netdata/daemon/unit_test.c

2564 lines
94 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#include "common.h"
static int check_number_printing(void) {
struct {
NETDATA_DOUBLE n;
const char *correct;
} values[] = {
{ .n = 0, .correct = "0" },
{ .n = 0.0000001, .correct = "0.0000001" },
{ .n = 0.00000009, .correct = "0.0000001" },
{ .n = 0.000000001, .correct = "0" },
{ .n = 99.99999999999999999, .correct = "100" },
{ .n = -99.99999999999999999, .correct = "-100" },
{ .n = 123.4567890123456789, .correct = "123.456789" },
{ .n = 9999.9999999, .correct = "9999.9999999" },
{ .n = -9999.9999999, .correct = "-9999.9999999" },
{ .n = 0, .correct = NULL },
};
char netdata[50], system[50];
int i, failed = 0;
for(i = 0; values[i].correct ; i++) {
print_netdata_double(netdata, values[i].n);
snprintfz(system, 49, "%0.12" NETDATA_DOUBLE_MODIFIER, (NETDATA_DOUBLE)values[i].n);
int ok = 1;
if(strcmp(netdata, values[i].correct) != 0) {
ok = 0;
failed++;
}
fprintf(stderr, "'%s' (system) printed as '%s' (netdata): %s\n", system, netdata, ok?"OK":"FAILED");
}
if(failed) return 1;
return 0;
}
static int check_rrdcalc_comparisons(void) {
RRDCALC_STATUS a, b;
// make sure calloc() sets the status to UNINITIALIZED
memset(&a, 0, sizeof(RRDCALC_STATUS));
if(a != RRDCALC_STATUS_UNINITIALIZED) {
fprintf(stderr, "%s is not zero.\n", rrdcalc_status2string(RRDCALC_STATUS_UNINITIALIZED));
return 1;
}
a = RRDCALC_STATUS_REMOVED;
b = RRDCALC_STATUS_UNDEFINED;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
a = RRDCALC_STATUS_UNDEFINED;
b = RRDCALC_STATUS_UNINITIALIZED;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
a = RRDCALC_STATUS_UNINITIALIZED;
b = RRDCALC_STATUS_CLEAR;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
a = RRDCALC_STATUS_CLEAR;
b = RRDCALC_STATUS_RAISED;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
a = RRDCALC_STATUS_RAISED;
b = RRDCALC_STATUS_WARNING;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
a = RRDCALC_STATUS_WARNING;
b = RRDCALC_STATUS_CRITICAL;
if(!(a < b)) {
fprintf(stderr, "%s is not less than %s\n", rrdcalc_status2string(a), rrdcalc_status2string(b));
return 1;
}
fprintf(stderr, "RRDCALC_STATUSes are sortable.\n");
return 0;
}
int check_storage_number(NETDATA_DOUBLE n, int debug) {
char buffer[100];
uint32_t flags = SN_DEFAULT_FLAGS;
storage_number s = pack_storage_number(n, flags);
NETDATA_DOUBLE d = unpack_storage_number(s);
if(!does_storage_number_exist(s)) {
fprintf(stderr, "Exists flags missing for number " NETDATA_DOUBLE_FORMAT "!\n", n);
return 5;
}
NETDATA_DOUBLE ddiff = d - n;
NETDATA_DOUBLE dcdiff = ddiff * 100.0 / n;
if(dcdiff < 0) dcdiff = -dcdiff;
size_t len = (size_t)print_netdata_double(buffer, d);
NETDATA_DOUBLE p = str2ndd(buffer, NULL);
NETDATA_DOUBLE pdiff = n - p;
NETDATA_DOUBLE pcdiff = pdiff * 100.0 / n;
if(pcdiff < 0) pcdiff = -pcdiff;
if(debug) {
fprintf(stderr,
NETDATA_DOUBLE_FORMAT
" original\n" NETDATA_DOUBLE_FORMAT " packed and unpacked, (stored as 0x%08X, diff " NETDATA_DOUBLE_FORMAT
", " NETDATA_DOUBLE_FORMAT "%%)\n"
"%s printed after unpacked (%zu bytes)\n" NETDATA_DOUBLE_FORMAT
" re-parsed from printed (diff " NETDATA_DOUBLE_FORMAT ", " NETDATA_DOUBLE_FORMAT "%%)\n\n",
n,
d, s, ddiff, dcdiff,
buffer, len,
p, pdiff, pcdiff
);
if(len != strlen(buffer)) fprintf(stderr, "ERROR: printed number %s is reported to have length %zu but it has %zu\n", buffer, len, strlen(buffer));
if(dcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT)
fprintf(stderr, "WARNING: packing number " NETDATA_DOUBLE_FORMAT " has accuracy loss " NETDATA_DOUBLE_FORMAT " %%\n", n, dcdiff);
if(pcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT)
fprintf(stderr, "WARNING: re-parsing the packed, unpacked and printed number " NETDATA_DOUBLE_FORMAT
" has accuracy loss " NETDATA_DOUBLE_FORMAT " %%\n", n, pcdiff);
}
if(len != strlen(buffer)) return 1;
if(dcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT) return 3;
if(pcdiff > ACCURACY_LOSS_ACCEPTED_PERCENT) return 4;
return 0;
}
NETDATA_DOUBLE storage_number_min(NETDATA_DOUBLE n) {
NETDATA_DOUBLE r = 1, last;
do {
last = n;
n /= 2.0;
storage_number t = pack_storage_number(n, SN_DEFAULT_FLAGS);
r = unpack_storage_number(t);
} while(r != 0.0 && r != last);
return last;
}
void benchmark_storage_number(int loop, int multiplier) {
int i, j;
NETDATA_DOUBLE n, d;
storage_number s;
unsigned long long user, system, total, mine, their;
NETDATA_DOUBLE storage_number_positive_min = unpack_storage_number(STORAGE_NUMBER_POSITIVE_MIN_RAW);
NETDATA_DOUBLE storage_number_positive_max = unpack_storage_number(STORAGE_NUMBER_POSITIVE_MAX_RAW);
char buffer[100];
struct rusage now, last;
fprintf(stderr, "\n\nBenchmarking %d numbers, please wait...\n\n", loop);
// ------------------------------------------------------------------------
fprintf(stderr, "SYSTEM LONG DOUBLE SIZE: %zu bytes\n", sizeof(NETDATA_DOUBLE));
fprintf(stderr, "NETDATA FLOATING POINT SIZE: %zu bytes\n", sizeof(storage_number));
mine = (NETDATA_DOUBLE)sizeof(storage_number) * (NETDATA_DOUBLE)loop;
their = (NETDATA_DOUBLE)sizeof(NETDATA_DOUBLE) * (NETDATA_DOUBLE)loop;
if(mine > their) {
fprintf(stderr, "\nNETDATA NEEDS %0.2" NETDATA_DOUBLE_MODIFIER " TIMES MORE MEMORY. Sorry!\n", (NETDATA_DOUBLE)(mine / their));
}
else {
fprintf(stderr, "\nNETDATA INTERNAL FLOATING POINT ARITHMETICS NEEDS %0.2" NETDATA_DOUBLE_MODIFIER " TIMES LESS MEMORY.\n", (NETDATA_DOUBLE)(their / mine));
}
fprintf(stderr, "\nNETDATA FLOATING POINT\n");
fprintf(stderr, "MIN POSITIVE VALUE " NETDATA_DOUBLE_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_POSITIVE_MIN_RAW));
fprintf(stderr, "MAX POSITIVE VALUE " NETDATA_DOUBLE_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_POSITIVE_MAX_RAW));
fprintf(stderr, "MIN NEGATIVE VALUE " NETDATA_DOUBLE_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_NEGATIVE_MIN_RAW));
fprintf(stderr, "MAX NEGATIVE VALUE " NETDATA_DOUBLE_FORMAT "\n", unpack_storage_number(STORAGE_NUMBER_NEGATIVE_MAX_RAW));
fprintf(stderr, "Maximum accuracy loss accepted: " NETDATA_DOUBLE_FORMAT "%%\n\n\n", (NETDATA_DOUBLE)ACCURACY_LOSS_ACCEPTED_PERCENT);
// ------------------------------------------------------------------------
fprintf(stderr, "INTERNAL LONG DOUBLE PRINTING: ");
getrusage(RUSAGE_SELF, &last);
// do the job
for(j = 1; j < 11 ;j++) {
n = storage_number_positive_min * j;
for(i = 0; i < loop ;i++) {
n *= multiplier;
if(n > storage_number_positive_max) n = storage_number_positive_min;
print_netdata_double(buffer, n);
}
}
getrusage(RUSAGE_SELF, &now);
user = now.ru_utime.tv_sec * 1000000ULL + now.ru_utime.tv_usec - last.ru_utime.tv_sec * 1000000ULL + last.ru_utime.tv_usec;
system = now.ru_stime.tv_sec * 1000000ULL + now.ru_stime.tv_usec - last.ru_stime.tv_sec * 1000000ULL + last.ru_stime.tv_usec;
total = user + system;
mine = total;
fprintf(stderr, "user %0.5" NETDATA_DOUBLE_MODIFIER ", system %0.5" NETDATA_DOUBLE_MODIFIER
", total %0.5" NETDATA_DOUBLE_MODIFIER "\n", (NETDATA_DOUBLE)(user / 1000000.0), (NETDATA_DOUBLE)(system / 1000000.0), (NETDATA_DOUBLE)(total / 1000000.0));
// ------------------------------------------------------------------------
fprintf(stderr, "SYSTEM LONG DOUBLE PRINTING: ");
getrusage(RUSAGE_SELF, &last);
// do the job
for(j = 1; j < 11 ;j++) {
n = storage_number_positive_min * j;
for(i = 0; i < loop ;i++) {
n *= multiplier;
if(n > storage_number_positive_max) n = storage_number_positive_min;
snprintfz(buffer, 100, NETDATA_DOUBLE_FORMAT, n);
}
}
getrusage(RUSAGE_SELF, &now);
user = now.ru_utime.tv_sec * 1000000ULL + now.ru_utime.tv_usec - last.ru_utime.tv_sec * 1000000ULL + last.ru_utime.tv_usec;
system = now.ru_stime.tv_sec * 1000000ULL + now.ru_stime.tv_usec - last.ru_stime.tv_sec * 1000000ULL + last.ru_stime.tv_usec;
total = user + system;
their = total;
fprintf(stderr, "user %0.5" NETDATA_DOUBLE_MODIFIER ", system %0.5" NETDATA_DOUBLE_MODIFIER
", total %0.5" NETDATA_DOUBLE_MODIFIER "\n", (NETDATA_DOUBLE)(user / 1000000.0), (NETDATA_DOUBLE)(system / 1000000.0), (NETDATA_DOUBLE)(total / 1000000.0));
if(mine > total) {
fprintf(stderr, "NETDATA CODE IS SLOWER %0.2" NETDATA_DOUBLE_MODIFIER " %%\n", (NETDATA_DOUBLE)(mine * 100.0 / their - 100.0));
}
else {
fprintf(stderr, "NETDATA CODE IS F A S T E R %0.2" NETDATA_DOUBLE_MODIFIER " %%\n", (NETDATA_DOUBLE)(their * 100.0 / mine - 100.0));
}
// ------------------------------------------------------------------------
fprintf(stderr, "\nINTERNAL LONG DOUBLE PRINTING WITH PACK / UNPACK: ");
getrusage(RUSAGE_SELF, &last);
// do the job
for(j = 1; j < 11 ;j++) {
n = storage_number_positive_min * j;
for(i = 0; i < loop ;i++) {
n *= multiplier;
if(n > storage_number_positive_max) n = storage_number_positive_min;
s = pack_storage_number(n, SN_DEFAULT_FLAGS);
d = unpack_storage_number(s);
print_netdata_double(buffer, d);
}
}
getrusage(RUSAGE_SELF, &now);
user = now.ru_utime.tv_sec * 1000000ULL + now.ru_utime.tv_usec - last.ru_utime.tv_sec * 1000000ULL + last.ru_utime.tv_usec;
system = now.ru_stime.tv_sec * 1000000ULL + now.ru_stime.tv_usec - last.ru_stime.tv_sec * 1000000ULL + last.ru_stime.tv_usec;
total = user + system;
mine = total;
fprintf(stderr, "user %0.5" NETDATA_DOUBLE_MODIFIER ", system %0.5" NETDATA_DOUBLE_MODIFIER
", total %0.5" NETDATA_DOUBLE_MODIFIER "\n", (NETDATA_DOUBLE)(user / 1000000.0), (NETDATA_DOUBLE)(system / 1000000.0), (NETDATA_DOUBLE)(total / 1000000.0));
if(mine > their) {
fprintf(stderr, "WITH PACKING UNPACKING NETDATA CODE IS SLOWER %0.2" NETDATA_DOUBLE_MODIFIER " %%\n", (NETDATA_DOUBLE)(mine * 100.0 / their - 100.0));
}
else {
fprintf(stderr, "EVEN WITH PACKING AND UNPACKING, NETDATA CODE IS F A S T E R %0.2" NETDATA_DOUBLE_MODIFIER " %%\n", (NETDATA_DOUBLE)(their * 100.0 / mine - 100.0));
}
// ------------------------------------------------------------------------
}
static int check_storage_number_exists() {
uint32_t flags = SN_DEFAULT_FLAGS;
NETDATA_DOUBLE n = 0.0;
storage_number s = pack_storage_number(n, flags);
NETDATA_DOUBLE d = unpack_storage_number(s);
if(n != d) {
fprintf(stderr, "Wrong number returned. Expected " NETDATA_DOUBLE_FORMAT ", returned " NETDATA_DOUBLE_FORMAT "!\n", n, d);
return 1;
}
return 0;
}
int unit_test_storage() {
if(check_storage_number_exists()) return 0;
NETDATA_DOUBLE storage_number_positive_min = unpack_storage_number(STORAGE_NUMBER_POSITIVE_MIN_RAW);
NETDATA_DOUBLE storage_number_negative_max = unpack_storage_number(STORAGE_NUMBER_NEGATIVE_MAX_RAW);
NETDATA_DOUBLE c, a = 0;
int i, j, g, r = 0;
for(g = -1; g <= 1 ; g++) {
a = 0;
if(!g) continue;
for(j = 0; j < 9 ;j++) {
a += 0.0000001;
c = a * g;
for(i = 0; i < 21 ;i++, c *= 10) {
if(c > 0 && c < storage_number_positive_min) continue;
if(c < 0 && c > storage_number_negative_max) continue;
if(check_storage_number(c, 1)) return 1;
}
}
}
// if(check_storage_number(858993459.1234567, 1)) return 1;
benchmark_storage_number(1000000, 2);
return r;
}
int unit_test_str2ld() {
char *values[] = {
"1.2345678", "-35.6", "0.00123", "23842384234234.2", ".1", "1.2e-10",
"hello", "1wrong", "nan", "inf", NULL
};
int i;
for(i = 0; values[i] ; i++) {
char *e_mine = "hello", *e_sys = "world";
NETDATA_DOUBLE mine = str2ndd(values[i], &e_mine);
NETDATA_DOUBLE sys = strtondd(values[i], &e_sys);
if(isnan(mine)) {
if(!isnan(sys)) {
fprintf(stderr, "Value '%s' is parsed as %" NETDATA_DOUBLE_MODIFIER
", but system believes it is %" NETDATA_DOUBLE_MODIFIER ".\n", values[i], mine, sys);
return -1;
}
}
else if(isinf(mine)) {
if(!isinf(sys)) {
fprintf(stderr, "Value '%s' is parsed as %" NETDATA_DOUBLE_MODIFIER
", but system believes it is %" NETDATA_DOUBLE_MODIFIER ".\n", values[i], mine, sys);
return -1;
}
}
else if(mine != sys && ABS(mine-sys) > 0.000001) {
fprintf(stderr, "Value '%s' is parsed as %" NETDATA_DOUBLE_MODIFIER
", but system believes it is %" NETDATA_DOUBLE_MODIFIER ", delta %" NETDATA_DOUBLE_MODIFIER ".\n", values[i], mine, sys, sys-mine);
return -1;
}
if(e_mine != e_sys) {
fprintf(stderr, "Value '%s' is parsed correctly, but endptr is not right\n", values[i]);
return -1;
}
fprintf(stderr, "str2ndd() parsed value '%s' exactly the same way with strtold(), returned %" NETDATA_DOUBLE_MODIFIER
" vs %" NETDATA_DOUBLE_MODIFIER "\n", values[i], mine, sys);
}
return 0;
}
int unit_test_buffer() {
BUFFER *wb = buffer_create(1);
char string[2048 + 1];
char final[9000 + 1];
int i;
for(i = 0; i < 2048; i++)
string[i] = (char)((i % 24) + 'a');
string[2048] = '\0';
const char *fmt = "string1: %s\nstring2: %s\nstring3: %s\nstring4: %s";
buffer_sprintf(wb, fmt, string, string, string, string);
snprintfz(final, 9000, fmt, string, string, string, string);
const char *s = buffer_tostring(wb);
if(buffer_strlen(wb) != strlen(final) || strcmp(s, final) != 0) {
fprintf(stderr, "\nbuffer_sprintf() is faulty.\n");
fprintf(stderr, "\nstring : %s (length %zu)\n", string, strlen(string));
fprintf(stderr, "\nbuffer : %s (length %zu)\n", s, buffer_strlen(wb));
fprintf(stderr, "\nexpected: %s (length %zu)\n", final, strlen(final));
buffer_free(wb);
return -1;
}
fprintf(stderr, "buffer_sprintf() works as expected.\n");
buffer_free(wb);
return 0;
}
int unit_test_static_threads() {
struct netdata_static_thread *static_threads = static_threads_get();
/*
* make sure enough static threads have been registered
*/
if (!static_threads) {
fprintf(stderr, "empty static_threads array\n");
return 1;
}
int n;
for (n = 0; static_threads[n].start_routine != NULL; n++) {}
if (n < 2) {
fprintf(stderr, "only %d static threads registered", n);
freez(static_threads);
return 1;
}
/*
* verify that each thread's start routine is unique.
*/
for (int i = 0; i != n - 1; i++) {
for (int j = i + 1; j != n; j++) {
if (static_threads[i].start_routine != static_threads[j].start_routine)
continue;
fprintf(stderr, "Found duplicate threads with name: %s\n", static_threads[i].name);
freez(static_threads);
return 1;
}
}
freez(static_threads);
return 0;
}
// --------------------------------------------------------------------------------------------------------------------
struct feed_values {
unsigned long long microseconds;
collected_number value;
};
struct test {
char name[100];
char description[1024];
int update_every;
unsigned long long multiplier;
unsigned long long divisor;
RRD_ALGORITHM algorithm;
unsigned long feed_entries;
unsigned long result_entries;
struct feed_values *feed;
NETDATA_DOUBLE *results;
collected_number *feed2;
NETDATA_DOUBLE *results2;
};
// --------------------------------------------------------------------------------------------------------------------
// test1
// test absolute values stored
struct feed_values test1_feed[] = {
{ 0, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
NETDATA_DOUBLE test1_results[] = {
20, 30, 40, 50, 60, 70, 80, 90, 100
};
struct test test1 = {
"test1", // name
"test absolute values stored at exactly second boundaries",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_ABSOLUTE, // algorithm
10, // feed entries
9, // result entries
test1_feed, // feed
test1_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test2
// test absolute values stored in the middle of second boundaries
struct feed_values test2_feed[] = {
{ 500000, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
NETDATA_DOUBLE test2_results[] = {
20, 30, 40, 50, 60, 70, 80, 90, 100
};
struct test test2 = {
"test2", // name
"test absolute values stored in the middle of second boundaries",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_ABSOLUTE, // algorithm
10, // feed entries
9, // result entries
test2_feed, // feed
test2_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test3
struct feed_values test3_feed[] = {
{ 0, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
NETDATA_DOUBLE test3_results[] = {
10, 10, 10, 10, 10, 10, 10, 10, 10
};
struct test test3 = {
"test3", // name
"test incremental values stored at exactly second boundaries",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test3_feed, // feed
test3_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test4
struct feed_values test4_feed[] = {
{ 500000, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
NETDATA_DOUBLE test4_results[] = {
10, 10, 10, 10, 10, 10, 10, 10, 10
};
struct test test4 = {
"test4", // name
"test incremental values stored in the middle of second boundaries",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test4_feed, // feed
test4_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test5 - 32 bit overflows
struct feed_values test5_feed[] = {
{ 0, 0x00000000FFFFFFFFULL / 15 * 0 },
{ 1000000, 0x00000000FFFFFFFFULL / 15 * 7 },
{ 1000000, 0x00000000FFFFFFFFULL / 15 * 14 },
{ 1000000, 0x00000000FFFFFFFFULL / 15 * 0 },
{ 1000000, 0x00000000FFFFFFFFULL / 15 * 7 },
{ 1000000, 0x00000000FFFFFFFFULL / 15 * 14 },
{ 1000000, 0x00000000FFFFFFFFULL / 15 * 0 },
{ 1000000, 0x00000000FFFFFFFFULL / 15 * 7 },
{ 1000000, 0x00000000FFFFFFFFULL / 15 * 14 },
{ 1000000, 0x00000000FFFFFFFFULL / 15 * 0 },
};
NETDATA_DOUBLE test5_results[] = {
0x00000000FFFFFFFFULL / 15 * 7,
0x00000000FFFFFFFFULL / 15 * 7,
0x00000000FFFFFFFFULL / 15,
0x00000000FFFFFFFFULL / 15 * 7,
0x00000000FFFFFFFFULL / 15 * 7,
0x00000000FFFFFFFFULL / 15,
0x00000000FFFFFFFFULL / 15 * 7,
0x00000000FFFFFFFFULL / 15 * 7,
0x00000000FFFFFFFFULL / 15,
};
struct test test5 = {
"test5", // name
"test 32-bit incremental values overflow",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test5_feed, // feed
test5_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test5b - 64 bit overflows
struct feed_values test5b_feed[] = {
{ 0, 0xFFFFFFFFFFFFFFFFULL / 15 * 0 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 7 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 14 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 0 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 7 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 14 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 0 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 7 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 14 },
{ 1000000, 0xFFFFFFFFFFFFFFFFULL / 15 * 0 },
};
NETDATA_DOUBLE test5b_results[] = {
0xFFFFFFFFFFFFFFFFULL / 15 * 7,
0xFFFFFFFFFFFFFFFFULL / 15 * 7,
0xFFFFFFFFFFFFFFFFULL / 15,
0xFFFFFFFFFFFFFFFFULL / 15 * 7,
0xFFFFFFFFFFFFFFFFULL / 15 * 7,
0xFFFFFFFFFFFFFFFFULL / 15,
0xFFFFFFFFFFFFFFFFULL / 15 * 7,
0xFFFFFFFFFFFFFFFFULL / 15 * 7,
0xFFFFFFFFFFFFFFFFULL / 15,
};
struct test test5b = {
"test5b", // name
"test 64-bit incremental values overflow",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test5b_feed, // feed
test5b_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test6
struct feed_values test6_feed[] = {
{ 250000, 1000 },
{ 250000, 2000 },
{ 250000, 3000 },
{ 250000, 4000 },
{ 250000, 5000 },
{ 250000, 6000 },
{ 250000, 7000 },
{ 250000, 8000 },
{ 250000, 9000 },
{ 250000, 10000 },
{ 250000, 11000 },
{ 250000, 12000 },
{ 250000, 13000 },
{ 250000, 14000 },
{ 250000, 15000 },
{ 250000, 16000 },
};
NETDATA_DOUBLE test6_results[] = {
4000, 4000, 4000, 4000
};
struct test test6 = {
"test6", // name
"test incremental values updated within the same second",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
16, // feed entries
4, // result entries
test6_feed, // feed
test6_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test7
struct feed_values test7_feed[] = {
{ 500000, 1000 },
{ 2000000, 2000 },
{ 2000000, 3000 },
{ 2000000, 4000 },
{ 2000000, 5000 },
{ 2000000, 6000 },
{ 2000000, 7000 },
{ 2000000, 8000 },
{ 2000000, 9000 },
{ 2000000, 10000 },
};
NETDATA_DOUBLE test7_results[] = {
500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500, 500
};
struct test test7 = {
"test7", // name
"test incremental values updated in long durations",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
18, // result entries
test7_feed, // feed
test7_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test8
struct feed_values test8_feed[] = {
{ 500000, 1000 },
{ 2000000, 2000 },
{ 2000000, 3000 },
{ 2000000, 4000 },
{ 2000000, 5000 },
{ 2000000, 6000 },
};
NETDATA_DOUBLE test8_results[] = {
1250, 2000, 2250, 3000, 3250, 4000, 4250, 5000, 5250, 6000
};
struct test test8 = {
"test8", // name
"test absolute values updated in long durations",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_ABSOLUTE, // algorithm
6, // feed entries
10, // result entries
test8_feed, // feed
test8_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test9
struct feed_values test9_feed[] = {
{ 250000, 1000 },
{ 250000, 2000 },
{ 250000, 3000 },
{ 250000, 4000 },
{ 250000, 5000 },
{ 250000, 6000 },
{ 250000, 7000 },
{ 250000, 8000 },
{ 250000, 9000 },
{ 250000, 10000 },
{ 250000, 11000 },
{ 250000, 12000 },
{ 250000, 13000 },
{ 250000, 14000 },
{ 250000, 15000 },
{ 250000, 16000 },
};
NETDATA_DOUBLE test9_results[] = {
4000, 8000, 12000, 16000
};
struct test test9 = {
"test9", // name
"test absolute values updated within the same second",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_ABSOLUTE, // algorithm
16, // feed entries
4, // result entries
test9_feed, // feed
test9_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test10
struct feed_values test10_feed[] = {
{ 500000, 1000 },
{ 600000, 1000 + 600 },
{ 200000, 1600 + 200 },
{ 1000000, 1800 + 1000 },
{ 200000, 2800 + 200 },
{ 2000000, 3000 + 2000 },
{ 600000, 5000 + 600 },
{ 400000, 5600 + 400 },
{ 900000, 6000 + 900 },
{ 1000000, 6900 + 1000 },
};
NETDATA_DOUBLE test10_results[] = {
1000, 1000, 1000, 1000, 1000, 1000, 1000
};
struct test test10 = {
"test10", // name
"test incremental values updated in short and long durations",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
7, // result entries
test10_feed, // feed
test10_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test11
struct feed_values test11_feed[] = {
{ 0, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
collected_number test11_feed2[] = {
10, 20, 30, 40, 50, 60, 70, 80, 90, 100
};
NETDATA_DOUBLE test11_results[] = {
50, 50, 50, 50, 50, 50, 50, 50, 50
};
NETDATA_DOUBLE test11_results2[] = {
50, 50, 50, 50, 50, 50, 50, 50, 50
};
struct test test11 = {
"test11", // name
"test percentage-of-incremental-row with equal values",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL, // algorithm
10, // feed entries
9, // result entries
test11_feed, // feed
test11_results, // results
test11_feed2, // feed2
test11_results2 // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test12
struct feed_values test12_feed[] = {
{ 0, 10 },
{ 1000000, 20 },
{ 1000000, 30 },
{ 1000000, 40 },
{ 1000000, 50 },
{ 1000000, 60 },
{ 1000000, 70 },
{ 1000000, 80 },
{ 1000000, 90 },
{ 1000000, 100 },
};
collected_number test12_feed2[] = {
10*3, 20*3, 30*3, 40*3, 50*3, 60*3, 70*3, 80*3, 90*3, 100*3
};
NETDATA_DOUBLE test12_results[] = {
25, 25, 25, 25, 25, 25, 25, 25, 25
};
NETDATA_DOUBLE test12_results2[] = {
75, 75, 75, 75, 75, 75, 75, 75, 75
};
struct test test12 = {
"test12", // name
"test percentage-of-incremental-row with equal values",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL, // algorithm
10, // feed entries
9, // result entries
test12_feed, // feed
test12_results, // results
test12_feed2, // feed2
test12_results2 // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test13
struct feed_values test13_feed[] = {
{ 500000, 1000 },
{ 600000, 1000 + 600 },
{ 200000, 1600 + 200 },
{ 1000000, 1800 + 1000 },
{ 200000, 2800 + 200 },
{ 2000000, 3000 + 2000 },
{ 600000, 5000 + 600 },
{ 400000, 5600 + 400 },
{ 900000, 6000 + 900 },
{ 1000000, 6900 + 1000 },
};
NETDATA_DOUBLE test13_results[] = {
83.3333300, 100, 100, 100, 100, 100, 100
};
struct test test13 = {
"test13", // name
"test incremental values updated in short and long durations",
1, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL, // algorithm
10, // feed entries
7, // result entries
test13_feed, // feed
test13_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test14
struct feed_values test14_feed[] = {
{ 0, 0x015397dc42151c41ULL },
{ 13573000, 0x015397e612e3ff5dULL },
{ 29969000, 0x015397f905ecdaa8ULL },
{ 29958000, 0x0153980c2a6cb5e4ULL },
{ 30054000, 0x0153981f4032fb83ULL },
{ 34952000, 0x015398355efadaccULL },
{ 25046000, 0x01539845ba4b09f8ULL },
{ 29947000, 0x0153985948bf381dULL },
{ 30054000, 0x0153986c5b9c27e2ULL },
{ 29942000, 0x0153987f888982d0ULL },
};
NETDATA_DOUBLE test14_results[] = {
23.1383300, 21.8515600, 21.8804600, 21.7788000, 22.0112200, 22.4386100, 22.0906100, 21.9150800
};
struct test test14 = {
"test14", // name
"issue #981 with real data",
30, // update_every
8, // multiplier
1000000000, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
8, // result entries
test14_feed, // feed
test14_results, // results
NULL, // feed2
NULL // results2
};
struct feed_values test14b_feed[] = {
{ 0, 0 },
{ 13573000, 13573000 },
{ 29969000, 13573000 + 29969000 },
{ 29958000, 13573000 + 29969000 + 29958000 },
{ 30054000, 13573000 + 29969000 + 29958000 + 30054000 },
{ 34952000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 },
{ 25046000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 },
{ 29947000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 + 29947000 },
{ 30054000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 + 29947000 + 30054000 },
{ 29942000, 13573000 + 29969000 + 29958000 + 30054000 + 34952000 + 25046000 + 29947000 + 30054000 + 29942000 },
};
NETDATA_DOUBLE test14b_results[] = {
1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000
};
struct test test14b = {
"test14b", // name
"issue #981 with dummy data",
30, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
8, // result entries
test14b_feed, // feed
test14b_results, // results
NULL, // feed2
NULL // results2
};
struct feed_values test14c_feed[] = {
{ 29000000, 29000000 },
{ 1000000, 29000000 + 1000000 },
{ 30000000, 29000000 + 1000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 },
{ 30000000, 29000000 + 1000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 + 30000000 },
};
NETDATA_DOUBLE test14c_results[] = {
1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000, 1000000
};
struct test test14c = {
"test14c", // name
"issue #981 with dummy data, checking for late start",
30, // update_every
1, // multiplier
1, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test14c_feed, // feed
test14c_results, // results
NULL, // feed2
NULL // results2
};
// --------------------------------------------------------------------------------------------------------------------
// test15
struct feed_values test15_feed[] = {
{ 0, 1068066388 },
{ 1008752, 1068822698 },
{ 993809, 1069573072 },
{ 995911, 1070324135 },
{ 1014562, 1071078166 },
{ 994684, 1071831349 },
{ 993128, 1072235739 },
{ 1010332, 1072958871 },
{ 1003394, 1073707019 },
{ 995201, 1074460255 },
};
collected_number test15_feed2[] = {
178825286, 178825286, 178825286, 178825286, 178825498, 178825498, 179165652, 179202964, 179203282, 179204130
};
NETDATA_DOUBLE test15_results[] = {
5857.4080000, 5898.4540000, 5891.6590000, 5806.3160000, 5914.2640000, 3202.2630000, 5589.6560000, 5822.5260000, 5911.7520000
};
NETDATA_DOUBLE test15_results2[] = {
0.0000000, 0.0000000, 0.0024944, 1.6324779, 0.0212777, 2655.1890000, 290.5387000, 5.6733610, 6.5960220
};
struct test test15 = {
"test15", // name
"test incremental with 2 dimensions",
1, // update_every
8, // multiplier
1024, // divisor
RRD_ALGORITHM_INCREMENTAL, // algorithm
10, // feed entries
9, // result entries
test15_feed, // feed
test15_results, // results
test15_feed2, // feed2
test15_results2 // results2
};
// --------------------------------------------------------------------------------------------------------------------
int run_test(struct test *test)
{
fprintf(stderr, "\nRunning test '%s':\n%s\n", test->name, test->description);
default_rrd_memory_mode = RRD_MEMORY_MODE_ALLOC;
default_rrd_update_every = test->update_every;
char name[101];
snprintfz(name, 100, "unittest-%s", test->name);
// create the chart
RRDSET *st = rrdset_create_localhost("netdata", name, name, "netdata", NULL, "Unit Testing", "a value", "unittest", NULL, 1
, test->update_every, RRDSET_TYPE_LINE);
RRDDIM *rd = rrddim_add(st, "dim1", NULL, test->multiplier, test->divisor, test->algorithm);
RRDDIM *rd2 = NULL;
if(test->feed2)
rd2 = rrddim_add(st, "dim2", NULL, test->multiplier, test->divisor, test->algorithm);
rrdset_flag_set(st, RRDSET_FLAG_DEBUG);
// feed it with the test data
time_t time_now = 0, time_start = now_realtime_sec();
unsigned long c;
collected_number last = 0;
for(c = 0; c < test->feed_entries; c++) {
if(debug_flags) fprintf(stderr, "\n\n");
if(c) {
time_now += test->feed[c].microseconds;
fprintf(stderr, " > %s: feeding position %lu, after %0.3f seconds (%0.3f seconds from start), delta " NETDATA_DOUBLE_FORMAT
", rate " NETDATA_DOUBLE_FORMAT "\n",
test->name, c+1,
(float)test->feed[c].microseconds / 1000000.0,
(float)time_now / 1000000.0,
((NETDATA_DOUBLE)test->feed[c].value - (NETDATA_DOUBLE)last) * (NETDATA_DOUBLE)test->multiplier / (NETDATA_DOUBLE)test->divisor,
(((NETDATA_DOUBLE)test->feed[c].value - (NETDATA_DOUBLE)last) * (NETDATA_DOUBLE)test->multiplier / (NETDATA_DOUBLE)test->divisor) / (NETDATA_DOUBLE)test->feed[c].microseconds * (NETDATA_DOUBLE)1000000);
// rrdset_next_usec_unfiltered(st, test->feed[c].microseconds);
st->usec_since_last_update = test->feed[c].microseconds;
}
else {
fprintf(stderr, " > %s: feeding position %lu\n", test->name, c+1);
}
fprintf(stderr, " >> %s with value " COLLECTED_NUMBER_FORMAT "\n", rrddim_name(rd), test->feed[c].value);
rrddim_set(st, "dim1", test->feed[c].value);
last = test->feed[c].value;
if(rd2) {
fprintf(stderr, " >> %s with value " COLLECTED_NUMBER_FORMAT "\n", rrddim_name(rd2), test->feed2[c]);
rrddim_set(st, "dim2", test->feed2[c]);
}
rrdset_done(st);
// align the first entry to second boundary
if(!c) {
fprintf(stderr, " > %s: fixing first collection time to be %llu microseconds to second boundary\n", test->name, test->feed[c].microseconds);
rd->last_collected_time.tv_usec = st->last_collected_time.tv_usec = st->last_updated.tv_usec = test->feed[c].microseconds;
// time_start = st->last_collected_time.tv_sec;
}
}
// check the result
int errors = 0;
if(st->counter != test->result_entries) {
fprintf(stderr, " %s stored %zu entries, but we were expecting %lu, ### E R R O R ###\n", test->name, st->counter, test->result_entries);
errors++;
}
unsigned long max = (st->counter < test->result_entries)?st->counter:test->result_entries;
for(c = 0 ; c < max ; c++) {
NETDATA_DOUBLE v = unpack_storage_number(rd->db[c]);
NETDATA_DOUBLE n = unpack_storage_number(pack_storage_number(test->results[c], SN_DEFAULT_FLAGS));
int same = (roundndd(v * 10000000.0) == roundndd(n * 10000000.0))?1:0;
fprintf(stderr, " %s/%s: checking position %lu (at %"PRId64" secs), expecting value " NETDATA_DOUBLE_FORMAT
", found " NETDATA_DOUBLE_FORMAT ", %s\n",
test->name, rrddim_name(rd), c+1,
(int64_t)((rrdset_first_entry_t(st) + c * st->update_every) - time_start),
n, v, (same)?"OK":"### E R R O R ###");
if(!same) errors++;
if(rd2) {
v = unpack_storage_number(rd2->db[c]);
n = test->results2[c];
same = (roundndd(v * 10000000.0) == roundndd(n * 10000000.0))?1:0;
fprintf(stderr, " %s/%s: checking position %lu (at %"PRId64" secs), expecting value " NETDATA_DOUBLE_FORMAT
", found " NETDATA_DOUBLE_FORMAT ", %s\n",
test->name, rrddim_name(rd2), c+1,
(int64_t)((rrdset_first_entry_t(st) + c * st->update_every) - time_start),
n, v, (same)?"OK":"### E R R O R ###");
if(!same) errors++;
}
}
return errors;
}
static int test_variable_renames(void) {
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
fprintf(stderr, "Creating chart\n");
RRDSET *st = rrdset_create_localhost("chart", "ID", NULL, "family", "context", "Unit Testing", "a value", "unittest", NULL, 1, 1, RRDSET_TYPE_LINE);
fprintf(stderr, "Created chart with id '%s', name '%s'\n", rrdset_id(st), rrdset_name(st));
fprintf(stderr, "Creating dimension DIM1\n");
RRDDIM *rd1 = rrddim_add(st, "DIM1", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL);
fprintf(stderr, "Created dimension with id '%s', name '%s'\n", rrddim_id(rd1), rrddim_name(rd1));
fprintf(stderr, "Creating dimension DIM2\n");
RRDDIM *rd2 = rrddim_add(st, "DIM2", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL);
fprintf(stderr, "Created dimension with id '%s', name '%s'\n", rrddim_id(rd2), rrddim_name(rd2));
fprintf(stderr, "Renaming chart to CHARTNAME1\n");
rrdset_reset_name(st, "CHARTNAME1");
fprintf(stderr, "Renamed chart with id '%s' to name '%s'\n", rrdset_id(st), rrdset_name(st));
fprintf(stderr, "Renaming chart to CHARTNAME2\n");
rrdset_reset_name(st, "CHARTNAME2");
fprintf(stderr, "Renamed chart with id '%s' to name '%s'\n", rrdset_id(st), rrdset_name(st));
fprintf(stderr, "Renaming dimension DIM1 to DIM1NAME1\n");
rrddim_reset_name(st, rd1, "DIM1NAME1");
fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rrddim_id(rd1), rrddim_name(rd1));
fprintf(stderr, "Renaming dimension DIM1 to DIM1NAME2\n");
rrddim_reset_name(st, rd1, "DIM1NAME2");
fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rrddim_id(rd1), rrddim_name(rd1));
fprintf(stderr, "Renaming dimension DIM2 to DIM2NAME1\n");
rrddim_reset_name(st, rd2, "DIM2NAME1");
fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rrddim_id(rd2), rrddim_name(rd2));
fprintf(stderr, "Renaming dimension DIM2 to DIM2NAME2\n");
rrddim_reset_name(st, rd2, "DIM2NAME2");
fprintf(stderr, "Renamed dimension with id '%s' to name '%s'\n", rrddim_id(rd2), rrddim_name(rd2));
BUFFER *buf = buffer_create(1);
health_api_v1_chart_variables2json(st, buf);
fprintf(stderr, "%s", buffer_tostring(buf));
buffer_free(buf);
return 1;
}
int check_strdupz_path_subpath() {
struct strdupz_path_subpath_checks {
const char *path;
const char *subpath;
const char *result;
} checks[] = {
{ "", "", "." },
{ "/", "", "/" },
{ "/etc/netdata", "", "/etc/netdata" },
{ "/etc/netdata///", "", "/etc/netdata" },
{ "/etc/netdata///", "health.d", "/etc/netdata/health.d" },
{ "/etc/netdata///", "///health.d", "/etc/netdata/health.d" },
{ "/etc/netdata", "///health.d", "/etc/netdata/health.d" },
{ "", "///health.d", "./health.d" },
{ "/", "///health.d", "/health.d" },
// terminator
{ NULL, NULL, NULL }
};
size_t i;
for(i = 0; checks[i].result ; i++) {
char *s = strdupz_path_subpath(checks[i].path, checks[i].subpath);
fprintf(stderr, "strdupz_path_subpath(\"%s\", \"%s\") = \"%s\": ", checks[i].path, checks[i].subpath, s);
if(!s || strcmp(s, checks[i].result) != 0) {
freez(s);
fprintf(stderr, "FAILED\n");
return 1;
}
else {
freez(s);
fprintf(stderr, "OK\n");
}
}
return 0;
}
int run_all_mockup_tests(void)
{
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
if(check_strdupz_path_subpath())
return 1;
if(check_number_printing())
return 1;
if(check_rrdcalc_comparisons())
return 1;
if(!test_variable_renames())
return 1;
if(run_test(&test1))
return 1;
if(run_test(&test2))
return 1;
if(run_test(&test3))
return 1;
if(run_test(&test4))
return 1;
if(run_test(&test5))
return 1;
if(run_test(&test5b))
return 1;
if(run_test(&test6))
return 1;
if(run_test(&test7))
return 1;
if(run_test(&test8))
return 1;
if(run_test(&test9))
return 1;
if(run_test(&test10))
return 1;
if(run_test(&test11))
return 1;
if(run_test(&test12))
return 1;
if(run_test(&test13))
return 1;
if(run_test(&test14))
return 1;
if(run_test(&test14b))
return 1;
if(run_test(&test14c))
return 1;
if(run_test(&test15))
return 1;
return 0;
}
int unit_test(long delay, long shift)
{
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
static int repeat = 0;
repeat++;
char name[101];
snprintfz(name, 100, "unittest-%d-%ld-%ld", repeat, delay, shift);
//debug_flags = 0xffffffff;
default_rrd_memory_mode = RRD_MEMORY_MODE_ALLOC;
default_rrd_update_every = 1;
int do_abs = 1;
int do_inc = 1;
int do_abst = 0;
int do_absi = 0;
RRDSET *st = rrdset_create_localhost("netdata", name, name, "netdata", NULL, "Unit Testing", "a value", "unittest", NULL, 1, 1
, RRDSET_TYPE_LINE);
rrdset_flag_set(st, RRDSET_FLAG_DEBUG);
RRDDIM *rdabs = NULL;
RRDDIM *rdinc = NULL;
RRDDIM *rdabst = NULL;
RRDDIM *rdabsi = NULL;
if(do_abs) rdabs = rrddim_add(st, "absolute", "absolute", 1, 1, RRD_ALGORITHM_ABSOLUTE);
if(do_inc) rdinc = rrddim_add(st, "incremental", "incremental", 1, 1, RRD_ALGORITHM_INCREMENTAL);
if(do_abst) rdabst = rrddim_add(st, "percentage-of-absolute-row", "percentage-of-absolute-row", 1, 1, RRD_ALGORITHM_PCENT_OVER_ROW_TOTAL);
if(do_absi) rdabsi = rrddim_add(st, "percentage-of-incremental-row", "percentage-of-incremental-row", 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
long increment = 1000;
collected_number i = 0;
unsigned long c, dimensions = rrdset_number_of_dimensions(st);
RRDDIM *rd;
for(c = 0; c < 20 ;c++) {
i += increment;
fprintf(stderr, "\n\nLOOP = %lu, DELAY = %ld, VALUE = " COLLECTED_NUMBER_FORMAT "\n", c, delay, i);
if(c) {
// rrdset_next_usec_unfiltered(st, delay);
st->usec_since_last_update = delay;
}
if(do_abs) rrddim_set(st, "absolute", i);
if(do_inc) rrddim_set(st, "incremental", i);
if(do_abst) rrddim_set(st, "percentage-of-absolute-row", i);
if(do_absi) rrddim_set(st, "percentage-of-incremental-row", i);
if(!c) {
now_realtime_timeval(&st->last_collected_time);
st->last_collected_time.tv_usec = shift;
}
// prevent it from deleting the dimensions
rrddim_foreach_read(rd, st) {
rd->last_collected_time.tv_sec = st->last_collected_time.tv_sec;
}
rrddim_foreach_done(rd);
rrdset_done(st);
}
unsigned long oincrement = increment;
increment = increment * st->update_every * 1000000 / delay;
fprintf(stderr, "\n\nORIGINAL INCREMENT: %lu, INCREMENT %ld, DELAY %ld, SHIFT %ld\n", oincrement * 10, increment * 10, delay, shift);
int ret = 0;
storage_number sn;
NETDATA_DOUBLE cn, v;
for(c = 0 ; c < st->counter ; c++) {
fprintf(stderr, "\nPOSITION: c = %lu, EXPECTED VALUE %lu\n", c, (oincrement + c * increment + increment * (1000000 - shift) / 1000000 )* 10);
rrddim_foreach_read(rd, st) {
sn = rd->db[c];
cn = unpack_storage_number(sn);
fprintf(stderr, "\t %s " NETDATA_DOUBLE_FORMAT " (PACKED AS " STORAGE_NUMBER_FORMAT ") -> ", rrddim_id(rd), cn, sn);
if(rd == rdabs) v =
( oincrement
// + (increment * (1000000 - shift) / 1000000)
+ (c + 1) * increment
);
else if(rd == rdinc) v = (c?(increment):(increment * (1000000 - shift) / 1000000));
else if(rd == rdabst) v = oincrement / dimensions / 10;
else if(rd == rdabsi) v = oincrement / dimensions / 10;
else v = 0;
if(v == cn) fprintf(stderr, "passed.\n");
else {
fprintf(stderr, "ERROR! (expected " NETDATA_DOUBLE_FORMAT ")\n", v);
ret = 1;
}
}
rrddim_foreach_done(rd);
}
if(ret)
fprintf(stderr, "\n\nUNIT TEST(%ld, %ld) FAILED\n\n", delay, shift);
return ret;
}
int test_sqlite(void) {
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
sqlite3 *db_meta;
fprintf(stderr, "Testing SQLIte\n");
int rc = sqlite3_open(":memory:", &db_meta);
if (rc != SQLITE_OK) {
fprintf(stderr,"Failed to test SQLite: DB init failed\n");
return 1;
}
rc = sqlite3_exec_monitored(db_meta, "CREATE TABLE IF NOT EXISTS mine (id1, id2);", 0, 0, NULL);
if (rc != SQLITE_OK) {
fprintf(stderr,"Failed to test SQLite: Create table failed\n");
return 1;
}
rc = sqlite3_exec_monitored(db_meta, "DELETE FROM MINE LIMIT 1;", 0, 0, NULL);
if (rc != SQLITE_OK) {
fprintf(stderr,"Failed to test SQLite: Delete with LIMIT failed\n");
return 1;
}
rc = sqlite3_exec_monitored(db_meta, "UPDATE MINE SET id1=1 LIMIT 1;", 0, 0, NULL);
if (rc != SQLITE_OK) {
fprintf(stderr,"Failed to test SQLite: Update with LIMIT failed\n");
return 1;
}
BUFFER *sql = buffer_create(ACLK_SYNC_QUERY_SIZE);
char *uuid_str = "0000_000";
buffer_sprintf(sql, TABLE_ACLK_CHART, uuid_str);
rc = sqlite3_exec_monitored(db_meta, buffer_tostring(sql), 0, 0, NULL);
buffer_flush(sql);
if (rc != SQLITE_OK)
goto error;
buffer_sprintf(sql, TABLE_ACLK_CHART_PAYLOAD, uuid_str);
rc = sqlite3_exec_monitored(db_meta, buffer_tostring(sql), 0, 0, NULL);
buffer_flush(sql);
if (rc != SQLITE_OK)
goto error;
buffer_sprintf(sql, TABLE_ACLK_CHART_LATEST, uuid_str);
rc = sqlite3_exec_monitored(db_meta, buffer_tostring(sql), 0, 0, NULL);
if (rc != SQLITE_OK)
goto error;
buffer_flush(sql);
buffer_sprintf(sql, INDEX_ACLK_CHART, uuid_str, uuid_str);
rc = sqlite3_exec_monitored(db_meta, buffer_tostring(sql), 0, 0, NULL);
if (rc != SQLITE_OK)
goto error;
buffer_flush(sql);
buffer_sprintf(sql, INDEX_ACLK_CHART_LATEST, uuid_str, uuid_str);
rc = sqlite3_exec_monitored(db_meta, buffer_tostring(sql), 0, 0, NULL);
if (rc != SQLITE_OK)
goto error;
buffer_flush(sql);
buffer_sprintf(sql, TRIGGER_ACLK_CHART_PAYLOAD, uuid_str, uuid_str, uuid_str);
rc = sqlite3_exec_monitored(db_meta, buffer_tostring(sql), 0, 0, NULL);
if (rc != SQLITE_OK)
goto error;
buffer_flush(sql);
buffer_sprintf(sql, TABLE_ACLK_ALERT, uuid_str);
rc = sqlite3_exec_monitored(db_meta, buffer_tostring(sql), 0, 0, NULL);
if (rc != SQLITE_OK)
goto error;
buffer_flush(sql);
buffer_sprintf(sql, INDEX_ACLK_ALERT, uuid_str, uuid_str);
rc = sqlite3_exec_monitored(db_meta, buffer_tostring(sql), 0, 0, NULL);
if (rc != SQLITE_OK)
goto error;
buffer_flush(sql);
buffer_free(sql);
fprintf(stderr,"SQLite is OK\n");
return 0;
error:
fprintf(stderr,"SQLite statement failed: %s\n", buffer_tostring(sql));
buffer_free(sql);
fprintf(stderr,"SQLite tests failed\n");
return 1;
}
int unit_test_bitmap256(void) {
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
BITMAP256 test_bitmap = {0};
bitmap256_set_bit(&test_bitmap, 0, 1);
bitmap256_set_bit(&test_bitmap, 64, 1);
bitmap256_set_bit(&test_bitmap, 128, 1);
bitmap256_set_bit(&test_bitmap, 192, 1);
if (test_bitmap.data[0] == 1)
fprintf(stderr, "%s() INDEX 1 is OK\n", __FUNCTION__ );
if (test_bitmap.data[1] == 1)
fprintf(stderr, "%s() INDEX 65 is OK\n", __FUNCTION__ );
if (test_bitmap.data[2] == 1)
fprintf(stderr, "%s() INDEX 129 is OK\n", __FUNCTION__ );
if (test_bitmap.data[3] == 1)
fprintf(stderr, "%s() INDEX 192 is OK\n", __FUNCTION__ );
uint8_t i=0;
int j = 0;
do {
bitmap256_set_bit(&test_bitmap, i++, 1);
j++;
} while (j < 256);
if (test_bitmap.data[0] == 0xffffffffffffffff)
fprintf(stderr, "%s() INDEX 0 is fully set OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 0 is %lx expected 0xffffffffffffffff\n", __FUNCTION__, test_bitmap.data[0]);
return 1;
}
if (test_bitmap.data[1] == 0xffffffffffffffff)
fprintf(stderr, "%s() INDEX 1 is fully set OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 1 is %lx expected 0xffffffffffffffff\n", __FUNCTION__, test_bitmap.data[0]);
return 1;
}
if (test_bitmap.data[2] == 0xffffffffffffffff)
fprintf(stderr, "%s() INDEX 2 is fully set OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 2 is %lx expected 0xffffffffffffffff\n", __FUNCTION__, test_bitmap.data[0]);
return 1;
}
if (test_bitmap.data[3] == 0xffffffffffffffff)
fprintf(stderr, "%s() INDEX 3 is fully set OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 3 is %lx expected 0xffffffffffffffff\n", __FUNCTION__, test_bitmap.data[0]);
return 1;
}
i = 0;
j = 0;
do {
bitmap256_set_bit(&test_bitmap, i++, 0);
j++;
} while (j < 256);
if (test_bitmap.data[0] == 0)
fprintf(stderr, "%s() INDEX 0 is reset OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 0 is not reset FAILED\n", __FUNCTION__);
return 1;
}
if (test_bitmap.data[1] == 0)
fprintf(stderr, "%s() INDEX 1 is reset OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 1 is not reset FAILED\n", __FUNCTION__);
return 1;
}
if (test_bitmap.data[2] == 0)
fprintf(stderr, "%s() INDEX 2 is reset OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 2 is not reset FAILED\n", __FUNCTION__);
return 1;
}
if (test_bitmap.data[3] == 0)
fprintf(stderr, "%s() INDEX 3 is reset OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 3 is not reset FAILED\n", __FUNCTION__);
return 1;
}
i=0;
j = 0;
do {
bitmap256_set_bit(&test_bitmap, i, 1);
i += 4;
j += 4;
} while (j < 256);
if (test_bitmap.data[0] == 0x1111111111111111)
fprintf(stderr, "%s() INDEX 0 is 0x1111111111111111 set OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 0 is %lx expected 0x1111111111111111\n", __FUNCTION__, test_bitmap.data[0]);
return 1;
}
if (test_bitmap.data[1] == 0x1111111111111111)
fprintf(stderr, "%s() INDEX 1 is 0x1111111111111111 set OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 1 is %lx expected 0x1111111111111111\n", __FUNCTION__, test_bitmap.data[1]);
return 1;
}
if (test_bitmap.data[2] == 0x1111111111111111)
fprintf(stderr, "%s() INDEX 2 is 0x1111111111111111 set OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 2 is %lx expected 0x1111111111111111\n", __FUNCTION__, test_bitmap.data[2]);
return 1;
}
if (test_bitmap.data[3] == 0x1111111111111111)
fprintf(stderr, "%s() INDEX 3 is 0x1111111111111111 set OK\n", __FUNCTION__);
else {
fprintf(stderr, "%s() INDEX 3 is %lx expected 0x1111111111111111\n", __FUNCTION__, test_bitmap.data[3]);
return 1;
}
fprintf(stderr, "%s() tests passed\n", __FUNCTION__);
return 0;
}
#ifdef ENABLE_DBENGINE
static inline void rrddim_set_by_pointer_fake_time(RRDDIM *rd, collected_number value, time_t now)
{
rd->last_collected_time.tv_sec = now;
rd->last_collected_time.tv_usec = 0;
rd->collected_value = value;
rd->updated = 1;
rd->collections_counter++;
collected_number v = (value >= 0) ? value : -value;
if(unlikely(v > rd->collected_value_max)) rd->collected_value_max = v;
}
static RRDHOST *dbengine_rrdhost_find_or_create(char *name)
{
/* We don't want to drop metrics when generating load, we prefer to block data generation itself */
rrdeng_drop_metrics_under_page_cache_pressure = 0;
return rrdhost_find_or_create(
name
, name
, name
, os_type
, netdata_configured_timezone
, netdata_configured_abbrev_timezone
, netdata_configured_utc_offset
, ""
, program_name
, program_version
, default_rrd_update_every
, default_rrd_history_entries
, RRD_MEMORY_MODE_DBENGINE
, default_health_enabled
, default_rrdpush_enabled
, default_rrdpush_destination
, default_rrdpush_api_key
, default_rrdpush_send_charts_matching
, NULL
, 0
);
}
// constants for test_dbengine
static const int CHARTS = 64;
static const int DIMS = 16; // That gives us 64 * 16 = 1024 metrics
#define REGIONS (3) // 3 regions of update_every
// first region update_every is 2, second is 3, third is 1
static const int REGION_UPDATE_EVERY[REGIONS] = {2, 3, 1};
static const int REGION_POINTS[REGIONS] = {
16384, // This produces 64MiB of metric data for the first region: update_every = 2
16384, // This produces 64MiB of metric data for the second region: update_every = 3
16384, // This produces 64MiB of metric data for the third region: update_every = 1
};
static const int QUERY_BATCH = 4096;
static void test_dbengine_create_charts(RRDHOST *host, RRDSET *st[CHARTS], RRDDIM *rd[CHARTS][DIMS],
int update_every)
{
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
int i, j;
char name[101];
for (i = 0 ; i < CHARTS ; ++i) {
snprintfz(name, 100, "dbengine-chart-%d", i);
// create the chart
st[i] = rrdset_create(host, "netdata", name, name, "netdata", NULL, "Unit Testing", "a value", "unittest",
NULL, 1, update_every, RRDSET_TYPE_LINE);
rrdset_flag_set(st[i], RRDSET_FLAG_DEBUG);
rrdset_flag_set(st[i], RRDSET_FLAG_STORE_FIRST);
for (j = 0 ; j < DIMS ; ++j) {
snprintfz(name, 100, "dim-%d", j);
rd[i][j] = rrddim_add(st[i], name, NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
}
}
// Initialize DB with the very first entries
for (i = 0 ; i < CHARTS ; ++i) {
for (j = 0 ; j < DIMS ; ++j) {
rd[i][j]->last_collected_time.tv_sec =
st[i]->last_collected_time.tv_sec = st[i]->last_updated.tv_sec = 2 * API_RELATIVE_TIME_MAX - 1;
rd[i][j]->last_collected_time.tv_usec =
st[i]->last_collected_time.tv_usec = st[i]->last_updated.tv_usec = 0;
}
}
for (i = 0 ; i < CHARTS ; ++i) {
st[i]->usec_since_last_update = USEC_PER_SEC;
for (j = 0; j < DIMS; ++j) {
rrddim_set_by_pointer_fake_time(rd[i][j], 69, 2 * API_RELATIVE_TIME_MAX); // set first value to 69
}
rrdset_done(st[i]);
}
// Fluh pages for subsequent real values
for (i = 0 ; i < CHARTS ; ++i) {
for (j = 0; j < DIMS; ++j) {
rrdeng_store_metric_flush_current_page((rd[i][j])->tiers[0]->db_collection_handle);
}
}
}
// Feeds the database region with test data, returns last timestamp of region
static time_t test_dbengine_create_metrics(RRDSET *st[CHARTS], RRDDIM *rd[CHARTS][DIMS],
int current_region, time_t time_start)
{
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
time_t time_now;
int i, j, c, update_every;
collected_number next;
update_every = REGION_UPDATE_EVERY[current_region];
time_now = time_start;
// feed it with the test data
for (i = 0 ; i < CHARTS ; ++i) {
for (j = 0 ; j < DIMS ; ++j) {
rd[i][j]->last_collected_time.tv_sec =
st[i]->last_collected_time.tv_sec = st[i]->last_updated.tv_sec = time_now;
rd[i][j]->last_collected_time.tv_usec =
st[i]->last_collected_time.tv_usec = st[i]->last_updated.tv_usec = 0;
}
}
for (c = 0; c < REGION_POINTS[current_region] ; ++c) {
time_now += update_every; // time_now = start + (c + 1) * update_every
for (i = 0 ; i < CHARTS ; ++i) {
st[i]->usec_since_last_update = USEC_PER_SEC * update_every;
for (j = 0; j < DIMS; ++j) {
next = ((collected_number)i * DIMS) * REGION_POINTS[current_region] +
j * REGION_POINTS[current_region] + c;
rrddim_set_by_pointer_fake_time(rd[i][j], next, time_now);
}
rrdset_done(st[i]);
}
}
return time_now; //time_end
}
// Checks the metric data for the given region, returns number of errors
static int test_dbengine_check_metrics(RRDSET *st[CHARTS], RRDDIM *rd[CHARTS][DIMS],
int current_region, time_t time_start)
{
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
uint8_t same;
time_t time_now, time_retrieved, end_time;
int i, j, k, c, errors, update_every;
collected_number last;
NETDATA_DOUBLE value, expected;
struct rrddim_query_handle handle;
size_t value_errors = 0, time_errors = 0;
update_every = REGION_UPDATE_EVERY[current_region];
errors = 0;
// check the result
for (c = 0; c < REGION_POINTS[current_region] ; c += QUERY_BATCH) {
time_now = time_start + (c + 1) * update_every;
for (i = 0 ; i < CHARTS ; ++i) {
for (j = 0; j < DIMS; ++j) {
rd[i][j]->tiers[0]->query_ops.init(rd[i][j]->tiers[0]->db_metric_handle, &handle, time_now, time_now + QUERY_BATCH * update_every, TIER_QUERY_FETCH_SUM);
for (k = 0; k < QUERY_BATCH; ++k) {
last = ((collected_number)i * DIMS) * REGION_POINTS[current_region] +
j * REGION_POINTS[current_region] + c + k;
expected = unpack_storage_number(pack_storage_number((NETDATA_DOUBLE)last, SN_DEFAULT_FLAGS));
STORAGE_POINT sp = rd[i][j]->tiers[0]->query_ops.next_metric(&handle);
value = sp.sum;
time_retrieved = sp.start_time;
end_time = sp.end_time;
same = (roundndd(value) == roundndd(expected)) ? 1 : 0;
if(!same) {
if(!value_errors)
fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT
", found " NETDATA_DOUBLE_FORMAT ", ### E R R O R ###\n",
rrdset_name(st[i]), rrddim_name(rd[i][j]), (unsigned long)time_now + k * update_every, expected, value);
value_errors++;
errors++;
}
if(end_time != time_now + k * update_every) {
if(!time_errors)
fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, found timestamp %lu ### E R R O R ###\n",
rrdset_name(st[i]), rrddim_name(rd[i][j]), (unsigned long)time_now + k * update_every, (unsigned long)time_retrieved);
time_errors++;
errors++;
}
}
rd[i][j]->tiers[0]->query_ops.finalize(&handle);
}
}
}
if(value_errors)
fprintf(stderr, "%zu value errors encountered\n", value_errors);
if(time_errors)
fprintf(stderr, "%zu time errors encountered\n", time_errors);
return errors;
}
// Check rrdr transformations
static int test_dbengine_check_rrdr(RRDSET *st[CHARTS], RRDDIM *rd[CHARTS][DIMS],
int current_region, time_t time_start, time_t time_end)
{
int update_every = REGION_UPDATE_EVERY[current_region];
fprintf(stderr, "%s() running on region %d, start time %ld, end time %ld, update every %d...\n", __FUNCTION__, current_region, time_start, time_end, update_every);
uint8_t same;
time_t time_now, time_retrieved;
int i, j, errors, value_errors = 0, time_errors = 0;
long c;
collected_number last;
NETDATA_DOUBLE value, expected;
errors = 0;
long points = (time_end - time_start) / update_every;
for (i = 0 ; i < CHARTS ; ++i) {
ONEWAYALLOC *owa = onewayalloc_create(0);
RRDR *r = rrd2rrdr(owa, st[i], points, time_start, time_end,
RRDR_GROUPING_AVERAGE, 0, RRDR_OPTION_NATURAL_POINTS,
NULL, NULL, NULL, 0, 0);
if (!r) {
fprintf(stderr, " DB-engine unittest %s: empty RRDR on region %d ### E R R O R ###\n", rrdset_name(st[i]), current_region);
return ++errors;
} else {
assert(r->st == st[i]);
for (c = 0; c != rrdr_rows(r) ; ++c) {
RRDDIM *d;
time_now = time_start + (c + 1) * update_every;
time_retrieved = r->t[c];
// for each dimension
rrddim_foreach_read(d, r->st) {
if(unlikely((int)d_dfe.counter >= r->d)) break; // d_counter is provided by the dictionary dfe
j = (int)d_dfe.counter;
NETDATA_DOUBLE *cn = &r->v[ c * r->d ];
value = cn[j];
assert(rd[i][j] == d);
last = i * DIMS * REGION_POINTS[current_region] + j * REGION_POINTS[current_region] + c;
expected = unpack_storage_number(pack_storage_number((NETDATA_DOUBLE)last, SN_DEFAULT_FLAGS));
same = (roundndd(value) == roundndd(expected)) ? 1 : 0;
if(!same) {
if(value_errors < 20)
fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT
", RRDR found " NETDATA_DOUBLE_FORMAT ", ### E R R O R ###\n",
rrdset_name(st[i]), rrddim_name(rd[i][j]), (unsigned long)time_now, expected, value);
value_errors++;
}
if(time_retrieved != time_now) {
if(time_errors < 20)
fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, found RRDR timestamp %lu ### E R R O R ###\n",
rrdset_name(st[i]), rrddim_name(rd[i][j]), (unsigned long)time_now, (unsigned long)time_retrieved);
time_errors++;
}
}
rrddim_foreach_done(d);
}
rrdr_free(owa, r);
}
onewayalloc_destroy(owa);
}
if(value_errors)
fprintf(stderr, "%d value errors encountered\n", value_errors);
if(time_errors)
fprintf(stderr, "%d time errors encountered\n", time_errors);
return errors + value_errors + time_errors;
}
int test_dbengine(void)
{
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
int i, j, errors, value_errors = 0, time_errors = 0, update_every, current_region;
RRDHOST *host = NULL;
RRDSET *st[CHARTS];
RRDDIM *rd[CHARTS][DIMS];
time_t time_start[REGIONS], time_end[REGIONS];
error_log_limit_unlimited();
fprintf(stderr, "\nRunning DB-engine test\n");
default_rrd_memory_mode = RRD_MEMORY_MODE_DBENGINE;
fprintf(stderr, "Initializing localhost with hostname 'unittest-dbengine'");
host = dbengine_rrdhost_find_or_create("unittest-dbengine");
if (NULL == host)
return 1;
current_region = 0; // this is the first region of data
update_every = REGION_UPDATE_EVERY[current_region]; // set data collection frequency to 2 seconds
test_dbengine_create_charts(host, st, rd, update_every);
time_start[current_region] = 2 * API_RELATIVE_TIME_MAX;
time_end[current_region] = test_dbengine_create_metrics(st,rd, current_region, time_start[current_region]);
errors = test_dbengine_check_metrics(st, rd, current_region, time_start[current_region]);
if (errors)
goto error_out;
current_region = 1; //this is the second region of data
update_every = REGION_UPDATE_EVERY[current_region]; // set data collection frequency to 3 seconds
// Align pages for frequency change
for (i = 0 ; i < CHARTS ; ++i) {
st[i]->update_every = update_every;
for (j = 0; j < DIMS; ++j) {
rrdeng_store_metric_flush_current_page((rd[i][j])->tiers[0]->db_collection_handle);
}
}
time_start[current_region] = time_end[current_region - 1] + update_every;
if (0 != time_start[current_region] % update_every) // align to update_every
time_start[current_region] += update_every - time_start[current_region] % update_every;
time_end[current_region] = test_dbengine_create_metrics(st,rd, current_region, time_start[current_region]);
errors = test_dbengine_check_metrics(st, rd, current_region, time_start[current_region]);
if (errors)
goto error_out;
current_region = 2; //this is the third region of data
update_every = REGION_UPDATE_EVERY[current_region]; // set data collection frequency to 1 seconds
// Align pages for frequency change
for (i = 0 ; i < CHARTS ; ++i) {
st[i]->update_every = update_every;
for (j = 0; j < DIMS; ++j) {
rrdeng_store_metric_flush_current_page((rd[i][j])->tiers[0]->db_collection_handle);
}
}
time_start[current_region] = time_end[current_region - 1] + update_every;
if (0 != time_start[current_region] % update_every) // align to update_every
time_start[current_region] += update_every - time_start[current_region] % update_every;
time_end[current_region] = test_dbengine_create_metrics(st,rd, current_region, time_start[current_region]);
errors = test_dbengine_check_metrics(st, rd, current_region, time_start[current_region]);
if (errors)
goto error_out;
for (current_region = 0 ; current_region < REGIONS ; ++current_region) {
errors = test_dbengine_check_rrdr(st, rd, current_region, time_start[current_region], time_end[current_region]);
if (errors)
goto error_out;
}
current_region = 1;
update_every = REGION_UPDATE_EVERY[current_region]; // use the maximum update_every = 3
errors = 0;
long points = (time_end[REGIONS - 1] - time_start[0]) / update_every; // cover all time regions with RRDR
long point_offset = (time_start[current_region] - time_start[0]) / update_every;
for (i = 0 ; i < CHARTS ; ++i) {
ONEWAYALLOC *owa = onewayalloc_create(0);
RRDR *r = rrd2rrdr(owa, st[i], points, time_start[0] + update_every,
time_end[REGIONS - 1], RRDR_GROUPING_AVERAGE, 0,
RRDR_OPTION_NATURAL_POINTS, NULL, NULL, NULL, 0, 0);
if (!r) {
fprintf(stderr, " DB-engine unittest %s: empty RRDR ### E R R O R ###\n", rrdset_name(st[i]));
++errors;
} else {
long c;
assert(r->st == st[i]);
// test current region values only, since they must be left unchanged
for (c = point_offset ; c < point_offset + rrdr_rows(r) / REGIONS / 2 ; ++c) {
RRDDIM *d;
time_t time_now = time_start[current_region] + (c - point_offset + 2) * update_every;
time_t time_retrieved = r->t[c];
// for each dimension
rrddim_foreach_read(d, r->st) {
if(unlikely((int)d_dfe.counter >= r->d)) break; // d_counter is provided by the dictionary dfe
j = (int)d_dfe.counter;
NETDATA_DOUBLE *cn = &r->v[ c * r->d ];
NETDATA_DOUBLE value = cn[j];
assert(rd[i][j] == d);
collected_number last = i * DIMS * REGION_POINTS[current_region] + j * REGION_POINTS[current_region] + c - point_offset + 1;
NETDATA_DOUBLE expected = unpack_storage_number(pack_storage_number((NETDATA_DOUBLE)last, SN_DEFAULT_FLAGS));
uint8_t same = (roundndd(value) == roundndd(expected)) ? 1 : 0;
if(!same) {
if(!value_errors)
fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT
", RRDR found " NETDATA_DOUBLE_FORMAT ", ### E R R O R ###\n",
rrdset_name(st[i]), rrddim_name(rd[i][j]), (unsigned long)time_now, expected, value);
value_errors++;
}
if(time_retrieved != time_now) {
if(!time_errors)
fprintf(stderr, " DB-engine unittest %s/%s: at %lu secs, found RRDR timestamp %lu ### E R R O R ###\n",
rrdset_name(st[i]), rrddim_name(rd[i][j]), (unsigned long)time_now, (unsigned long)time_retrieved);
time_errors++;
}
}
rrddim_foreach_done(d);
}
rrdr_free(owa, r);
}
onewayalloc_destroy(owa);
}
error_out:
rrd_wrlock();
rrdeng_prepare_exit((struct rrdengine_instance *)host->storage_instance[0]);
rrdhost_delete_charts(host);
rrdeng_exit((struct rrdengine_instance *)host->storage_instance[0]);
rrd_unlock();
return errors + value_errors + time_errors;
}
struct dbengine_chart_thread {
uv_thread_t thread;
RRDHOST *host;
char *chartname; /* Will be prefixed by type, e.g. "example_local1.", "example_local2." etc */
unsigned dset_charts; /* number of charts */
unsigned dset_dims; /* dimensions per chart */
unsigned chart_i; /* current chart offset */
time_t time_present; /* current virtual time of the benchmark */
volatile time_t time_max; /* latest timestamp of stored values */
unsigned history_seconds; /* how far back in the past to go */
volatile long done; /* initialize to 0, set to 1 to stop thread */
struct completion charts_initialized;
unsigned long errors, stored_metrics_nr; /* statistics */
RRDSET *st;
RRDDIM *rd[]; /* dset_dims elements */
};
collected_number generate_dbengine_chart_value(int chart_i, int dim_i, time_t time_current)
{
collected_number value;
value = ((collected_number)time_current) * (chart_i + 1);
value += ((collected_number)time_current) * (dim_i + 1);
value %= 1024LLU;
return value;
}
static void generate_dbengine_chart(void *arg)
{
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
struct dbengine_chart_thread *thread_info = (struct dbengine_chart_thread *)arg;
RRDHOST *host = thread_info->host;
char *chartname = thread_info->chartname;
const unsigned DSET_DIMS = thread_info->dset_dims;
unsigned history_seconds = thread_info->history_seconds;
time_t time_present = thread_info->time_present;
unsigned j, update_every = 1;
RRDSET *st;
RRDDIM *rd[DSET_DIMS];
char name[RRD_ID_LENGTH_MAX + 1];
time_t time_current;
// create the chart
snprintfz(name, RRD_ID_LENGTH_MAX, "example_local%u", thread_info->chart_i + 1);
thread_info->st = st = rrdset_create(host, name, chartname, chartname, "example", NULL, chartname, chartname,
chartname, NULL, 1, update_every, RRDSET_TYPE_LINE);
for (j = 0 ; j < DSET_DIMS ; ++j) {
snprintfz(name, RRD_ID_LENGTH_MAX, "%s%u", chartname, j + 1);
thread_info->rd[j] = rd[j] = rrddim_add(st, name, NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
}
completion_mark_complete(&thread_info->charts_initialized);
// feed it with the test data
time_current = time_present - history_seconds;
for (j = 0 ; j < DSET_DIMS ; ++j) {
rd[j]->last_collected_time.tv_sec =
st->last_collected_time.tv_sec = st->last_updated.tv_sec = time_current - update_every;
rd[j]->last_collected_time.tv_usec =
st->last_collected_time.tv_usec = st->last_updated.tv_usec = 0;
}
for( ; !thread_info->done && time_current < time_present ; time_current += update_every) {
st->usec_since_last_update = USEC_PER_SEC * update_every;
for (j = 0; j < DSET_DIMS; ++j) {
collected_number value;
value = generate_dbengine_chart_value(thread_info->chart_i, j, time_current);
rrddim_set_by_pointer_fake_time(rd[j], value, time_current);
++thread_info->stored_metrics_nr;
}
rrdset_done(st);
thread_info->time_max = time_current;
}
for (j = 0; j < DSET_DIMS; ++j) {
rrdeng_store_metric_finalize((rd[j])->tiers[0]->db_collection_handle);
}
}
void generate_dbengine_dataset(unsigned history_seconds)
{
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
const int DSET_CHARTS = 16;
const int DSET_DIMS = 128;
const uint64_t EXPECTED_COMPRESSION_RATIO = 20;
RRDHOST *host = NULL;
struct dbengine_chart_thread **thread_info;
int i;
time_t time_present;
default_rrd_memory_mode = RRD_MEMORY_MODE_DBENGINE;
default_rrdeng_page_cache_mb = 128;
// Worst case for uncompressible data
default_rrdeng_disk_quota_mb = (((uint64_t)DSET_DIMS * DSET_CHARTS) * sizeof(storage_number) * history_seconds) /
(1024 * 1024);
default_rrdeng_disk_quota_mb -= default_rrdeng_disk_quota_mb * EXPECTED_COMPRESSION_RATIO / 100;
error_log_limit_unlimited();
fprintf(stderr, "Initializing localhost with hostname 'dbengine-dataset'");
host = dbengine_rrdhost_find_or_create("dbengine-dataset");
if (NULL == host)
return;
thread_info = mallocz(sizeof(*thread_info) * DSET_CHARTS);
for (i = 0 ; i < DSET_CHARTS ; ++i) {
thread_info[i] = mallocz(sizeof(*thread_info[i]) + sizeof(RRDDIM *) * DSET_DIMS);
}
fprintf(stderr, "\nRunning DB-engine workload generator\n");
time_present = now_realtime_sec();
for (i = 0 ; i < DSET_CHARTS ; ++i) {
thread_info[i]->host = host;
thread_info[i]->chartname = "random";
thread_info[i]->dset_charts = DSET_CHARTS;
thread_info[i]->chart_i = i;
thread_info[i]->dset_dims = DSET_DIMS;
thread_info[i]->history_seconds = history_seconds;
thread_info[i]->time_present = time_present;
thread_info[i]->time_max = 0;
thread_info[i]->done = 0;
completion_init(&thread_info[i]->charts_initialized);
assert(0 == uv_thread_create(&thread_info[i]->thread, generate_dbengine_chart, thread_info[i]));
completion_wait_for(&thread_info[i]->charts_initialized);
completion_destroy(&thread_info[i]->charts_initialized);
}
for (i = 0 ; i < DSET_CHARTS ; ++i) {
assert(0 == uv_thread_join(&thread_info[i]->thread));
}
for (i = 0 ; i < DSET_CHARTS ; ++i) {
freez(thread_info[i]);
}
freez(thread_info);
rrd_wrlock();
rrdhost_free(host, 1);
rrd_unlock();
}
struct dbengine_query_thread {
uv_thread_t thread;
RRDHOST *host;
char *chartname; /* Will be prefixed by type, e.g. "example_local1.", "example_local2." etc */
unsigned dset_charts; /* number of charts */
unsigned dset_dims; /* dimensions per chart */
time_t time_present; /* current virtual time of the benchmark */
unsigned history_seconds; /* how far back in the past to go */
volatile long done; /* initialize to 0, set to 1 to stop thread */
unsigned long errors, queries_nr, queried_metrics_nr; /* statistics */
uint8_t delete_old_data; /* if non zero then data are deleted when disk space is exhausted */
struct dbengine_chart_thread *chart_threads[]; /* dset_charts elements */
};
static void query_dbengine_chart(void *arg)
{
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
struct dbengine_query_thread *thread_info = (struct dbengine_query_thread *)arg;
const int DSET_CHARTS = thread_info->dset_charts;
const int DSET_DIMS = thread_info->dset_dims;
time_t time_after, time_before, time_min, time_approx_min, time_max, duration;
int i, j, update_every = 1;
RRDSET *st;
RRDDIM *rd;
uint8_t same;
time_t time_now, time_retrieved, end_time;
collected_number generatedv;
NETDATA_DOUBLE value, expected;
struct rrddim_query_handle handle;
size_t value_errors = 0, time_errors = 0;
do {
// pick a chart and dimension
i = random() % DSET_CHARTS;
st = thread_info->chart_threads[i]->st;
j = random() % DSET_DIMS;
rd = thread_info->chart_threads[i]->rd[j];
time_min = thread_info->time_present - thread_info->history_seconds + 1;
time_max = thread_info->chart_threads[i]->time_max;
if (thread_info->delete_old_data) {
/* A time window of twice the disk space is sufficient for compression space savings of up to 50% */
time_approx_min = time_max - (default_rrdeng_disk_quota_mb * 2 * 1024 * 1024) /
(((uint64_t) DSET_DIMS * DSET_CHARTS) * sizeof(storage_number));
time_min = MAX(time_min, time_approx_min);
}
if (!time_max) {
time_before = time_after = time_min;
} else {
time_after = time_min + random() % (MAX(time_max - time_min, 1));
duration = random() % 3600;
time_before = MIN(time_after + duration, time_max); /* up to 1 hour queries */
}
rd->tiers[0]->query_ops.init(rd->tiers[0]->db_metric_handle, &handle, time_after, time_before, TIER_QUERY_FETCH_SUM);
++thread_info->queries_nr;
for (time_now = time_after ; time_now <= time_before ; time_now += update_every) {
generatedv = generate_dbengine_chart_value(i, j, time_now);
expected = unpack_storage_number(pack_storage_number((NETDATA_DOUBLE) generatedv, SN_DEFAULT_FLAGS));
if (unlikely(rd->tiers[0]->query_ops.is_finished(&handle))) {
if (!thread_info->delete_old_data) { /* data validation only when we don't delete */
fprintf(stderr, " DB-engine stresstest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT
", found data gap, ### E R R O R ###\n",
rrdset_name(st), rrddim_name(rd), (unsigned long) time_now, expected);
++thread_info->errors;
}
break;
}
STORAGE_POINT sp = rd->tiers[0]->query_ops.next_metric(&handle);
value = sp.sum;
time_retrieved = sp.start_time;
end_time = sp.end_time;
if (!netdata_double_isnumber(value)) {
if (!thread_info->delete_old_data) { /* data validation only when we don't delete */
fprintf(stderr, " DB-engine stresstest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT
", found data gap, ### E R R O R ###\n",
rrdset_name(st), rrddim_name(rd), (unsigned long) time_now, expected);
++thread_info->errors;
}
break;
}
++thread_info->queried_metrics_nr;
same = (roundndd(value) == roundndd(expected)) ? 1 : 0;
if (!same) {
if (!thread_info->delete_old_data) { /* data validation only when we don't delete */
if(!value_errors)
fprintf(stderr, " DB-engine stresstest %s/%s: at %lu secs, expecting value " NETDATA_DOUBLE_FORMAT
", found " NETDATA_DOUBLE_FORMAT ", ### E R R O R ###\n",
rrdset_name(st), rrddim_name(rd), (unsigned long) time_now, expected, value);
value_errors++;
thread_info->errors++;
}
}
if (end_time != time_now) {
if (!thread_info->delete_old_data) { /* data validation only when we don't delete */
if(!time_errors)
fprintf(stderr,
" DB-engine stresstest %s/%s: at %lu secs, found timestamp %lu ### E R R O R ###\n",
rrdset_name(st), rrddim_name(rd), (unsigned long) time_now, (unsigned long) time_retrieved);
time_errors++;
thread_info->errors++;
}
}
}
rd->tiers[0]->query_ops.finalize(&handle);
} while(!thread_info->done);
if(value_errors)
fprintf(stderr, "%zu value errors encountered\n", value_errors);
if(time_errors)
fprintf(stderr, "%zu time errors encountered\n", time_errors);
}
void dbengine_stress_test(unsigned TEST_DURATION_SEC, unsigned DSET_CHARTS, unsigned QUERY_THREADS,
unsigned RAMP_UP_SECONDS, unsigned PAGE_CACHE_MB, unsigned DISK_SPACE_MB)
{
fprintf(stderr, "%s() running...\n", __FUNCTION__ );
const unsigned DSET_DIMS = 128;
const uint64_t EXPECTED_COMPRESSION_RATIO = 20;
const unsigned HISTORY_SECONDS = 3600 * 24 * 365 * 50; /* 50 year of history */
RRDHOST *host = NULL;
struct dbengine_chart_thread **chart_threads;
struct dbengine_query_thread **query_threads;
unsigned i, j;
time_t time_start, test_duration;
error_log_limit_unlimited();
if (!TEST_DURATION_SEC)
TEST_DURATION_SEC = 10;
if (!DSET_CHARTS)
DSET_CHARTS = 1;
if (!QUERY_THREADS)
QUERY_THREADS = 1;
if (PAGE_CACHE_MB < RRDENG_MIN_PAGE_CACHE_SIZE_MB)
PAGE_CACHE_MB = RRDENG_MIN_PAGE_CACHE_SIZE_MB;
default_rrd_memory_mode = RRD_MEMORY_MODE_DBENGINE;
default_rrdeng_page_cache_mb = PAGE_CACHE_MB;
if (DISK_SPACE_MB) {
fprintf(stderr, "By setting disk space limit data are allowed to be deleted. "
"Data validation is turned off for this run.\n");
default_rrdeng_disk_quota_mb = DISK_SPACE_MB;
} else {
// Worst case for uncompressible data
default_rrdeng_disk_quota_mb =
(((uint64_t) DSET_DIMS * DSET_CHARTS) * sizeof(storage_number) * HISTORY_SECONDS) / (1024 * 1024);
default_rrdeng_disk_quota_mb -= default_rrdeng_disk_quota_mb * EXPECTED_COMPRESSION_RATIO / 100;
}
fprintf(stderr, "Initializing localhost with hostname 'dbengine-stress-test'\n");
(void) sql_init_database(DB_CHECK_NONE, 1);
host = dbengine_rrdhost_find_or_create("dbengine-stress-test");
if (NULL == host)
return;
chart_threads = mallocz(sizeof(*chart_threads) * DSET_CHARTS);
for (i = 0 ; i < DSET_CHARTS ; ++i) {
chart_threads[i] = mallocz(sizeof(*chart_threads[i]) + sizeof(RRDDIM *) * DSET_DIMS);
}
query_threads = mallocz(sizeof(*query_threads) * QUERY_THREADS);
for (i = 0 ; i < QUERY_THREADS ; ++i) {
query_threads[i] = mallocz(sizeof(*query_threads[i]) + sizeof(struct dbengine_chart_thread *) * DSET_CHARTS);
}
fprintf(stderr, "\nRunning DB-engine stress test, %u seconds writers ramp-up time,\n"
"%u seconds of concurrent readers and writers, %u writer threads, %u reader threads,\n"
"%u MiB of page cache.\n",
RAMP_UP_SECONDS, TEST_DURATION_SEC, DSET_CHARTS, QUERY_THREADS, PAGE_CACHE_MB);
time_start = now_realtime_sec() + HISTORY_SECONDS; /* move history to the future */
for (i = 0 ; i < DSET_CHARTS ; ++i) {
chart_threads[i]->host = host;
chart_threads[i]->chartname = "random";
chart_threads[i]->dset_charts = DSET_CHARTS;
chart_threads[i]->chart_i = i;
chart_threads[i]->dset_dims = DSET_DIMS;
chart_threads[i]->history_seconds = HISTORY_SECONDS;
chart_threads[i]->time_present = time_start;
chart_threads[i]->time_max = 0;
chart_threads[i]->done = 0;
chart_threads[i]->errors = chart_threads[i]->stored_metrics_nr = 0;
completion_init(&chart_threads[i]->charts_initialized);
assert(0 == uv_thread_create(&chart_threads[i]->thread, generate_dbengine_chart, chart_threads[i]));
}
/* barrier so that subsequent queries can access valid chart data */
for (i = 0 ; i < DSET_CHARTS ; ++i) {
completion_wait_for(&chart_threads[i]->charts_initialized);
completion_destroy(&chart_threads[i]->charts_initialized);
}
sleep(RAMP_UP_SECONDS);
/* at this point data have already began being written to the database */
for (i = 0 ; i < QUERY_THREADS ; ++i) {
query_threads[i]->host = host;
query_threads[i]->chartname = "random";
query_threads[i]->dset_charts = DSET_CHARTS;
query_threads[i]->dset_dims = DSET_DIMS;
query_threads[i]->history_seconds = HISTORY_SECONDS;
query_threads[i]->time_present = time_start;
query_threads[i]->done = 0;
query_threads[i]->errors = query_threads[i]->queries_nr = query_threads[i]->queried_metrics_nr = 0;
for (j = 0 ; j < DSET_CHARTS ; ++j) {
query_threads[i]->chart_threads[j] = chart_threads[j];
}
query_threads[i]->delete_old_data = DISK_SPACE_MB ? 1 : 0;
assert(0 == uv_thread_create(&query_threads[i]->thread, query_dbengine_chart, query_threads[i]));
}
sleep(TEST_DURATION_SEC);
/* stop workload */
for (i = 0 ; i < DSET_CHARTS ; ++i) {
chart_threads[i]->done = 1;
}
for (i = 0 ; i < QUERY_THREADS ; ++i) {
query_threads[i]->done = 1;
}
for (i = 0 ; i < DSET_CHARTS ; ++i) {
assert(0 == uv_thread_join(&chart_threads[i]->thread));
}
for (i = 0 ; i < QUERY_THREADS ; ++i) {
assert(0 == uv_thread_join(&query_threads[i]->thread));
}
test_duration = now_realtime_sec() - (time_start - HISTORY_SECONDS);
if (!test_duration)
test_duration = 1;
fprintf(stderr, "\nDB-engine stress test finished in %ld seconds.\n", test_duration);
unsigned long stored_metrics_nr = 0;
for (i = 0 ; i < DSET_CHARTS ; ++i) {
stored_metrics_nr += chart_threads[i]->stored_metrics_nr;
}
unsigned long queried_metrics_nr = 0;
for (i = 0 ; i < QUERY_THREADS ; ++i) {
queried_metrics_nr += query_threads[i]->queried_metrics_nr;
}
fprintf(stderr, "%u metrics were stored (dataset size of %lu MiB) in %u charts by 1 writer thread per chart.\n",
DSET_CHARTS * DSET_DIMS, stored_metrics_nr * sizeof(storage_number) / (1024 * 1024), DSET_CHARTS);
fprintf(stderr, "Metrics were being generated per 1 emulated second and time was accelerated.\n");
fprintf(stderr, "%lu metric data points were queried by %u reader threads.\n", queried_metrics_nr, QUERY_THREADS);
fprintf(stderr, "Query starting time is randomly chosen from the beginning of the time-series up to the time of\n"
"the latest data point, and ending time from 1 second up to 1 hour after the starting time.\n");
fprintf(stderr, "Performance is %lu written data points/sec and %lu read data points/sec.\n",
stored_metrics_nr / test_duration, queried_metrics_nr / test_duration);
for (i = 0 ; i < DSET_CHARTS ; ++i) {
freez(chart_threads[i]);
}
freez(chart_threads);
for (i = 0 ; i < QUERY_THREADS ; ++i) {
freez(query_threads[i]);
}
freez(query_threads);
rrd_wrlock();
rrdeng_prepare_exit((struct rrdengine_instance *)host->storage_instance[0]);
rrdhost_delete_charts(host);
rrdeng_exit((struct rrdengine_instance *)host->storage_instance[0]);
rrd_unlock();
}
#endif