(&dict->stats->items.pending_deletion, 1, __ATOMIC_RELAXED);
if(unlikely(is_dictionary_single_threaded(dict)))
return ++dict->pending_deletion_items;
else
return __atomic_add_fetch(&dict->pending_deletion_items, 1, __ATOMIC_SEQ_CST);
}
static inline long int DICTIONARY_PENDING_DELETES_MINUS1(DICTIONARY *dict) {
__atomic_fetch_sub(&dict->stats->items.pending_deletion, 1, __ATOMIC_RELAXED);
if(unlikely(is_dictionary_single_threaded(dict)))
return --dict->pending_deletion_items;
else
return __atomic_sub_fetch(&dict->pending_deletion_items, 1, __ATOMIC_SEQ_CST);
}
static inline long int DICTIONARY_PENDING_DELETES_GET(DICTIONARY *dict) {
if(unlikely(is_dictionary_single_threaded(dict)))
return dict->pending_deletion_items;
else
return __atomic_load_n(&dict->pending_deletion_items, __ATOMIC_SEQ_CST);
}
static inline REFCOUNT DICTIONARY_ITEM_REFCOUNT_GET(DICTIONARY *dict, DICTIONARY_ITEM *item) {
if(unlikely(dict && is_dictionary_single_threaded(dict))) // this is an exception, dict can be null
return item->refcount;
else
return (REFCOUNT)__atomic_load_n(&item->refcount, __ATOMIC_SEQ_CST);
}
// ----------------------------------------------------------------------------
// callbacks execution
static void dictionary_execute_insert_callback(DICTIONARY *dict, DICTIONARY_ITEM *item, void *constructor_data) {
if(likely(!dict->hooks || !dict->hooks->ins_callback))
return;
if(unlikely(is_view_dictionary(dict)))
fatal("DICTIONARY: called %s() on a view.", __FUNCTION__ );
internal_error(false,
"DICTIONARY: Running insert callback on item '%s' of dictionary created from %s() %zu@%s.",
item_get_name(item),
dict->creation_function,
dict->creation_line,
dict->creation_file);
DICTIONARY_STATS_CALLBACK_INSERTS_PLUS1(dict);
dict->hooks->ins_callback(item, item->shared->value, constructor_data?constructor_data:dict->hooks->ins_callback_data);
}
static bool dictionary_execute_conflict_callback(DICTIONARY *dict, DICTIONARY_ITEM *item, void *new_value, void *constructor_data) {
if(likely(!dict->hooks || !dict->hooks->conflict_callback))
return false;
if(unlikely(is_view_dictionary(dict)))
fatal("DICTIONARY: called %s() on a view.", __FUNCTION__ );
internal_error(false,
"DICTIONARY: Running conflict callback on item '%s' of dictionary created from %s() %zu@%s.",
item_get_name(item),
dict->creation_function,
dict->creation_line,
dict->creation_file);
DICTIONARY_STATS_CALLBACK_CONFLICTS_PLUS1(dict);
return dict->hooks->conflict_callback(
item, item->shared->value, new_value,
constructor_data ? constructor_data : dict->hooks->conflict_callback_data);
}
static void dictionary_execute_react_callback(DICTIONARY *dict, DICTIONARY_ITEM *item, void *constructor_data) {
if(likely(!dict->hooks || !dict->hooks->react_callback))
return;
if(unlikely(is_view_dictionary(dict)))
fatal("DICTIONARY: called %s() on a view.", __FUNCTION__ );
internal_error(false,
"DICTIONARY: Running react callback on item '%s' of dictionary created from %s() %zu@%s.",
item_get_name(item),
dict->creation_function,
dict->creation_line,
dict->creation_file);
DICTIONARY_STATS_CALLBACK_REACTS_PLUS1(dict);
dict->hooks->react_callback(item, item->shared->value,
constructor_data?constructor_data:dict->hooks->react_callback_data);
}
static void dictionary_execute_delete_callback(DICTIONARY *dict, DICTIONARY_ITEM *item) {
if(likely(!dict->hooks || !dict->hooks->del_callback))
return;
// We may execute the delete callback on items deleted from a view,
// because we may have references to it, after the master is gone
// so, the shared structure will remain until the last reference is released.
internal_error(false,
"DICTIONARY: Running delete callback on item '%s' of dictionary created from %s() %zu@%s.",
item_get_name(item),
dict->creation_function,
dict->creation_line,
dict->creation_file);
DICTIONARY_STATS_CALLBACK_DELETES_PLUS1(dict);
dict->hooks->del_callback(item, item->shared->value, dict->hooks->del_callback_data);
}
// ----------------------------------------------------------------------------
// dictionary locks
static inline size_t dictionary_locks_init(DICTIONARY *dict) {
if(likely(!is_dictionary_single_threaded(dict))) {
netdata_rwlock_init(&dict->index.rwlock);
netdata_rwlock_init(&dict->items.rwlock);
return 0;
}
return 0;
}
static inline size_t dictionary_locks_destroy(DICTIONARY *dict) {
if(likely(!is_dictionary_single_threaded(dict))) {
netdata_rwlock_destroy(&dict->index.rwlock);
netdata_rwlock_destroy(&dict->items.rwlock);
return 0;
}
return 0;
}
static inline void ll_recursive_lock_set_thread_as_writer(DICTIONARY *dict) {
pid_t expected = 0, desired = gettid();
if(!__atomic_compare_exchange_n(&dict->items.writer_pid, &expected, desired, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
fatal("DICTIONARY: Cannot set thread %d as exclusive writer, expected %d, desired %d, found %d.", gettid(), expected, desired, __atomic_load_n(&dict->items.writer_pid, __ATOMIC_SEQ_CST));
}
static inline void ll_recursive_unlock_unset_thread_writer(DICTIONARY *dict) {
pid_t expected = gettid(), desired = 0;
if(!__atomic_compare_exchange_n(&dict->items.writer_pid, &expected, desired, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST))
fatal("DICTIONARY: Cannot unset thread %d as exclusive writer, expected %d, desired %d, found %d.", gettid(), expected, desired, __atomic_load_n(&dict->items.writer_pid, __ATOMIC_SEQ_CST));
}
static inline bool ll_recursive_lock_is_thread_the_writer(DICTIONARY *dict) {
pid_t tid = gettid();
return tid > 0 && tid == __atomic_load_n(&dict->items.writer_pid, __ATOMIC_SEQ_CST);
}
static void ll_recursive_lock(DICTIONARY *dict, char rw) {
if(unlikely(is_dictionary_single_threaded(dict)))
return;
if(ll_recursive_lock_is_thread_the_writer(dict)) {
dict->items.writer_depth++;
return;
}
if(rw == DICTIONARY_LOCK_READ || rw == DICTIONARY_LOCK_REENTRANT || rw == 'R') {
// read lock
netdata_rwlock_rdlock(&dict->items.rwlock);
}
else {
// write lock
netdata_rwlock_wrlock(&dict->items.rwlock);
ll_recursive_lock_set_thread_as_writer(dict);
}
}
static void ll_recursive_unlock(DICTIONARY *dict, char rw) {
if(unlikely(is_dictionary_single_threaded(dict)))
return;
if(ll_recursive_lock_is_thread_the_writer(dict) && dict->items.writer_depth > 0) {
dict->items.writer_depth--;
return;
}
if(rw == DICTIONARY_LOCK_READ || rw == DICTIONARY_LOCK_REENTRANT || rw == 'R') {
// read unlock
netdata_rwlock_unlock(&dict->items.rwlock);
}
else {
// write unlock
ll_recursive_unlock_unset_thread_writer(dict);
netdata_rwlock_unlock(&dict->items.rwlock);
}
}
static inline void dictionary_index_lock_rdlock(DICTIONARY *dict) {
if(unlikely(is_dictionary_single_threaded(dict)))
return;
netdata_rwlock_rdlock(&dict->index.rwlock);
}
static inline void dictionary_index_lock_wrlock(DICTIONARY *dict) {
if(unlikely(is_dictionary_single_threaded(dict)))
return;
netdata_rwlock_wrlock(&dict->index.rwlock);
}
static inline void dictionary_index_lock_unlock(DICTIONARY *dict) {
if(unlikely(is_dictionary_single_threaded(dict)))
return;
netdata_rwlock_unlock(&dict->index.rwlock);
}
// ----------------------------------------------------------------------------
// items garbage collector
static void garbage_collect_pending_deletes(DICTIONARY *dict) {
usec_t last_master_deletion_us = dict->hooks?__atomic_load_n(&dict->hooks->last_master_deletion_us, __ATOMIC_SEQ_CST):0;
usec_t last_gc_run_us = __atomic_load_n(&dict->last_gc_run_us, __ATOMIC_SEQ_CST);
bool is_view = is_view_dictionary(dict);
if(likely(!(
DICTIONARY_PENDING_DELETES_GET(dict) > 0 ||
(is_view && last_master_deletion_us > last_gc_run_us)
)))
return;
ll_recursive_lock(dict, DICTIONARY_LOCK_WRITE);
__atomic_store_n(&dict->last_gc_run_us, now_realtime_usec(), __ATOMIC_SEQ_CST);
if(is_view)
dictionary_index_lock_wrlock(dict);
DICTIONARY_STATS_GARBAGE_COLLECTIONS_PLUS1(dict);
size_t deleted = 0, pending = 0, examined = 0;
DICTIONARY_ITEM *item = dict->items.list, *item_next;
while(item) {
examined++;
// this will cleanup
item_next = item->next;
int rc = item_check_and_acquire_advanced(dict, item, is_view);
if(rc == ITEM_MARKED_FOR_DELETION) {
// we don't have got a reference
if(item_is_not_referenced_and_can_be_removed(dict, item)) {
DOUBLE_LINKED_LIST_REMOVE_UNSAFE(dict->items.list, item, prev, next);
item_free_with_hooks(dict, item);
deleted++;
pending = DICTIONARY_PENDING_DELETES_MINUS1(dict);
if (!pending)
break;
}
}
else if(rc == ITEM_IS_CURRENTLY_BEING_DELETED)
; // do not touch this item (we haven't got a reference)
else if(rc == ITEM_OK)
item_release(dict, item);
item = item_next;
}
if(is_view)
dictionary_index_lock_unlock(dict);
ll_recursive_unlock(dict, DICTIONARY_LOCK_WRITE);
(void)deleted;
(void)examined;
internal_error(false, "DICTIONARY: garbage collected dictionary created by %s (%zu@%s), examined %zu items, deleted %zu items, still pending %zu items",
dict->creation_function, dict->creation_line, dict->creation_file, examined, deleted, pending);
}
// ----------------------------------------------------------------------------
// reference counters
static inline size_t reference_counter_init(DICTIONARY *dict) {
(void)dict;
// allocate memory required for reference counters
// return number of bytes
return 0;
}
static inline size_t reference_counter_free(DICTIONARY *dict) {
(void)dict;
// free memory required for reference counters
// return number of bytes
return 0;
}
static void item_acquire(DICTIONARY *dict, DICTIONARY_ITEM *item) {
REFCOUNT refcount;
if(unlikely(is_dictionary_single_threaded(dict))) {
refcount = ++item->refcount;
}
else {
// increment the refcount
refcount = __atomic_add_fetch(&item->refcount, 1, __ATOMIC_SEQ_CST);
}
if(refcount <= 0) {
internal_error(
true,
"DICTIONARY: attempted to acquire item which is deleted (refcount = %d): "
"'%s' on dictionary created by %s() (%zu@%s)",
refcount - 1,
item_get_name(item),
dict->creation_function,
dict->creation_line,
dict->creation_file);
fatal(
"DICTIONARY: request to acquire item '%s', which is deleted (refcount = %d)!",
item_get_name(item),
refcount - 1);
}
if(refcount == 1) {
// referenced items counts number of unique items referenced
// so, we increase it only when refcount == 1
DICTIONARY_REFERENCED_ITEMS_PLUS1(dict);
// if this is a deleted item, but the counter increased to 1
// we need to remove it from the pending items to delete
if(item_flag_check(item, ITEM_FLAG_DELETED))
DICTIONARY_PENDING_DELETES_MINUS1(dict);
}
}
static void item_release(DICTIONARY *dict, DICTIONARY_ITEM *item) {
// this function may be called without any lock on the dictionary
// or even when someone else has write lock on the dictionary
bool is_deleted;
REFCOUNT refcount;
if(unlikely(is_dictionary_single_threaded(dict))) {
is_deleted = item->flags & ITEM_FLAG_DELETED;
refcount = --item->refcount;
}
else {
// get the flags before decrementing any reference counters
// (the other way around may lead to use-after-free)
is_deleted = item_flag_check(item, ITEM_FLAG_DELETED);
// decrement the refcount
refcount = __atomic_sub_fetch(&item->refcount, 1, __ATOMIC_SEQ_CST);
}
if(refcount < 0) {
internal_error(
true,
"DICTIONARY: attempted to release item without references (refcount = %d): "
"'%s' on dictionary created by %s() (%zu@%s)",
refcount + 1,
item_get_name(item),
dict->creation_function,
dict->creation_line,
dict->creation_file);
fatal(
"DICTIONARY: attempted to release item '%s' without references (refcount = %d)",
item_get_name(item),
refcount + 1);
}
if(refcount == 0) {
if(is_deleted)
DICTIONARY_PENDING_DELETES_PLUS1(dict);
// referenced items counts number of unique items referenced
// so, we decrease it only when refcount == 0
DICTIONARY_REFERENCED_ITEMS_MINUS1(dict);
}
}
static int item_check_and_acquire_advanced(DICTIONARY *dict, DICTIONARY_ITEM *item, bool having_index_lock) {
size_t spins = 0;
REFCOUNT refcount, desired;
do {
spins++;
refcount = DICTIONARY_ITEM_REFCOUNT_GET(dict, item);
if(refcount < 0) {
// we can't use this item
return ITEM_IS_CURRENTLY_BEING_DELETED;
}
if(item_flag_check(item, ITEM_FLAG_DELETED)) {
// we can't use this item
return ITEM_MARKED_FOR_DELETION;
}
desired = refcount + 1;
} while(!__atomic_compare_exchange_n(&item->refcount, &refcount, desired,
false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST));
// we acquired the item
if(is_view_dictionary(dict) && item_shared_flag_check(item, ITEM_FLAG_DELETED) && !item_flag_check(item, ITEM_FLAG_DELETED)) {
// but, we can't use this item
if(having_index_lock) {
// delete it from the hashtable
hashtable_delete_unsafe(dict, item_get_name(item), item->key_len, item);
// mark it in our dictionary as deleted too
// this is safe to be done here, because we have got
// a reference counter on item
item_flag_set(item, ITEM_FLAG_DELETED);
DICTIONARY_ENTRIES_MINUS1(dict);
// decrement the refcount we incremented above
if (__atomic_sub_fetch(&item->refcount, 1, __ATOMIC_SEQ_CST) == 0) {
// this is a deleted item, and we are the last one
DICTIONARY_PENDING_DELETES_PLUS1(dict);
}
// do not touch the item below this point
}
else {
// this is traversal / walkthrough
// decrement the refcount we incremented above
__atomic_sub_fetch(&item->refcount, 1, __ATOMIC_SEQ_CST);
}
return ITEM_MARKED_FOR_DELETION;
}
if(desired == 1)
DICTIONARY_REFERENCED_ITEMS_PLUS1(dict);
if(unlikely(spins > 2 && dict->stats))
DICTIONARY_STATS_CHECK_SPINS_PLUS(dict, spins - 2);
return ITEM_OK; // we can use this item
}
// if a dictionary item can be deleted, return true, otherwise return false
// we use the private reference counter
static inline bool item_is_not_referenced_and_can_be_removed(DICTIONARY *dict, DICTIONARY_ITEM *item) {
// if we can set refcount to REFCOUNT_DELETING, we can delete this item
REFCOUNT expected = DICTIONARY_ITEM_REFCOUNT_GET(dict, item);
if(expected == 0 && __atomic_compare_exchange_n(&item->refcount, &expected, REFCOUNT_DELETING,
false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
// we are going to delete it
return true;
}
// we can't delete this
return false;
}
// if a dictionary item can be freed, return true, otherwise return false
// we use the shared reference counter
static inline bool item_shared_release_and_check_if_it_can_be_freed(DICTIONARY *dict __maybe_unused, DICTIONARY_ITEM *item) {
// if we can set refcount to REFCOUNT_DELETING, we can delete this item
REFCOUNT links = __atomic_sub_fetch(&item->shared->links, 1, __ATOMIC_SEQ_CST);
if(links == 0 && __atomic_compare_exchange_n(&item->shared->links, &links, REFCOUNT_DELETING,
false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST)) {
// we can delete it
return true;
}
// we can't delete it
return false;
}
// ----------------------------------------------------------------------------
// hash table operations
static size_t hashtable_init_unsafe(DICTIONARY *dict) {
dict->index.JudyHSArray = NULL;
return 0;
}
static size_t hashtable_destroy_unsafe(DICTIONARY *dict) {
if(unlikely(!dict->index.JudyHSArray)) return 0;
JError_t J_Error;
Word_t ret = JudyHSFreeArray(&dict->index.JudyHSArray, &J_Error);
if(unlikely(ret == (Word_t) JERR)) {
error("DICTIONARY: Cannot destroy JudyHS, JU_ERRNO_* == %u, ID == %d",
JU_ERRNO(&J_Error), JU_ERRID(&J_Error));
}
debug(D_DICTIONARY, "Dictionary: hash table freed %lu bytes", ret);
dict->index.JudyHSArray = NULL;
return (size_t)ret;
}
static inline void **hashtable_insert_unsafe(DICTIONARY *dict, const char *name, size_t name_len) {
JError_t J_Error;
Pvoid_t *Rc = JudyHSIns(&dict->index.JudyHSArray, (void *)name, name_len, &J_Error);
if (unlikely(Rc == PJERR)) {
fatal("DICTIONARY: Cannot insert entry with name '%s' to JudyHS, JU_ERRNO_* == %u, ID == %d",
name, JU_ERRNO(&J_Error), JU_ERRID(&J_Error));
}
// if *Rc == 0, new item added to the array
// otherwise the existing item value is returned in *Rc
// we return a pointer to a pointer, so that the caller can
// put anything needed at the value of the index.
// The pointer to pointer we return has to be used before
// any other operation that may change the index (insert/delete).
return Rc;
}
static inline int hashtable_delete_unsafe(DICTIONARY *dict, const char *name, size_t name_len, void *item) {
(void)item;
if(unlikely(!dict->index.JudyHSArray)) return 0;
JError_t J_Error;
int ret = JudyHSDel(&dict->index.JudyHSArray, (void *)name, name_len, &J_Error);
if(unlikely(ret == JERR)) {
error("DICTIONARY: Cannot delete entry with name '%s' from JudyHS, JU_ERRNO_* == %u, ID == %d", name,
JU_ERRNO(&J_Error), JU_ERRID(&J_Error));
return 0;
}
// Hey, this is problematic! We need the value back, not just an int with a status!
// https://sourceforge.net/p/judy/feature-requests/23/
if(unlikely(ret == 0)) {
// not found in the dictionary
return 0;
}
else {
// found and deleted from the dictionary
return 1;
}
}
static inline DICTIONARY_ITEM *hashtable_get_unsafe(DICTIONARY *dict, const char *name, size_t name_len) {
if(unlikely(!dict->index.JudyHSArray)) return NULL;
DICTIONARY_STATS_SEARCHES_PLUS1(dict);
Pvoid_t *Rc;
Rc = JudyHSGet(dict->index.JudyHSArray, (void *)name, name_len);
if(likely(Rc)) {
// found in the hash table
return (DICTIONARY_ITEM *)*Rc;
}
else {
// not found in the hash table
return NULL;
}
}
static inline void hashtable_inserted_item_unsafe(DICTIONARY *dict, void *item) {
(void)dict;
(void)item;
// this is called just after an item is successfully inserted to the hashtable
// we don't need this for judy, but we may need it if we integrate more hash tables
;
}
// ----------------------------------------------------------------------------
// linked list management
static inline void item_linked_list_add(DICTIONARY *dict, DICTIONARY_ITEM *item) {
ll_recursive_lock(dict, DICTIONARY_LOCK_WRITE);
if(dict->options & DICT_OPTION_ADD_IN_FRONT)
DOUBLE_LINKED_LIST_PREPEND_UNSAFE(dict->items.list, item, prev, next);
else
DOUBLE_LINKED_LIST_APPEND_UNSAFE(dict->items.list, item, prev, next);
garbage_collect_pending_deletes(dict);
ll_recursive_unlock(dict, DICTIONARY_LOCK_WRITE);
}
static inline void item_linked_list_remove(DICTIONARY *dict, DICTIONARY_ITEM *item) {
ll_recursive_lock(dict, DICTIONARY_LOCK_WRITE);
DOUBLE_LINKED_LIST_REMOVE_UNSAFE(dict->items.list, item, prev, next);
garbage_collect_pending_deletes(dict);
ll_recursive_unlock(dict, DICTIONARY_LOCK_WRITE);
}
// ----------------------------------------------------------------------------
// ITEM initialization and updates
static inline size_t item_set_name(DICTIONARY *dict, DICTIONARY_ITEM *item, const char *name, size_t name_len) {
if(likely(dict->options & DICT_OPTION_NAME_LINK_DONT_CLONE)) {
item->caller_name = (char *)name;
item->key_len = name_len;
}
else {
item->string_name = string_strdupz(name);
item->key_len = string_strlen(item->string_name) + 1;
item->options |= ITEM_OPTION_ALLOCATED_NAME;
}
return item->key_len;
}
static inline size_t item_free_name(DICTIONARY *dict, DICTIONARY_ITEM *item) {
if(likely(!(dict->options & DICT_OPTION_NAME_LINK_DONT_CLONE)))
string_freez(item->string_name);
return item->key_len;
}
static inline const char *item_get_name(const DICTIONARY_ITEM *item) {
if(item->options & ITEM_OPTION_ALLOCATED_NAME)
return string2str(item->string_name);
else
return item->caller_name;
}
static DICTIONARY_ITEM *item_allocate(DICTIONARY *dict __maybe_unused, size_t *allocated_bytes, DICTIONARY_ITEM *master_item) {
DICTIONARY_ITEM *item;
size_t size = sizeof(DICTIONARY_ITEM);
item = callocz(1, size);
item->refcount = 1;
*allocated_bytes += size;
if(master_item) {
item->shared = master_item->shared;
if(unlikely(__atomic_add_fetch(&item->shared->links, 1, __ATOMIC_SEQ_CST) <= 1))
fatal("DICTIONARY: attempted to link to a shared item structure that had zero references");
}
else {
size = sizeof(DICTIONARY_ITEM_SHARED);
item->shared = callocz(1, size);
item->shared->links = 1;
*allocated_bytes += size;
}
#ifdef NETDATA_INTERNAL_CHECKS
item->dict = dict;
#endif
return item;
}
static DICTIONARY_ITEM *item_create_with_hooks(DICTIONARY *dict, const char *name, size_t name_len, void *value, size_t value_len, void *constructor_data, DICTIONARY_ITEM *master_item) {
#ifdef NETDATA_INTERNAL_CHECKS
if(unlikely(name_len > KEY_LEN_MAX))
fatal("DICTIONARY: tried to index a key of size %zu, but the maximum acceptable is %zu", name_len, (size_t)KEY_LEN_MAX);
if(unlikely(value_len > VALUE_LEN_MAX))
fatal("DICTIONARY: tried to add an item of size %zu, but the maximum acceptable is %zu", value_len, (size_t)VALUE_LEN_MAX);
#endif
size_t item_size = 0, key_size = 0, value_size = 0;
DICTIONARY_ITEM *item = item_allocate(dict, &item_size, master_item);
key_size += item_set_name(dict, item, name, name_len);
if(unlikely(is_view_dictionary(dict))) {
// we are on a view dictionary
// do not touch the value
;
#ifdef NETDATA_INTERNAL_CHECKS
if(unlikely(!master_item))
fatal("DICTIONARY: cannot add an item to a view without a master item.");
#endif
}
else {
// we are on the master dictionary
if(likely(dict->options & DICT_OPTION_VALUE_LINK_DONT_CLONE))
item->shared->value = value;
else {
if(likely(value_len)) {
if(value) {
// a value has been supplied
// copy it
item->shared->value = mallocz(value_len);
memcpy(item->shared->value, value, value_len);
}
else {
// no value has been supplied
// allocate a clear memory block
item->shared->value = callocz(1, value_len);
}
}
else {
// the caller wants an item without any value
item->shared->value = NULL;
}
}
item->shared->value_len = value_len;
value_size += value_len;
dictionary_execute_insert_callback(dict, item, constructor_data);
}
DICTIONARY_ENTRIES_PLUS1(dict);
DICTIONARY_STATS_PLUS_MEMORY(dict, key_size, item_size, value_size);
return item;
}
static void item_reset_value_with_hooks(DICTIONARY *dict, DICTIONARY_ITEM *item, void *value, size_t value_len, void *constructor_data) {
if(unlikely(is_view_dictionary(dict)))
fatal("DICTIONARY: %s() should never be called on views.", __FUNCTION__ );
debug(D_DICTIONARY, "Dictionary entry with name '%s' found. Changing its value.", item_get_name(item));
DICTIONARY_VALUE_RESETS_PLUS1(dict);
if(item->shared->value_len != value_len) {
DICTIONARY_STATS_PLUS_MEMORY(dict, 0, 0, value_len);
DICTIONARY_STATS_MINUS_MEMORY(dict, 0, 0, item->shared->value_len);
}
dictionary_execute_delete_callback(dict, item);
if(likely(dict->options & DICT_OPTION_VALUE_LINK_DONT_CLONE)) {
debug(D_DICTIONARY, "Dictionary: linking value to '%s'", item_get_name(item));
item->shared->value = value;
item->shared->value_len = value_len;
}
else {
debug(D_DICTIONARY, "Dictionary: cloning value to '%s'", item_get_name(item));
void *old_value = item->shared->value;
void *new_value = NULL;
if(value_len) {
new_value = mallocz(value_len);
if(value) memcpy(new_value, value, value_len);
else memset(new_value, 0, value_len);
}
item->shared->value = new_value;
item->shared->value_len = value_len;
debug(D_DICTIONARY, "Dictionary: freeing old value of '%s'", item_get_name(item));
freez(old_value);
}
dictionary_execute_insert_callback(dict, item, constructor_data);
}
static size_t item_free_with_hooks(DICTIONARY *dict, DICTIONARY_ITEM *item) {
debug(D_DICTIONARY, "Destroying name value entry for name '%s'.", item_get_name(item));
size_t item_size = 0, key_size = 0, value_size = 0;
key_size += item->key_len;
if(unlikely(!(dict->options & DICT_OPTION_NAME_LINK_DONT_CLONE)))
item_free_name(dict, item);
if(item_shared_release_and_check_if_it_can_be_freed(dict, item)) {
dictionary_execute_delete_callback(dict, item);
if(unlikely(!(dict->options & DICT_OPTION_VALUE_LINK_DONT_CLONE))) {
debug(D_DICTIONARY, "Dictionary freeing value of '%s'", item_get_name(item));
freez(item->shared->value);
item->shared->value = NULL;
}
value_size += item->shared->value_len;
freez(item->shared);
item->shared = NULL;
item_size += sizeof(DICTIONARY_ITEM_SHARED);
}
freez(item);
item_size += sizeof(DICTIONARY_ITEM);
DICTIONARY_STATS_MINUS_MEMORY(dict, key_size, item_size, value_size);
// we return the memory we actually freed
return item_size + (dict->options & DICT_OPTION_VALUE_LINK_DONT_CLONE)?0:value_size;
}
// ----------------------------------------------------------------------------
// item operations
static void item_shared_set_deleted(DICTIONARY *dict, DICTIONARY_ITEM *item) {
if(is_master_dictionary(dict)) {
item_shared_flag_set(item, ITEM_FLAG_DELETED);
if(dict->hooks)
__atomic_store_n(&dict->hooks->last_master_deletion_us, now_realtime_usec(), __ATOMIC_SEQ_CST);
}
}
static inline void item_free_or_mark_deleted(DICTIONARY *dict, DICTIONARY_ITEM *item) {
if(item_is_not_referenced_and_can_be_removed(dict, item)) {
item_shared_set_deleted(dict, item);
item_linked_list_remove(dict, item);
item_free_with_hooks(dict, item);
}
else {
item_shared_set_deleted(dict, item);
item_flag_set(item, ITEM_FLAG_DELETED);
// after this point do not touch the item
}
// the item is not available anymore
DICTIONARY_ENTRIES_MINUS1(dict);
}
// this is used by traversal functions to remove the current item
// if it is deleted and it has zero references. This will eliminate
// the need for the garbage collector to kick-in later.
// Most deletions happen during traversal, so this is a nice hack
// to speed up everything!
static inline void item_release_and_check_if_it_is_deleted_and_can_be_removed_under_this_lock_mode(DICTIONARY *dict, DICTIONARY_ITEM *item, char rw) {
if(rw == DICTIONARY_LOCK_WRITE) {
bool should_be_deleted = item_flag_check(item, ITEM_FLAG_DELETED);
item_release(dict, item);
if(should_be_deleted && item_is_not_referenced_and_can_be_removed(dict, item)) {
// this has to be before removing from the linked list,
// otherwise the garbage collector will also kick in!
DICTIONARY_PENDING_DELETES_MINUS1(dict);
item_linked_list_remove(dict, item);
item_free_with_hooks(dict, item);
}
}
else {
// we can't do anything under this mode
item_release(dict, item);
}
}
static bool item_del(DICTIONARY *dict, const char *name, ssize_t name_len) {
if(unlikely(!name || !*name)) {
internal_error(
true,
"DICTIONARY: attempted to %s() without a name on a dictionary created from %s() %zu@%s.",
__FUNCTION__,
dict->creation_function,
dict->creation_line,
dict->creation_file);
return false;
}
if(unlikely(is_dictionary_destroyed(dict))) {
internal_error(true, "DICTIONARY: attempted to dictionary_del() on a destroyed dictionary");
return false;
}
if(name_len == -1)
name_len = (ssize_t)strlen(name) + 1; // we need the terminating null too
debug(D_DICTIONARY, "DEL dictionary entry with name '%s'.", name);
// Unfortunately, the JudyHSDel() does not return the value of the
// item that was deleted, so we have to find it before we delete it,
// since we need to release our structures too.
dictionary_index_lock_wrlock(dict);
int ret;
DICTIONARY_ITEM *item = hashtable_get_unsafe(dict, name, name_len);
if(unlikely(!item)) {
dictionary_index_lock_unlock(dict);
ret = false;
}
else {
if(hashtable_delete_unsafe(dict, name, name_len, item) == 0)
error("DICTIONARY: INTERNAL ERROR: tried to delete item with name '%s' that is not in the index", name);
dictionary_index_lock_unlock(dict);
item_free_or_mark_deleted(dict, item);
ret = true;
}
return ret;
}
static DICTIONARY_ITEM *item_add_or_reset_value_and_acquire(DICTIONARY *dict, const char *name, ssize_t name_len, void *value, size_t value_len, void *constructor_data, DICTIONARY_ITEM *master_item) {
if(unlikely(!name || !*name)) {
internal_error(
true,
"DICTIONARY: attempted to %s() without a name on a dictionary created from %s() %zu@%s.",
__FUNCTION__,
dict->creation_function,
dict->creation_line,
dict->creation_file);
return NULL;
}
if(unlikely(is_dictionary_destroyed(dict))) {
internal_error(true, "DICTIONARY: attempted to dictionary_set() on a destroyed dictionary");
return NULL;
}
if(name_len == -1)
name_len = (ssize_t)strlen(name) + 1; // we need the terminating null too
debug(D_DICTIONARY, "SET dictionary entry with name '%s'.", name);
// DISCUSSION:
// Is it better to gain a read-lock and do a hashtable_get_unsafe()
// before we write lock to do hashtable_insert_unsafe()?
//
// Probably this depends on the use case.
// For statsd for example that does dictionary_set() to update received values,
// it could be beneficial to do a get() before we insert().
//
// But the caller has the option to do this on his/her own.
// So, let's do the fastest here and let the caller decide the flow of calls.
dictionary_index_lock_wrlock(dict);
bool added_or_updated = false;
size_t spins = 0;
DICTIONARY_ITEM *item = NULL;
do {
DICTIONARY_ITEM **item_pptr = (DICTIONARY_ITEM **)hashtable_insert_unsafe(dict, name, name_len);
if (likely(*item_pptr == 0)) {
// a new item added to the index
// create the dictionary item
item = *item_pptr = item_create_with_hooks(dict, name, name_len, value, value_len, constructor_data, master_item);
// call the hashtable react
hashtable_inserted_item_unsafe(dict, item);
// unlock the index lock, before we add it to the linked list
// DONT DO IT THE OTHER WAY AROUND - DO NOT CROSS THE LOCKS!
dictionary_index_lock_unlock(dict);
item_linked_list_add(dict, item);
added_or_updated = true;
}
else {
if(item_check_and_acquire_advanced(dict, *item_pptr, true) != ITEM_OK) {
spins++;
continue;
}
// the item is already in the index
// so, either we will return the old one
// or overwrite the value, depending on dictionary flags
// We should not compare the values here!
// even if they are the same, we have to do the whole job
// so that the callbacks will be called.
item = *item_pptr;
if(is_view_dictionary(dict)) {
// view dictionary
// the item is already there and can be used
if(item->shared != master_item->shared)
error("DICTIONARY: changing the master item on a view is not supported. The previous item will remain. To change the key of an item in a view, delete it and add it again.");
}
else {
// master dictionary
// the user wants to reset its value
if (!(dict->options & DICT_OPTION_DONT_OVERWRITE_VALUE)) {
item_reset_value_with_hooks(dict, item, value, value_len, constructor_data);
added_or_updated = true;
}
else if (dictionary_execute_conflict_callback(dict, item, value, constructor_data)) {
dictionary_version_increment(dict);
added_or_updated = true;
}
else {
// we did really nothing!
;
}
}
dictionary_index_lock_unlock(dict);
}
} while(!item);
if(unlikely(spins > 0 && dict->stats))
DICTIONARY_STATS_INSERT_SPINS_PLUS(dict, spins);
if(is_master_dictionary(dict) && added_or_updated)
dictionary_execute_react_callback(dict, item, constructor_data);
return item;
}
static DICTIONARY_ITEM *item_find_and_acquire(DICTIONARY *dict, const char *name, ssize_t name_len) {
if(unlikely(!name || !*name)) {
internal_error(
true,
"DICTIONARY: attempted to %s() without a name on a dictionary created from %s() %zu@%s.",
__FUNCTION__,
dict->creation_function,
dict->creation_line,
dict->creation_file);
return NULL;
}
if(unlikely(is_dictionary_destroyed(dict))) {
internal_error(true, "DICTIONARY: attempted to dictionary_get() on a destroyed dictionary");
return NULL;
}
if(name_len == -1)
name_len = (ssize_t)strlen(name) + 1; // we need the terminating null too
debug(D_DICTIONARY, "GET dictionary entry with name '%s'.", name);
dictionary_index_lock_rdlock(dict);
DICTIONARY_ITEM *item = hashtable_get_unsafe(dict, name, name_len);
if(unlikely(item && !item_check_and_acquire(dict, item))) {
item = NULL;
DICTIONARY_STATS_SEARCH_IGNORES_PLUS1(dict);
}
dictionary_index_lock_unlock(dict);
return item;
}
// ----------------------------------------------------------------------------
// delayed destruction of dictionaries
static bool dictionary_free_all_resources(DICTIONARY *dict, size_t *mem, bool force) {
if(mem)
*mem = 0;
if(!force && dictionary_referenced_items(dict))
return false;
size_t dict_size = 0, counted_items = 0, item_size = 0, index_size = 0;
(void)counted_items;
#ifdef NETDATA_INTERNAL_CHECKS
long int entries = dict->entries;
long int referenced_items = dict->referenced_items;
long int pending_deletion_items = dict->pending_deletion_items;
const char *creation_function = dict->creation_function;
const char *creation_file = dict->creation_file;
size_t creation_line = dict->creation_line;
#endif
// destroy the index
index_size += hashtable_destroy_unsafe(dict);
ll_recursive_lock(dict, DICTIONARY_LOCK_WRITE);
DICTIONARY_ITEM *item = dict->items.list;
while (item) {
// cache item->next
// because we are going to free item
DICTIONARY_ITEM *item_next = item->next;
item_size += item_free_with_hooks(dict, item);
item = item_next;
DICTIONARY_ENTRIES_MINUS1(dict);
// to speed up destruction, we don't
// unlink item from the linked-list here
counted_items++;
}
dict->items.list = NULL;
ll_recursive_unlock(dict, DICTIONARY_LOCK_WRITE);
dict_size += dictionary_locks_destroy(dict);
dict_size += reference_counter_free(dict);
dict_size += dictionary_hooks_free(dict);
dict_size += sizeof(DICTIONARY);
DICTIONARY_STATS_MINUS_MEMORY(dict, 0, sizeof(DICTIONARY), 0);
freez(dict);
internal_error(
true,
"DICTIONARY: Freed dictionary created from %s() %zu@%s, having %ld (counted %zu) entries, %ld referenced, %ld pending deletion, total freed memory: %zu bytes (sizeof(dict) = %zu, sizeof(item) = %zu).",
creation_function,
creation_line,
creation_file,
entries, counted_items, referenced_items, pending_deletion_items,
dict_size, sizeof(DICTIONARY), sizeof(DICTIONARY_ITEM) + sizeof(DICTIONARY_ITEM_SHARED));
if(mem)
*mem = dict_size + item_size + index_size;
return true;
}
netdata_mutex_t dictionaries_waiting_to_be_destroyed_mutex = NETDATA_MUTEX_INITIALIZER;
static DICTIONARY *dictionaries_waiting_to_be_destroyed = NULL;
void dictionary_queue_for_destruction(DICTIONARY *dict) {
if(is_dictionary_destroyed(dict))
return;
DICTIONARY_STATS_DICT_DESTROY_QUEUED_PLUS1(dict);
dict_flag_set(dict, DICT_FLAG_DESTROYED);
netdata_mutex_lock(&dictionaries_waiting_to_be_destroyed_mutex);
dict->next = dictionaries_waiting_to_be_destroyed;
dictionaries_waiting_to_be_destroyed = dict;
netdata_mutex_unlock(&dictionaries_waiting_to_be_destroyed_mutex);
}
void cleanup_destroyed_dictionaries(void) {
if(!dictionaries_waiting_to_be_destroyed)
return;
netdata_mutex_lock(&dictionaries_waiting_to_be_destroyed_mutex);
DICTIONARY *dict, *last = NULL, *next = NULL;
for(dict = dictionaries_waiting_to_be_destroyed; dict ; dict = next) {
next = dict->next;
#ifdef NETDATA_INTERNAL_CHECKS
size_t line = dict->creation_line;
const char *file = dict->creation_file;
const char *function = dict->creation_function;
#endif
DICTIONARY_STATS_DICT_DESTROY_QUEUED_MINUS1(dict);
if(dictionary_free_all_resources(dict, NULL, false)) {
internal_error(
true,
"DICTIONARY: freed dictionary with delayed destruction, created from %s() %zu@%s.",
function, line, file);
if(last) last->next = next;
else dictionaries_waiting_to_be_destroyed = next;
}
else {
DICTIONARY_STATS_DICT_DESTROY_QUEUED_PLUS1(dict);
last = dict;
}
}
netdata_mutex_unlock(&dictionaries_waiting_to_be_destroyed_mutex);
}
// ----------------------------------------------------------------------------
// API internal checks
#ifdef NETDATA_INTERNAL_CHECKS
#define api_internal_check(dict, item, allow_null_dict, allow_null_item) api_internal_check_with_trace(dict, item, __FUNCTION__, allow_null_dict, allow_null_item)
static inline void api_internal_check_with_trace(DICTIONARY *dict, DICTIONARY_ITEM *item, const char *function, bool allow_null_dict, bool allow_null_item) {
if(!allow_null_dict && !dict) {
internal_error(
item,
"DICTIONARY: attempted to %s() with a NULL dictionary, passing an item created from %s() %zu@%s.",
function,
item->dict->creation_function,
item->dict->creation_line,
item->dict->creation_file);
fatal("DICTIONARY: attempted to %s() but item is NULL", function);
}
if(!allow_null_item && !item) {
internal_error(
true,
"DICTIONARY: attempted to %s() without an item on a dictionary created from %s() %zu@%s.",
function,
dict?dict->creation_function:"unknown",
dict?dict->creation_line:0,
dict?dict->creation_file:"unknown");
fatal("DICTIONARY: attempted to %s() but item is NULL", function);
}
if(dict && item && dict != item->dict) {
internal_error(
true,
"DICTIONARY: attempted to %s() an item on a dictionary created from %s() %zu@%s, but the item belongs to the dictionary created from %s() %zu@%s.",
function,
dict->creation_function,
dict->creation_line,
dict->creation_file,
item->dict->creation_function,
item->dict->creation_line,
item->dict->creation_file
);
fatal("DICTIONARY: %s(): item does not belong to this dictionary.", function);
}
if(item) {
REFCOUNT refcount = DICTIONARY_ITEM_REFCOUNT_GET(dict, item);
if (unlikely(refcount <= 0)) {
internal_error(
true,
"DICTIONARY: attempted to %s() of an item with reference counter = %d on a dictionary created from %s() %zu@%s",
function,
refcount,
item->dict->creation_function,
item->dict->creation_line,
item->dict->creation_file);
fatal("DICTIONARY: attempted to %s but item is having refcount = %d", function, refcount);
}
}
}
#else
#define api_internal_check(dict, item, allow_null_dict, allow_null_item) debug_dummy()
#endif
#define api_is_name_good(dict, name, name_len) api_is_name_good_with_trace(dict, name, name_len, __FUNCTION__)
static bool api_is_name_good_with_trace(DICTIONARY *dict __maybe_unused, const char *name, ssize_t name_len __maybe_unused, const char *function __maybe_unused) {
if(unlikely(!name)) {
internal_error(
true,
"DICTIONARY: attempted to %s() with name = NULL on a dictionary created from %s() %zu@%s.",
function,
dict?dict->creation_function:"unknown",
dict?dict->creation_line:0,
dict?dict->creation_file:"unknown");
return false;
}
if(unlikely(!*name)) {
internal_error(
true,
"DICTIONARY: attempted to %s() with empty name on a dictionary created from %s() %zu@%s.",
function,
dict?dict->creation_function:"unknown",
dict?dict->creation_line:0,
dict?dict->creation_file:"unknown");
return false;
}
internal_error(
name_len > 0 && name_len != (ssize_t)(strlen(name) + 1),
"DICTIONARY: attempted to %s() with a name of '%s', having length of %zu (incl. '\\0'), but the supplied name_len = %ld, on a dictionary created from %s() %zu@%s.",
function,
name,
strlen(name) + 1,
name_len,
dict?dict->creation_function:"unknown",
dict?dict->creation_line:0,
dict?dict->creation_file:"unknown");
internal_error(
name_len <= 0 && name_len != -1,
"DICTIONARY: attempted to %s() with a name of '%s', having length of %zu (incl. '\\0'), but the supplied name_len = %ld, on a dictionary created from %s() %zu@%s.",
function,
name,
strlen(name) + 1,
name_len,
dict?dict->creation_function:"unknown",
dict?dict->creation_line:0,
dict?dict->creation_file:"unknown");
return true;
}
// ----------------------------------------------------------------------------
// API - dictionary management
static DICTIONARY *dictionary_create_internal(DICT_OPTIONS options, struct dictionary_stats *stats) {
cleanup_destroyed_dictionaries();
DICTIONARY *dict = callocz(1, sizeof(DICTIONARY));
dict->options = options;
dict->stats = stats;
size_t dict_size = 0;
dict_size += sizeof(DICTIONARY);
dict_size += dictionary_locks_init(dict);
dict_size += reference_counter_init(dict);
dict_size += hashtable_init_unsafe(dict);
DICTIONARY_STATS_PLUS_MEMORY(dict, 0, dict_size, 0);
return dict;
}
#ifdef NETDATA_INTERNAL_CHECKS
DICTIONARY *dictionary_create_advanced_with_trace(DICT_OPTIONS options, struct dictionary_stats *stats, const char *function, size_t line, const char *file) {
#else
DICTIONARY *dictionary_create_advanced(DICT_OPTIONS options, struct dictionary_stats *stats) {
#endif
DICTIONARY *dict = dictionary_create_internal(options, stats?stats:&dictionary_stats_category_other);
#ifdef NETDATA_INTERNAL_CHECKS
dict->creation_function = function;
dict->creation_file = file;
dict->creation_line = line;
#endif
DICTIONARY_STATS_DICT_CREATIONS_PLUS1(dict);
return dict;
}
#ifdef NETDATA_INTERNAL_CHECKS
DICTIONARY *dictionary_create_view_with_trace(DICTIONARY *master, const char *function, size_t line, const char *file) {
#else
DICTIONARY *dictionary_create_view(DICTIONARY *master) {
#endif
DICTIONARY *dict = dictionary_create_internal(master->options, master->stats);
dict->master = master;
dictionary_hooks_allocate(master);
if(unlikely(__atomic_load_n(&master->hooks->links, __ATOMIC_SEQ_CST)) < 1)
fatal("DICTIONARY: attempted to create a view that has %d links", master->hooks->links);
dict->hooks = master->hooks;
__atomic_add_fetch(&master->hooks->links, 1, __ATOMIC_SEQ_CST);
#ifdef NETDATA_INTERNAL_CHECKS
dict->creation_function = function;
dict->creation_file = file;
dict->creation_line = line;
#endif
DICTIONARY_STATS_DICT_CREATIONS_PLUS1(dict);
return dict;
}
void dictionary_flush(DICTIONARY *dict) {
if(unlikely(!dict))
return;
// delete the index
dictionary_index_lock_wrlock(dict);
hashtable_destroy_unsafe(dict);
dictionary_index_lock_unlock(dict);
// delete all items
ll_recursive_lock(dict, DICTIONARY_LOCK_WRITE); // get write lock here, to speed it up (it is recursive)
DICTIONARY_ITEM *item, *item_next;
for (item = dict->items.list; item; item = item_next) {
item_next = item->next;
if(!item_flag_check(item, ITEM_FLAG_DELETED))
item_free_or_mark_deleted(dict, item);
}
ll_recursive_unlock(dict, DICTIONARY_LOCK_WRITE);
DICTIONARY_STATS_DICT_FLUSHES_PLUS1(dict);
}
size_t dictionary_destroy(DICTIONARY *dict) {
cleanup_destroyed_dictionaries();
if(!dict) return 0;
DICTIONARY_STATS_DICT_DESTRUCTIONS_PLUS1(dict);
size_t referenced_items = dictionary_referenced_items(dict);
if(referenced_items) {
dictionary_flush(dict);
dictionary_queue_for_destruction(dict);
internal_error(
true,
"DICTIONARY: delaying destruction of dictionary created from %s() %zu@%s, because it has %ld referenced items in it (%ld total).",
dict->creation_function,
dict->creation_line,
dict->creation_file,
dict->referenced_items,
dict->entries);
return 0;
}
size_t freed;
dictionary_free_all_resources(dict, &freed, true);
return freed;
}
// ----------------------------------------------------------------------------
// SET an item to the dictionary
DICT_ITEM_CONST DICTIONARY_ITEM *dictionary_set_and_acquire_item_advanced(DICTIONARY *dict, const char *name, ssize_t name_len, void *value, size_t value_len, void *constructor_data) {
if(unlikely(!api_is_name_good(dict, name, name_len)))
return NULL;
api_internal_check(dict, NULL, false, true);
if(unlikely(is_view_dictionary(dict)))
fatal("DICTIONARY: this dictionary is a view, you cannot add items other than the ones from the master dictionary.");
DICTIONARY_ITEM *item = item_add_or_reset_value_and_acquire(dict, name, name_len, value, value_len, constructor_data, NULL);
api_internal_check(dict, item, false, false);
return item;
}
void *dictionary_set_advanced(DICTIONARY *dict, const char *name, ssize_t name_len, void *value, size_t value_len, void *constructor_data) {
DICTIONARY_ITEM *item = dictionary_set_and_acquire_item_advanced(dict, name, name_len, value, value_len, constructor_data);
if(likely(item)) {
void *v = item->shared->value;
item_release(dict, item);
return v;
}
return NULL;
}
DICT_ITEM_CONST DICTIONARY_ITEM *dictionary_view_set_and_acquire_item_advanced(DICTIONARY *dict, const char *name, ssize_t name_len, DICTIONARY_ITEM *master_item) {
if(unlikely(!api_is_name_good(dict, name, name_len)))
return NULL;
api_internal_check(dict, NULL, false, true);
if(unlikely(is_master_dictionary(dict)))
fatal("DICTIONARY: this dictionary is a master, you cannot add items from other dictionaries.");
dictionary_acquired_item_dup(dict->master, master_item);
DICTIONARY_ITEM *item = item_add_or_reset_value_and_acquire(dict, name, name_len, NULL, 0, NULL, master_item);
dictionary_acquired_item_release(dict->master, master_item);
api_internal_check(dict, item, false, false);
return item;
}
void *dictionary_view_set_advanced(DICTIONARY *dict, const char *name, ssize_t name_len, DICTIONARY_ITEM *master_item) {
DICTIONARY_ITEM *item = dictionary_view_set_and_acquire_item_advanced(dict, name, name_len, master_item);
if(likely(item)) {
void *v = item->shared->value;
item_release(dict, item);
return v;
}
return NULL;
}
// ----------------------------------------------------------------------------
// GET an item from the dictionary
DICT_ITEM_CONST DICTIONARY_ITEM *dictionary_get_and_acquire_item_advanced(DICTIONARY *dict, const char *name, ssize_t name_len) {
if(unlikely(!api_is_name_good(dict, name, name_len)))
return NULL;
api_internal_check(dict, NULL, false, true);
DICTIONARY_ITEM *item = item_find_and_acquire(dict, name, name_len);
api_internal_check(dict, item, false, true);
return item;
}
void *dictionary_get_advanced(DICTIONARY *dict, const char *name, ssize_t name_len) {
DICTIONARY_ITEM *item = dictionary_get_and_acquire_item_advanced(dict, name, name_len);
if(likely(item)) {
void *v = item->shared->value;
item_release(dict, item);
return v;
}
return NULL;
}
// ----------------------------------------------------------------------------
// DUP/REL an item (increase/decrease its reference counter)
DICT_ITEM_CONST DICTIONARY_ITEM *dictionary_acquired_item_dup(DICTIONARY *dict, DICT_ITEM_CONST DICTIONARY_ITEM *item) {
// we allow the item to be NULL here
api_internal_check(dict, item, false, true);
if(likely(item)) {
item_acquire(dict, item);
api_internal_check(dict, item, false, false);
}
return item;
}
void dictionary_acquired_item_release(DICTIONARY *dict, DICT_ITEM_CONST DICTIONARY_ITEM *item) {
// we allow the item to be NULL here
api_internal_check(dict, item, false, true);
// no need to get a lock here
// we pass the last parameter to reference_counter_release() as true
// so that the release may get a write-lock if required to clean up
if(likely(item))
item_release(dict, item);
}
// ----------------------------------------------------------------------------
// get the name/value of an item
const char *dictionary_acquired_item_name(DICT_ITEM_CONST DICTIONARY_ITEM *item) {
api_internal_check(NULL, item, true, false);
return item_get_name(item);
}
void *dictionary_acquired_item_value(DICT_ITEM_CONST DICTIONARY_ITEM *item) {
// we allow the item to be NULL here
api_internal_check(NULL, item, true, true);
if(likely(item))
return item->shared->value;
return NULL;
}
// ----------------------------------------------------------------------------
// DEL an item
bool dictionary_del_advanced(DICTIONARY *dict, const char *name, ssize_t name_len) {
if(unlikely(!api_is_name_good(dict, name, name_len)))
return false;
api_internal_check(dict, NULL, false, true);
return item_del(dict, name, name_len);
}
// ----------------------------------------------------------------------------
// traversal with loop
void *dictionary_foreach_start_rw(DICTFE *dfe, DICTIONARY *dict, char rw) {
if(unlikely(!dfe || !dict)) return NULL;
if(unlikely(is_dictionary_destroyed(dict))) {
internal_error(true, "DICTIONARY: attempted to dictionary_foreach_start_rw() on a destroyed dictionary");
dfe->counter = 0;
dfe->item = NULL;
dfe->name = NULL;
dfe->value = NULL;
return NULL;
}
dfe->counter = 0;
dfe->dict = dict;
dfe->rw = rw;
ll_recursive_lock(dict, dfe->rw);
DICTIONARY_STATS_TRAVERSALS_PLUS1(dict);
// get the first item from the list
DICTIONARY_ITEM *item = dict->items.list;
// skip all the deleted items
while(item && !item_check_and_acquire(dict, item))
item = item->next;
if(likely(item)) {
dfe->item = item;
dfe->name = (char *)item_get_name(item);
dfe->value = item->shared->value;
}
else {
dfe->item = NULL;
dfe->name = NULL;
dfe->value = NULL;
}
if(unlikely(dfe->rw == DICTIONARY_LOCK_REENTRANT))
ll_recursive_unlock(dfe->dict, dfe->rw);
return dfe->value;
}
void *dictionary_foreach_next(DICTFE *dfe) {
if(unlikely(!dfe || !dfe->dict)) return NULL;
if(unlikely(is_dictionary_destroyed(dfe->dict))) {
internal_error(true, "DICTIONARY: attempted to dictionary_foreach_next() on a destroyed dictionary");
dfe->item = NULL;
dfe->name = NULL;
dfe->value = NULL;
return NULL;
}
if(unlikely(dfe->rw == DICTIONARY_LOCK_REENTRANT))
ll_recursive_lock(dfe->dict, dfe->rw);
// the item we just did
DICTIONARY_ITEM *item = dfe->item;
// get the next item from the list
DICTIONARY_ITEM *item_next = (item) ? item->next : NULL;
// skip all the deleted items until one that can be acquired is found
while(item_next && !item_check_and_acquire(dfe->dict, item_next))
item_next = item_next->next;
if(likely(item)) {
item_release_and_check_if_it_is_deleted_and_can_be_removed_under_this_lock_mode(dfe->dict, item, dfe->rw);
// item_release(dfe->dict, item);
}
item = item_next;
if(likely(item)) {
dfe->item = item;
dfe->name = (char *)item_get_name(item);
dfe->value = item->shared->value;
dfe->counter++;
}
else {
dfe->item = NULL;
dfe->name = NULL;
dfe->value = NULL;
}
if(unlikely(dfe->rw == DICTIONARY_LOCK_REENTRANT))
ll_recursive_unlock(dfe->dict, dfe->rw);
return dfe->value;
}
void dictionary_foreach_done(DICTFE *dfe) {
if(unlikely(!dfe || !dfe->dict)) return;
if(unlikely(is_dictionary_destroyed(dfe->dict))) {
internal_error(true, "DICTIONARY: attempted to dictionary_foreach_next() on a destroyed dictionary");
return;
}
// the item we just did
DICTIONARY_ITEM *item = dfe->item;
// release it, so that it can possibly be deleted
if(likely(item)) {
item_release_and_check_if_it_is_deleted_and_can_be_removed_under_this_lock_mode(dfe->dict, item, dfe->rw);
// item_release(dfe->dict, item);
}
if(likely(dfe->rw != DICTIONARY_LOCK_REENTRANT))
ll_recursive_unlock(dfe->dict, dfe->rw);
dfe->dict = NULL;
dfe->item = NULL;
dfe->name = NULL;
dfe->value = NULL;
dfe->counter = 0;
}
// ----------------------------------------------------------------------------
// API - walk through the dictionary.
// The dictionary is locked for reading while this happens
// do not use other dictionary calls while walking the dictionary - deadlock!
int dictionary_walkthrough_rw(DICTIONARY *dict, char rw, int (*callback)(const DICTIONARY_ITEM *item, void *entry, void *data), void *data) {
if(unlikely(!dict || !callback)) return 0;
if(unlikely(is_dictionary_destroyed(dict))) {
internal_error(true, "DICTIONARY: attempted to dictionary_walkthrough_rw() on a destroyed dictionary");
return 0;
}
ll_recursive_lock(dict, rw);
DICTIONARY_STATS_WALKTHROUGHS_PLUS1(dict);
// written in such a way, that the callback can delete the active element
int ret = 0;
DICTIONARY_ITEM *item = dict->items.list, *item_next;
while(item) {
// skip the deleted items
if(unlikely(!item_check_and_acquire(dict, item))) {
item = item->next;
continue;
}
if(unlikely(rw == DICTIONARY_LOCK_REENTRANT))
ll_recursive_unlock(dict, rw);
int r = callback(item, item->shared->value, data);
if(unlikely(rw == DICTIONARY_LOCK_REENTRANT))
ll_recursive_lock(dict, rw);
// since we have a reference counter, this item cannot be deleted
// until we release the reference counter, so the pointers are there
item_next = item->next;
item_release_and_check_if_it_is_deleted_and_can_be_removed_under_this_lock_mode(dict, item, rw);
// item_release(dict, item);
if(unlikely(r < 0)) {
ret = r;
break;
}
ret += r;
item = item_next;
}
ll_recursive_unlock(dict, rw);
return ret;
}
// ----------------------------------------------------------------------------
// sorted walkthrough
static int dictionary_sort_compar(const void *item1, const void *item2) {
return strcmp(item_get_name((*(DICTIONARY_ITEM **)item1)), item_get_name((*(DICTIONARY_ITEM **)item2)));
}
int dictionary_sorted_walkthrough_rw(DICTIONARY *dict, char rw, int (*callback)(const DICTIONARY_ITEM *item, void *entry, void *data), void *data) {
if(unlikely(!dict || !callback)) return 0;
if(unlikely(is_dictionary_destroyed(dict))) {
internal_error(true, "DICTIONARY: attempted to dictionary_sorted_walkthrough_rw() on a destroyed dictionary");
return 0;
}
DICTIONARY_STATS_WALKTHROUGHS_PLUS1(dict);
ll_recursive_lock(dict, rw);
size_t entries = __atomic_load_n(&dict->entries, __ATOMIC_SEQ_CST);
DICTIONARY_ITEM **array = mallocz(sizeof(DICTIONARY_ITEM *) * entries);
size_t i;
DICTIONARY_ITEM *item;
for(item = dict->items.list, i = 0; item && i < entries; item = item->next) {
if(likely(item_check_and_acquire(dict, item)))
array[i++] = item;
}
ll_recursive_unlock(dict, rw);
if(unlikely(i != entries))
entries = i;
qsort(array, entries, sizeof(DICTIONARY_ITEM *), dictionary_sort_compar);
bool callit = true;
int ret = 0, r;
for(i = 0; i < entries ;i++) {
item = array[i];
if(callit)
r = callback(item, item->shared->value, data);
item_release_and_check_if_it_is_deleted_and_can_be_removed_under_this_lock_mode(dict, item, rw);
// item_release(dict, item);
if(r < 0) {
ret = r;
r = 0;
// stop calling the callback,
// but we have to continue, to release all the reference counters
callit = false;
}
else
ret += r;
}
freez(array);
return ret;
}
// ----------------------------------------------------------------------------
// THREAD_CACHE
static __thread Pvoid_t thread_cache_judy_array = NULL;
void *thread_cache_entry_get_or_set(void *key,
ssize_t key_length,
void *value,
void *(*transform_the_value_before_insert)(void *key, size_t key_length, void *value)
) {
if(unlikely(!key || !key_length)) return NULL;
if(key_length == -1)
key_length = (ssize_t)strlen((char *)key) + 1;
JError_t J_Error;
Pvoid_t *Rc = JudyHSIns(&thread_cache_judy_array, key, key_length, &J_Error);
if (unlikely(Rc == PJERR)) {
fatal("THREAD_CACHE: Cannot insert entry to JudyHS, JU_ERRNO_* == %u, ID == %d",
JU_ERRNO(&J_Error), JU_ERRID(&J_Error));
}
if(*Rc == 0) {
// new item added
*Rc = (transform_the_value_before_insert) ? transform_the_value_before_insert(key, key_length, value) : value;
}
return *Rc;
}
void thread_cache_destroy(void) {
if(unlikely(!thread_cache_judy_array)) return;
JError_t J_Error;
Word_t ret = JudyHSFreeArray(&thread_cache_judy_array, &J_Error);
if(unlikely(ret == (Word_t) JERR)) {
error("THREAD_CACHE: Cannot destroy JudyHS, JU_ERRNO_* == %u, ID == %d",
JU_ERRNO(&J_Error), JU_ERRID(&J_Error));
}
internal_error(true, "THREAD_CACHE: hash table freed %lu bytes", ret);
thread_cache_judy_array = NULL;
}
// ----------------------------------------------------------------------------
// unit test
static void dictionary_unittest_free_char_pp(char **pp, size_t entries) {
for(size_t i = 0; i < entries ;i++)
freez(pp[i]);
freez(pp);
}
static char **dictionary_unittest_generate_names(size_t entries) {
char **names = mallocz(sizeof(char *) * entries);
for(size_t i = 0; i < entries ;i++) {
char buf[25 + 1] = "";
snprintfz(buf, 25, "name.%zu.0123456789.%zu \t !@#$%%^&*(),./[]{}\\|~`", i, entries / 2 + i);
names[i] = strdupz(buf);
}
return names;
}
static char **dictionary_unittest_generate_values(size_t entries) {
char **values = mallocz(sizeof(char *) * entries);
for(size_t i = 0; i < entries ;i++) {
char buf[25 + 1] = "";
snprintfz(buf, 25, "value-%zu-0987654321.%zu%%^&*(),. \t !@#$/[]{}\\|~`", i, entries / 2 + i);
values[i] = strdupz(buf);
}
return values;
}
static size_t dictionary_unittest_set_clone(DICTIONARY *dict, char **names, char **values, size_t entries) {
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(values[i]) + 1;
char *val = (char *)dictionary_set(dict, names[i], values[i], vallen);
if(val == values[i]) { fprintf(stderr, ">>> %s() returns reference to value\n", __FUNCTION__); errors++; }
if(!val || memcmp(val, values[i], vallen) != 0) { fprintf(stderr, ">>> %s() returns invalid value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_set_null(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)values;
size_t errors = 0;
size_t i = 0;
for(; i < entries ;i++) {
void *val = dictionary_set(dict, names[i], NULL, 0);
if(val != NULL) { fprintf(stderr, ">>> %s() returns a non NULL value\n", __FUNCTION__); errors++; }
}
if(dictionary_entries(dict) != i) {
fprintf(stderr, ">>> %s() dictionary items do not match\n", __FUNCTION__);
errors++;
}
return errors;
}
static size_t dictionary_unittest_set_nonclone(DICTIONARY *dict, char **names, char **values, size_t entries) {
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(values[i]) + 1;
char *val = (char *)dictionary_set(dict, names[i], values[i], vallen);
if(val != values[i]) { fprintf(stderr, ">>> %s() returns invalid pointer to value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_get_clone(DICTIONARY *dict, char **names, char **values, size_t entries) {
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(values[i]) + 1;
char *val = (char *)dictionary_get(dict, names[i]);
if(val == values[i]) { fprintf(stderr, ">>> %s() returns reference to value\n", __FUNCTION__); errors++; }
if(!val || memcmp(val, values[i], vallen) != 0) { fprintf(stderr, ">>> %s() returns invalid value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_get_nonclone(DICTIONARY *dict, char **names, char **values, size_t entries) {
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
char *val = (char *)dictionary_get(dict, names[i]);
if(val != values[i]) { fprintf(stderr, ">>> %s() returns invalid pointer to value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_get_nonexisting(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
char *val = (char *)dictionary_get(dict, values[i]);
if(val) { fprintf(stderr, ">>> %s() returns non-existing item\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_del_nonexisting(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
bool ret = dictionary_del(dict, values[i]);
if(ret) { fprintf(stderr, ">>> %s() deleted non-existing item\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_del_existing(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)values;
size_t errors = 0;
size_t forward_from = 0, forward_to = entries / 3;
size_t middle_from = forward_to, middle_to = entries * 2 / 3;
size_t backward_from = middle_to, backward_to = entries;
for(size_t i = forward_from; i < forward_to ;i++) {
bool ret = dictionary_del(dict, names[i]);
if(!ret) { fprintf(stderr, ">>> %s() didn't delete (forward) existing item\n", __FUNCTION__); errors++; }
}
for(size_t i = middle_to - 1; i >= middle_from ;i--) {
bool ret = dictionary_del(dict, names[i]);
if(!ret) { fprintf(stderr, ">>> %s() didn't delete (middle) existing item\n", __FUNCTION__); errors++; }
}
for(size_t i = backward_to - 1; i >= backward_from ;i--) {
bool ret = dictionary_del(dict, names[i]);
if(!ret) { fprintf(stderr, ">>> %s() didn't delete (backward) existing item\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_reset_clone(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)values;
// set the name as value too
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(names[i]) + 1;
char *val = (char *)dictionary_set(dict, names[i], names[i], vallen);
if(val == names[i]) { fprintf(stderr, ">>> %s() returns reference to value\n", __FUNCTION__); errors++; }
if(!val || memcmp(val, names[i], vallen) != 0) { fprintf(stderr, ">>> %s() returns invalid value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_reset_nonclone(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)values;
// set the name as value too
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(names[i]) + 1;
char *val = (char *)dictionary_set(dict, names[i], names[i], vallen);
if(val != names[i]) { fprintf(stderr, ">>> %s() returns invalid pointer to value\n", __FUNCTION__); errors++; }
if(!val) { fprintf(stderr, ">>> %s() returns invalid value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_reset_dont_overwrite_nonclone(DICTIONARY *dict, char **names, char **values, size_t entries) {
// set the name as value too
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(names[i]) + 1;
char *val = (char *)dictionary_set(dict, names[i], names[i], vallen);
if(val != values[i]) { fprintf(stderr, ">>> %s() returns invalid pointer to value\n", __FUNCTION__); errors++; }
}
return errors;
}
static int dictionary_unittest_walkthrough_callback(const DICTIONARY_ITEM *item __maybe_unused, void *value __maybe_unused, void *data __maybe_unused) {
return 1;
}
static size_t dictionary_unittest_walkthrough(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
int sum = dictionary_walkthrough_read(dict, dictionary_unittest_walkthrough_callback, NULL);
if(sum < (int)entries) return entries - sum;
else return sum - entries;
}
static int dictionary_unittest_walkthrough_delete_this_callback(const DICTIONARY_ITEM *item, void *value __maybe_unused, void *data) {
const char *name = dictionary_acquired_item_name((DICTIONARY_ITEM *)item);
if(!dictionary_del((DICTIONARY *)data, name))
return 0;
return 1;
}
static size_t dictionary_unittest_walkthrough_delete_this(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
int sum = dictionary_walkthrough_write(dict, dictionary_unittest_walkthrough_delete_this_callback, dict);
if(sum < (int)entries) return entries - sum;
else return sum - entries;
}
static int dictionary_unittest_walkthrough_stop_callback(const DICTIONARY_ITEM *item __maybe_unused, void *value __maybe_unused, void *data __maybe_unused) {
return -1;
}
static size_t dictionary_unittest_walkthrough_stop(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
(void)entries;
int sum = dictionary_walkthrough_read(dict, dictionary_unittest_walkthrough_stop_callback, NULL);
if(sum != -1) return 1;
return 0;
}
static size_t dictionary_unittest_foreach(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
(void)entries;
size_t count = 0;
char *item;
dfe_start_read(dict, item)
count++;
dfe_done(item);
if(count > entries) return count - entries;
return entries - count;
}
static size_t dictionary_unittest_foreach_delete_this(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
(void)entries;
size_t count = 0;
char *item;
dfe_start_write(dict, item)
if(dictionary_del(dict, item_dfe.name)) count++;
dfe_done(item);
if(count > entries) return count - entries;
return entries - count;
}
static size_t dictionary_unittest_destroy(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
(void)entries;
size_t bytes = dictionary_destroy(dict);
fprintf(stderr, " %s() freed %zu bytes,", __FUNCTION__, bytes);
return 0;
}
static usec_t dictionary_unittest_run_and_measure_time(DICTIONARY *dict, char *message, char **names, char **values, size_t entries, size_t *errors, size_t (*callback)(DICTIONARY *dict, char **names, char **values, size_t entries)) {
fprintf(stderr, "%40s ... ", message);
usec_t started = now_realtime_usec();
size_t errs = callback(dict, names, values, entries);
usec_t ended = now_realtime_usec();
usec_t dt = ended - started;
if(callback == dictionary_unittest_destroy) dict = NULL;
long int found_ok = 0, found_deleted = 0, found_referenced = 0;
if(dict) {
DICTIONARY_ITEM *item;
DOUBLE_LINKED_LIST_FOREACH_FORWARD(dict->items.list, item, prev, next) {
if(item->refcount >= 0 && !(item ->flags & ITEM_FLAG_DELETED))
found_ok++;
else
found_deleted++;
if(item->refcount > 0)
found_referenced++;
}
}
fprintf(stderr, " %zu errors, %ld (found %ld) items in dictionary, %ld (found %ld) referenced, %ld (found %ld) deleted, %llu usec \n",
errs, dict?dict->entries:0, found_ok, dict?dict->referenced_items:0, found_referenced, dict?dict->pending_deletion_items:0, found_deleted, dt);
*errors += errs;
return dt;
}
static void dictionary_unittest_clone(DICTIONARY *dict, char **names, char **values, size_t entries, size_t *errors) {
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, errors, dictionary_unittest_set_clone);
dictionary_unittest_run_and_measure_time(dict, "getting entries", names, values, entries, errors, dictionary_unittest_get_clone);
dictionary_unittest_run_and_measure_time(dict, "getting non-existing entries", names, values, entries, errors, dictionary_unittest_get_nonexisting);
dictionary_unittest_run_and_measure_time(dict, "resetting entries", names, values, entries, errors, dictionary_unittest_reset_clone);
dictionary_unittest_run_and_measure_time(dict, "deleting non-existing entries", names, values, entries, errors, dictionary_unittest_del_nonexisting);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach read loop", names, values, entries, errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback", names, values, entries, errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback stop", names, values, entries, errors, dictionary_unittest_walkthrough_stop);
dictionary_unittest_run_and_measure_time(dict, "deleting existing entries", names, values, entries, errors, dictionary_unittest_del_existing);
dictionary_unittest_run_and_measure_time(dict, "walking through empty", names, values, 0, errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach empty", names, values, 0, errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "destroying empty dictionary", names, values, entries, errors, dictionary_unittest_destroy);
}
static void dictionary_unittest_nonclone(DICTIONARY *dict, char **names, char **values, size_t entries, size_t *errors) {
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, errors, dictionary_unittest_set_nonclone);
dictionary_unittest_run_and_measure_time(dict, "getting entries", names, values, entries, errors, dictionary_unittest_get_nonclone);
dictionary_unittest_run_and_measure_time(dict, "getting non-existing entries", names, values, entries, errors, dictionary_unittest_get_nonexisting);
dictionary_unittest_run_and_measure_time(dict, "resetting entries", names, values, entries, errors, dictionary_unittest_reset_nonclone);
dictionary_unittest_run_and_measure_time(dict, "deleting non-existing entries", names, values, entries, errors, dictionary_unittest_del_nonexisting);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach read loop", names, values, entries, errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback", names, values, entries, errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback stop", names, values, entries, errors, dictionary_unittest_walkthrough_stop);
dictionary_unittest_run_and_measure_time(dict, "deleting existing entries", names, values, entries, errors, dictionary_unittest_del_existing);
dictionary_unittest_run_and_measure_time(dict, "walking through empty", names, values, 0, errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach empty", names, values, 0, errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "destroying empty dictionary", names, values, entries, errors, dictionary_unittest_destroy);
}
struct dictionary_unittest_sorting {
const char *old_name;
const char *old_value;
size_t count;
};
static int dictionary_unittest_sorting_callback(const DICTIONARY_ITEM *item, void *value, void *data) {
const char *name = dictionary_acquired_item_name((DICTIONARY_ITEM *)item);
struct dictionary_unittest_sorting *t = (struct dictionary_unittest_sorting *)data;
const char *v = (const char *)value;
int ret = 0;
if(t->old_name && strcmp(t->old_name, name) > 0) {
fprintf(stderr, "name '%s' should be after '%s'\n", t->old_name, name);
ret = 1;
}
t->count++;
t->old_name = name;
t->old_value = v;
return ret;
}
static size_t dictionary_unittest_sorted_walkthrough(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
struct dictionary_unittest_sorting tmp = { .old_name = NULL, .old_value = NULL, .count = 0 };
size_t errors;
errors = dictionary_sorted_walkthrough_read(dict, dictionary_unittest_sorting_callback, &tmp);
if(tmp.count != entries) {
fprintf(stderr, "Expected %zu entries, counted %zu\n", entries, tmp.count);
errors++;
}
return errors;
}
static void dictionary_unittest_sorting(DICTIONARY *dict, char **names, char **values, size_t entries, size_t *errors) {
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, errors, dictionary_unittest_set_clone);
dictionary_unittest_run_and_measure_time(dict, "sorted walkthrough", names, values, entries, errors, dictionary_unittest_sorted_walkthrough);
}
static void dictionary_unittest_null_dfe(DICTIONARY *dict, char **names, char **values, size_t entries, size_t *errors) {
dictionary_unittest_run_and_measure_time(dict, "adding null value entries", names, values, entries, errors, dictionary_unittest_set_null);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach read loop", names, values, entries, errors, dictionary_unittest_foreach);
}
static int unittest_check_dictionary_callback(const DICTIONARY_ITEM *item __maybe_unused, void *value __maybe_unused, void *data __maybe_unused) {
return 1;
}
static size_t unittest_check_dictionary(const char *label, DICTIONARY *dict, size_t traversable, size_t active_items, size_t deleted_items, size_t referenced_items, size_t pending_deletion) {
size_t errors = 0;
size_t ll = 0;
void *t;
dfe_start_read(dict, t)
ll++;
dfe_done(t);
fprintf(stderr, "DICT %-20s: dictionary foreach entries %zu, expected %zu...\t\t\t\t\t",
label, ll, traversable);
if(ll != traversable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
ll = dictionary_walkthrough_read(dict, unittest_check_dictionary_callback, NULL);
fprintf(stderr, "DICT %-20s: dictionary walkthrough entries %zu, expected %zu...\t\t\t\t",
label, ll, traversable);
if(ll != traversable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
ll = dictionary_sorted_walkthrough_read(dict, unittest_check_dictionary_callback, NULL);
fprintf(stderr, "DICT %-20s: dictionary sorted walkthrough entries %zu, expected %zu...\t\t\t",
label, ll, traversable);
if(ll != traversable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
DICTIONARY_ITEM *item;
size_t active = 0, deleted = 0, referenced = 0, pending = 0;
for(item = dict->items.list; item; item = item->next) {
if(!(item->flags & ITEM_FLAG_DELETED) && !(item->shared->flags & ITEM_FLAG_DELETED))
active++;
else {
deleted++;
if(item->refcount == 0)
pending++;
}
if(item->refcount > 0)
referenced++;
}
fprintf(stderr, "DICT %-20s: dictionary active items reported %ld, counted %zu, expected %zu...\t\t\t",
label, dict->entries, active, active_items);
if(active != active_items || active != (size_t)dict->entries) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
fprintf(stderr, "DICT %-20s: dictionary deleted items counted %zu, expected %zu...\t\t\t\t",
label, deleted, deleted_items);
if(deleted != deleted_items) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
fprintf(stderr, "DICT %-20s: dictionary referenced items reported %ld, counted %zu, expected %zu...\t\t",
label, dict->referenced_items, referenced, referenced_items);
if(referenced != referenced_items || dict->referenced_items != (long int)referenced) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
fprintf(stderr, "DICT %-20s: dictionary pending deletion items reported %ld, counted %zu, expected %zu...\t",
label, dict->pending_deletion_items, pending, pending_deletion);
if(pending != pending_deletion || pending != (size_t)dict->pending_deletion_items) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
return errors;
}
static int check_item_callback(const DICTIONARY_ITEM *item __maybe_unused, void *value, void *data) {
return value == data;
}
static size_t unittest_check_item(const char *label, DICTIONARY *dict,
DICTIONARY_ITEM *item, const char *name, const char *value, int refcount,
ITEM_FLAGS deleted_flags, bool searchable, bool browsable, bool linked) {
size_t errors = 0;
fprintf(stderr, "ITEM %-20s: name is '%s', expected '%s'...\t\t\t\t\t\t", label, item_get_name(item), name);
if(strcmp(item_get_name(item), name) != 0) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
fprintf(stderr, "ITEM %-20s: value is '%s', expected '%s'...\t\t\t\t\t", label, (const char *)item->shared->value, value);
if(strcmp((const char *)item->shared->value, value) != 0) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
fprintf(stderr, "ITEM %-20s: refcount is %d, expected %d...\t\t\t\t\t\t\t", label, item->refcount, refcount);
if (item->refcount != refcount) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
fprintf(stderr, "ITEM %-20s: deleted flag is %s, expected %s...\t\t\t\t\t", label,
(item->flags & ITEM_FLAG_DELETED || item->shared->flags & ITEM_FLAG_DELETED)?"true":"false",
(deleted_flags & ITEM_FLAG_DELETED)?"true":"false");
if ((item->flags & ITEM_FLAG_DELETED || item->shared->flags & ITEM_FLAG_DELETED) != (deleted_flags & ITEM_FLAG_DELETED)) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
void *v = dictionary_get(dict, name);
bool found = v == item->shared->value;
fprintf(stderr, "ITEM %-20s: searchable %5s, expected %5s...\t\t\t\t\t\t", label,
found?"true":"false", searchable?"true":"false");
if(found != searchable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
found = false;
void *t;
dfe_start_read(dict, t) {
if(t == item->shared->value) found = true;
}
dfe_done(t);
fprintf(stderr, "ITEM %-20s: dfe browsable %5s, expected %5s...\t\t\t\t\t", label,
found?"true":"false", browsable?"true":"false");
if(found != browsable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
found = dictionary_walkthrough_read(dict, check_item_callback, item->shared->value);
fprintf(stderr, "ITEM %-20s: walkthrough browsable %5s, expected %5s...\t\t\t\t", label,
found?"true":"false", browsable?"true":"false");
if(found != browsable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
found = dictionary_sorted_walkthrough_read(dict, check_item_callback, item->shared->value);
fprintf(stderr, "ITEM %-20s: sorted walkthrough browsable %5s, expected %5s...\t\t\t", label,
found?"true":"false", browsable?"true":"false");
if(found != browsable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
found = false;
DICTIONARY_ITEM *n;
for(n = dict->items.list; n ;n = n->next)
if(n == item) found = true;
fprintf(stderr, "ITEM %-20s: linked %5s, expected %5s...\t\t\t\t\t\t", label,
found?"true":"false", linked?"true":"false");
if(found != linked) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
return errors;
}
struct thread_unittest {
int join;
DICTIONARY *dict;
int dups;
};
static void *unittest_dict_thread(void *arg) {
struct thread_unittest *tu = arg;
for(; 1 ;) {
if(__atomic_load_n(&tu->join, __ATOMIC_RELAXED))
break;
DICT_ITEM_CONST DICTIONARY_ITEM *item =
dictionary_set_and_acquire_item_advanced(tu->dict, "dict thread checking 1234567890",
-1, NULL, 0, NULL);
dictionary_get(tu->dict, dictionary_acquired_item_name(item));
void *t1;
dfe_start_write(tu->dict, t1) {
// this should delete the referenced item
dictionary_del(tu->dict, t1_dfe.name);
void *t2;
dfe_start_write(tu->dict, t2) {
// this should add another
dictionary_set(tu->dict, t2_dfe.name, NULL, 0);
dictionary_get(tu->dict, dictionary_acquired_item_name(item));
// and this should delete it again
dictionary_del(tu->dict, t2_dfe.name);
}
dfe_done(t2);
// this should fail to add it
dictionary_set(tu->dict, t1_dfe.name, NULL, 0);
dictionary_del(tu->dict, t1_dfe.name);
}
dfe_done(t1);
for(int i = 0; i < tu->dups ; i++) {
dictionary_acquired_item_dup(tu->dict, item);
dictionary_get(tu->dict, dictionary_acquired_item_name(item));
}
for(int i = 0; i < tu->dups ; i++) {
dictionary_acquired_item_release(tu->dict, item);
dictionary_del(tu->dict, dictionary_acquired_item_name(item));
}
dictionary_acquired_item_release(tu->dict, item);
dictionary_del(tu->dict, "dict thread checking 1234567890");
}
return arg;
}
static int dictionary_unittest_threads() {
struct thread_unittest tu = {
.join = 0,
.dict = NULL,
.dups = 1,
};
// threads testing of dictionary
tu.dict = dictionary_create(DICT_OPTION_NAME_LINK_DONT_CLONE | DICT_OPTION_DONT_OVERWRITE_VALUE);
time_t seconds_to_run = 5;
int threads_to_create = 2;
fprintf(
stderr,
"\nChecking dictionary concurrency with %d threads for %ld seconds...\n",
threads_to_create,
seconds_to_run);
netdata_thread_t threads[threads_to_create];
tu.join = 0;
for (int i = 0; i < threads_to_create; i++) {
char buf[100 + 1];
snprintf(buf, 100, "dict%d", i);
netdata_thread_create(
&threads[i],
buf,
NETDATA_THREAD_OPTION_DONT_LOG | NETDATA_THREAD_OPTION_JOINABLE,
unittest_dict_thread,
&tu);
}
sleep_usec(seconds_to_run * USEC_PER_SEC);
__atomic_store_n(&tu.join, 1, __ATOMIC_RELAXED);
for (int i = 0; i < threads_to_create; i++) {
void *retval;
netdata_thread_join(threads[i], &retval);
}
fprintf(stderr,
"inserts %zu"
", deletes %zu"
", searches %zu"
", resets %zu"
", entries %ld"
", referenced_items %ld"
", pending deletions %ld"
", check spins %zu"
", insert spins %zu"
", search ignores %zu"
"\n",
tu.dict->stats->ops.inserts,
tu.dict->stats->ops.deletes,
tu.dict->stats->ops.searches,
tu.dict->stats->ops.resets,
tu.dict->entries,
tu.dict->referenced_items,
tu.dict->pending_deletion_items,
tu.dict->stats->spin_locks.use,
tu.dict->stats->spin_locks.insert,
tu.dict->stats->spin_locks.search
);
dictionary_destroy(tu.dict);
tu.dict = NULL;
return 0;
}
struct thread_view_unittest {
int join;
DICTIONARY *master;
DICTIONARY *view;
DICTIONARY_ITEM *item_master;
int dups;
};
static void *unittest_dict_master_thread(void *arg) {
struct thread_view_unittest *tv = arg;
while(!__atomic_load_n(&tv->join, __ATOMIC_SEQ_CST)) {
if(__atomic_load_n(&tv->item_master, __ATOMIC_SEQ_CST) != NULL)
continue;
DICTIONARY_ITEM *item = dictionary_set_and_acquire_item(tv->master, "ITEM1", "123", strlen("123") + 1);
dictionary_acquired_item_dup(tv->master, item);
dictionary_del(tv->master, "ITEM1");
__atomic_store_n(&tv->item_master, item, __ATOMIC_SEQ_CST);
for(int i = 0; i < tv->dups ; i++) {
dictionary_acquired_item_dup(tv->master, item);
}
for(int i = 0; i < tv->dups ; i++) {
dictionary_acquired_item_release(tv->master, item);
}
dictionary_acquired_item_release(tv->master, item);
}
return arg;
}
static void *unittest_dict_view_thread(void *arg) {
struct thread_view_unittest *tv = arg;
while(!__atomic_load_n(&tv->join, __ATOMIC_SEQ_CST)) {
DICTIONARY_ITEM *m_item = __atomic_load_n(&tv->item_master, __ATOMIC_SEQ_CST);
if(!m_item) continue;
DICTIONARY_ITEM *v_item = dictionary_view_set_and_acquire_item(tv->view, "ITEM2", m_item);
dictionary_acquired_item_release(tv->master, m_item);
__atomic_store_n(&tv->item_master, NULL, __ATOMIC_SEQ_CST);
for(int i = 0; i < tv->dups ; i++) {
dictionary_acquired_item_dup(tv->view, v_item);
}
for(int i = 0; i < tv->dups ; i++) {
dictionary_acquired_item_release(tv->view, v_item);
}
dictionary_del(tv->view, "ITEM2");
dictionary_acquired_item_release(tv->view, v_item);
}
return arg;
}
static int dictionary_unittest_view_threads() {
struct thread_view_unittest tv = {
.join = 0,
.master = NULL,
.view = NULL,
.item_master = NULL,
.dups = 1,
};
// threads testing of dictionary
struct dictionary_stats stats = {};
tv.master = dictionary_create_advanced(DICT_OPTION_NAME_LINK_DONT_CLONE | DICT_OPTION_DONT_OVERWRITE_VALUE, &stats);
tv.view = dictionary_create_view(tv.master);
time_t seconds_to_run = 5;
fprintf(
stderr,
"\nChecking dictionary concurrency with 1 master and 1 view threads for %ld seconds...\n",
seconds_to_run);
netdata_thread_t master_thread, view_thread;
tv.join = 0;
netdata_thread_create(
&master_thread,
"master",
NETDATA_THREAD_OPTION_DONT_LOG | NETDATA_THREAD_OPTION_JOINABLE,
unittest_dict_master_thread,
&tv);
netdata_thread_create(
&view_thread,
"view",
NETDATA_THREAD_OPTION_DONT_LOG | NETDATA_THREAD_OPTION_JOINABLE,
unittest_dict_view_thread,
&tv);
sleep_usec(seconds_to_run * USEC_PER_SEC);
__atomic_store_n(&tv.join, 1, __ATOMIC_RELAXED);
void *retval;
netdata_thread_join(view_thread, &retval);
netdata_thread_join(master_thread, &retval);
fprintf(stderr,
"inserts %zu"
", deletes %zu"
", searches %zu"
", resets %zu"
", entries %ld (%ld on view)"
", referenced_items %ld (%ld on view)"
", pending deletions %ld (%ld on view)"
", check spins %zu"
", insert spins %zu"
", search ignores %zu"
"\n",
stats.ops.inserts,
stats.ops.deletes,
stats.ops.searches,
stats.ops.resets,
tv.master->entries, tv.view->entries,
tv.master->referenced_items, tv.view->referenced_items,
tv.master->pending_deletion_items, tv.view->pending_deletion_items,
stats.spin_locks.use,
stats.spin_locks.insert,
stats.spin_locks.search
);
dictionary_destroy(tv.master);
dictionary_destroy(tv.view);
return 0;
}
size_t dictionary_unittest_views(void) {
size_t errors = 0;
struct dictionary_stats stats = {};
DICTIONARY *master = dictionary_create_advanced(DICT_OPTION_NONE, &stats);
DICTIONARY *view = dictionary_create_view(master);
fprintf(stderr, "\n\nChecking dictionary views...\n");
// Add an item to both master and view, then remove the view first and the master second
fprintf(stderr, "\nPASS 1: Adding 1 item to master:\n");
DICTIONARY_ITEM *item1_on_master = dictionary_set_and_acquire_item(master, "KEY 1", "VALUE1", strlen("VALUE1") + 1);
errors += unittest_check_dictionary("master", master, 1, 1, 0, 1, 0);
errors += unittest_check_item("master", master, item1_on_master, "KEY 1", item1_on_master->shared->value, 1, ITEM_FLAG_NONE, true, true, true);
fprintf(stderr, "\nPASS 1: Adding master item to view:\n");
DICTIONARY_ITEM *item1_on_view = dictionary_view_set_and_acquire_item(view, "KEY 1 ON VIEW", item1_on_master);
errors += unittest_check_dictionary("view", view, 1, 1, 0, 1, 0);
errors += unittest_check_item("view", view, item1_on_view, "KEY 1 ON VIEW", item1_on_master->shared->value, 1, ITEM_FLAG_NONE, true, true, true);
fprintf(stderr, "\nPASS 1: Deleting view item:\n");
dictionary_del(view, "KEY 1 ON VIEW");
errors += unittest_check_dictionary("master", master, 1, 1, 0, 1, 0);
errors += unittest_check_dictionary("view", view, 0, 0, 1, 1, 0);
errors += unittest_check_item("master", master, item1_on_master, "KEY 1", item1_on_master->shared->value, 1, ITEM_FLAG_NONE, true, true, true);
errors += unittest_check_item("view", view, item1_on_view, "KEY 1 ON VIEW", item1_on_master->shared->value, 1, ITEM_FLAG_DELETED, false, false, true);
fprintf(stderr, "\nPASS 1: Releasing the deleted view item:\n");
dictionary_acquired_item_release(view, item1_on_view);
errors += unittest_check_dictionary("master", master, 1, 1, 0, 1, 0);
errors += unittest_check_dictionary("view", view, 0, 0, 1, 0, 1);
errors += unittest_check_item("master", master, item1_on_master, "KEY 1", item1_on_master->shared->value, 1, ITEM_FLAG_NONE, true, true, true);
fprintf(stderr, "\nPASS 1: Releasing the acquired master item:\n");
dictionary_acquired_item_release(master, item1_on_master);
errors += unittest_check_dictionary("master", master, 1, 1, 0, 0, 0);
errors += unittest_check_dictionary("view", view, 0, 0, 1, 0, 1);
errors += unittest_check_item("master", master, item1_on_master, "KEY 1", item1_on_master->shared->value, 0, ITEM_FLAG_NONE, true, true, true);
fprintf(stderr, "\nPASS 1: Deleting the released master item:\n");
dictionary_del(master, "KEY 1");
errors += unittest_check_dictionary("master", master, 0, 0, 0, 0, 0);
errors += unittest_check_dictionary("view", view, 0, 0, 1, 0, 1);
// The other way now:
// Add an item to both master and view, then remove the master first and verify it is deleted on the view also
fprintf(stderr, "\nPASS 2: Adding 1 item to master:\n");
item1_on_master = dictionary_set_and_acquire_item(master, "KEY 1", "VALUE1", strlen("VALUE1") + 1);
errors += unittest_check_dictionary("master", master, 1, 1, 0, 1, 0);
errors += unittest_check_item("master", master, item1_on_master, "KEY 1", item1_on_master->shared->value, 1, ITEM_FLAG_NONE, true, true, true);
fprintf(stderr, "\nPASS 2: Adding master item to view:\n");
item1_on_view = dictionary_view_set_and_acquire_item(view, "KEY 1 ON VIEW", item1_on_master);
errors += unittest_check_dictionary("view", view, 1, 1, 0, 1, 0);
errors += unittest_check_item("view", view, item1_on_view, "KEY 1 ON VIEW", item1_on_master->shared->value, 1, ITEM_FLAG_NONE, true, true, true);
fprintf(stderr, "\nPASS 2: Deleting master item:\n");
dictionary_del(master, "KEY 1");
dictionary_version(view);
errors += unittest_check_dictionary("master", master, 0, 0, 1, 1, 0);
errors += unittest_check_dictionary("view", view, 0, 0, 1, 1, 0);
errors += unittest_check_item("master", master, item1_on_master, "KEY 1", item1_on_master->shared->value, 1, ITEM_FLAG_DELETED, false, false, true);
errors += unittest_check_item("view", view, item1_on_view, "KEY 1 ON VIEW", item1_on_master->shared->value, 1, ITEM_FLAG_DELETED, false, false, true);
fprintf(stderr, "\nPASS 2: Releasing the acquired master item:\n");
dictionary_acquired_item_release(master, item1_on_master);
errors += unittest_check_dictionary("master", master, 0, 0, 1, 0, 1);
errors += unittest_check_dictionary("view", view, 0, 0, 1, 1, 0);
errors += unittest_check_item("view", view, item1_on_view, "KEY 1 ON VIEW", item1_on_master->shared->value, 1, ITEM_FLAG_DELETED, false, false, true);
fprintf(stderr, "\nPASS 2: Releasing the deleted view item:\n");
dictionary_acquired_item_release(view, item1_on_view);
errors += unittest_check_dictionary("master", master, 0, 0, 1, 0, 1);
errors += unittest_check_dictionary("view", view, 0, 0, 1, 0, 1);
dictionary_destroy(master);
dictionary_destroy(view);
return errors;
}
int dictionary_unittest(size_t entries) {
if(entries < 10) entries = 10;
DICTIONARY *dict;
size_t errors = 0;
fprintf(stderr, "Generating %zu names and values...\n", entries);
char **names = dictionary_unittest_generate_names(entries);
char **values = dictionary_unittest_generate_values(entries);
fprintf(stderr, "\nCreating dictionary single threaded, clone, %zu items\n", entries);
dict = dictionary_create(DICT_OPTION_SINGLE_THREADED);
dictionary_unittest_clone(dict, names, values, entries, &errors);
fprintf(stderr, "\nCreating dictionary multi threaded, clone, %zu items\n", entries);
dict = dictionary_create(DICT_OPTION_NONE);
dictionary_unittest_clone(dict, names, values, entries, &errors);
fprintf(stderr, "\nCreating dictionary single threaded, non-clone, add-in-front options, %zu items\n", entries);
dict = dictionary_create(
DICT_OPTION_SINGLE_THREADED | DICT_OPTION_NAME_LINK_DONT_CLONE | DICT_OPTION_VALUE_LINK_DONT_CLONE |
DICT_OPTION_ADD_IN_FRONT);
dictionary_unittest_nonclone(dict, names, values, entries, &errors);
fprintf(stderr, "\nCreating dictionary multi threaded, non-clone, add-in-front options, %zu items\n", entries);
dict = dictionary_create(
DICT_OPTION_NAME_LINK_DONT_CLONE | DICT_OPTION_VALUE_LINK_DONT_CLONE | DICT_OPTION_ADD_IN_FRONT);
dictionary_unittest_nonclone(dict, names, values, entries, &errors);
fprintf(stderr, "\nCreating dictionary single-threaded, non-clone, don't overwrite options, %zu items\n", entries);
dict = dictionary_create(
DICT_OPTION_SINGLE_THREADED | DICT_OPTION_NAME_LINK_DONT_CLONE | DICT_OPTION_VALUE_LINK_DONT_CLONE |
DICT_OPTION_DONT_OVERWRITE_VALUE);
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, &errors, dictionary_unittest_set_nonclone);
dictionary_unittest_run_and_measure_time(dict, "resetting non-overwrite entries", names, values, entries, &errors, dictionary_unittest_reset_dont_overwrite_nonclone);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach read loop", names, values, entries, &errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback", names, values, entries, &errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback stop", names, values, entries, &errors, dictionary_unittest_walkthrough_stop);
dictionary_unittest_run_and_measure_time(dict, "destroying full dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
fprintf(stderr, "\nCreating dictionary multi-threaded, non-clone, don't overwrite options, %zu items\n", entries);
dict = dictionary_create(
DICT_OPTION_NAME_LINK_DONT_CLONE | DICT_OPTION_VALUE_LINK_DONT_CLONE | DICT_OPTION_DONT_OVERWRITE_VALUE);
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, &errors, dictionary_unittest_set_nonclone);
dictionary_unittest_run_and_measure_time(dict, "walkthrough write delete this", names, values, entries, &errors, dictionary_unittest_walkthrough_delete_this);
dictionary_unittest_run_and_measure_time(dict, "destroying empty dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
fprintf(stderr, "\nCreating dictionary multi-threaded, non-clone, don't overwrite options, %zu items\n", entries);
dict = dictionary_create(
DICT_OPTION_NAME_LINK_DONT_CLONE | DICT_OPTION_VALUE_LINK_DONT_CLONE | DICT_OPTION_DONT_OVERWRITE_VALUE);
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, &errors, dictionary_unittest_set_nonclone);
dictionary_unittest_run_and_measure_time(dict, "foreach write delete this", names, values, entries, &errors, dictionary_unittest_foreach_delete_this);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach read loop empty", names, values, 0, &errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback empty", names, values, 0, &errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "destroying empty dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
fprintf(stderr, "\nCreating dictionary single threaded, clone, %zu items\n", entries);
dict = dictionary_create(DICT_OPTION_SINGLE_THREADED);
dictionary_unittest_sorting(dict, names, values, entries, &errors);
dictionary_unittest_run_and_measure_time(dict, "destroying full dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
fprintf(stderr, "\nCreating dictionary single threaded, clone, %zu items\n", entries);
dict = dictionary_create(DICT_OPTION_SINGLE_THREADED);
dictionary_unittest_null_dfe(dict, names, values, entries, &errors);
dictionary_unittest_run_and_measure_time(dict, "destroying full dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
fprintf(stderr, "\nCreating dictionary single threaded, noclone, %zu items\n", entries);
dict = dictionary_create(DICT_OPTION_SINGLE_THREADED | DICT_OPTION_VALUE_LINK_DONT_CLONE);
dictionary_unittest_null_dfe(dict, names, values, entries, &errors);
dictionary_unittest_run_and_measure_time(dict, "destroying full dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
// check reference counters
{
fprintf(stderr, "\nTesting reference counters:\n");
dict = dictionary_create(DICT_OPTION_NONE | DICT_OPTION_NAME_LINK_DONT_CLONE);
errors += unittest_check_dictionary("", dict, 0, 0, 0, 0, 0);
fprintf(stderr, "\nAdding test item to dictionary and acquiring it\n");
dictionary_set(dict, "test", "ITEM1", 6);
DICTIONARY_ITEM *item = (DICTIONARY_ITEM *)dictionary_get_and_acquire_item(dict, "test");
errors += unittest_check_dictionary("", dict, 1, 1, 0, 1, 0);
errors += unittest_check_item("ACQUIRED", dict, item, "test", "ITEM1", 1, ITEM_FLAG_NONE, true, true, true);
fprintf(stderr, "\nChecking that reference counters are increased:\n");
void *t;
dfe_start_read(dict, t) {
errors += unittest_check_dictionary("", dict, 1, 1, 0, 1, 0);
errors += unittest_check_item("ACQUIRED TRAVERSAL", dict, item, "test", "ITEM1", 2, ITEM_FLAG_NONE, true, true, true);
}
dfe_done(t);
fprintf(stderr, "\nChecking that reference counters are decreased:\n");
errors += unittest_check_dictionary("", dict, 1, 1, 0, 1, 0);
errors += unittest_check_item("ACQUIRED TRAVERSAL 2", dict, item, "test", "ITEM1", 1, ITEM_FLAG_NONE, true, true, true);
fprintf(stderr, "\nDeleting the item we have acquired:\n");
dictionary_del(dict, "test");
errors += unittest_check_dictionary("", dict, 0, 0, 1, 1, 0);
errors += unittest_check_item("DELETED", dict, item, "test", "ITEM1", 1, ITEM_FLAG_DELETED, false, false, true);
fprintf(stderr, "\nAdding another item with the same name of the item we deleted, while being acquired:\n");
dictionary_set(dict, "test", "ITEM2", 6);
errors += unittest_check_dictionary("", dict, 1, 1, 1, 1, 0);
fprintf(stderr, "\nAcquiring the second item:\n");
DICTIONARY_ITEM *item2 = (DICTIONARY_ITEM *)dictionary_get_and_acquire_item(dict, "test");
errors += unittest_check_item("FIRST", dict, item, "test", "ITEM1", 1, ITEM_FLAG_DELETED, false, false, true);
errors += unittest_check_item("SECOND", dict, item2, "test", "ITEM2", 1, ITEM_FLAG_NONE, true, true, true);
errors += unittest_check_dictionary("", dict, 1, 1, 1, 2, 0);
fprintf(stderr, "\nReleasing the second item (the first is still acquired):\n");
dictionary_acquired_item_release(dict, (DICTIONARY_ITEM *)item2);
errors += unittest_check_dictionary("", dict, 1, 1, 1, 1, 0);
errors += unittest_check_item("FIRST", dict, item, "test", "ITEM1", 1, ITEM_FLAG_DELETED, false, false, true);
errors += unittest_check_item("SECOND RELEASED", dict, item2, "test", "ITEM2", 0, ITEM_FLAG_NONE, true, true, true);
fprintf(stderr, "\nDeleting the second item (the first is still acquired):\n");
dictionary_del(dict, "test");
errors += unittest_check_dictionary("", dict, 0, 0, 1, 1, 0);
errors += unittest_check_item("ACQUIRED DELETED", dict, item, "test", "ITEM1", 1, ITEM_FLAG_DELETED, false, false, true);
fprintf(stderr, "\nReleasing the first item (which we have already deleted):\n");
dictionary_acquired_item_release(dict, (DICTIONARY_ITEM *)item);
dfe_start_write(dict, item) ; dfe_done(item);
errors += unittest_check_dictionary("", dict, 0, 0, 1, 0, 1);
fprintf(stderr, "\nAdding again the test item to dictionary and acquiring it\n");
dictionary_set(dict, "test", "ITEM1", 6);
item = (DICTIONARY_ITEM *)dictionary_get_and_acquire_item(dict, "test");
errors += unittest_check_dictionary("", dict, 1, 1, 0, 1, 0);
errors += unittest_check_item("RE-ADDITION", dict, item, "test", "ITEM1", 1, ITEM_FLAG_NONE, true, true, true);
fprintf(stderr, "\nDestroying the dictionary while we have acquired an item\n");
dictionary_destroy(dict);
fprintf(stderr, "Releasing the item (on a destroyed dictionary)\n");
dictionary_acquired_item_release(dict, (DICTIONARY_ITEM *)item);
item = NULL;
dict = NULL;
}
dictionary_unittest_free_char_pp(names, entries);
dictionary_unittest_free_char_pp(values, entries);
errors += dictionary_unittest_views();
errors += dictionary_unittest_threads();
errors += dictionary_unittest_view_threads();
fprintf(stderr, "\n%zu errors found\n", errors);
return errors ? 1 : 0;
}