netdata/collectors/proc.plugin/proc_stat.c

1075 lines
44 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#include "plugin_proc.h"
#define PLUGIN_PROC_MODULE_STAT_NAME "/proc/stat"
struct per_core_single_number_file {
unsigned char found:1;
const char *filename;
int fd;
collected_number value;
RRDDIM *rd;
};
struct last_ticks {
collected_number frequency;
collected_number ticks;
};
// This is an extension of struct per_core_single_number_file at CPU_FREQ_INDEX.
// Either scaling_cur_freq or time_in_state file is used at one time.
struct per_core_time_in_state_file {
const char *filename;
procfile *ff;
size_t last_ticks_len;
struct last_ticks *last_ticks;
};
#define CORE_THROTTLE_COUNT_INDEX 0
#define PACKAGE_THROTTLE_COUNT_INDEX 1
#define CPU_FREQ_INDEX 2
#define PER_CORE_FILES 3
struct cpu_chart {
const char *id;
RRDSET *st;
RRDDIM *rd_user;
RRDDIM *rd_nice;
RRDDIM *rd_system;
RRDDIM *rd_idle;
RRDDIM *rd_iowait;
RRDDIM *rd_irq;
RRDDIM *rd_softirq;
RRDDIM *rd_steal;
RRDDIM *rd_guest;
RRDDIM *rd_guest_nice;
struct per_core_single_number_file files[PER_CORE_FILES];
struct per_core_time_in_state_file time_in_state_files;
};
static int keep_per_core_fds_open = CONFIG_BOOLEAN_YES;
static int keep_cpuidle_fds_open = CONFIG_BOOLEAN_YES;
static int read_per_core_files(struct cpu_chart *all_cpu_charts, size_t len, size_t index) {
char buf[50 + 1];
size_t x, files_read = 0, files_nonzero = 0;
for(x = 0; x < len ; x++) {
struct per_core_single_number_file *f = &all_cpu_charts[x].files[index];
f->found = 0;
if(unlikely(!f->filename))
continue;
if(unlikely(f->fd == -1)) {
f->fd = open(f->filename, O_RDONLY);
if (unlikely(f->fd == -1)) {
error("Cannot open file '%s'", f->filename);
continue;
}
}
ssize_t ret = read(f->fd, buf, 50);
if(unlikely(ret < 0)) {
// cannot read that file
error("Cannot read file '%s'", f->filename);
close(f->fd);
f->fd = -1;
continue;
}
else {
// successful read
// terminate the buffer
buf[ret] = '\0';
if(unlikely(keep_per_core_fds_open != CONFIG_BOOLEAN_YES)) {
close(f->fd);
f->fd = -1;
}
else if(lseek(f->fd, 0, SEEK_SET) == -1) {
error("Cannot seek in file '%s'", f->filename);
close(f->fd);
f->fd = -1;
}
}
files_read++;
f->found = 1;
f->value = str2ll(buf, NULL);
if(likely(f->value != 0))
files_nonzero++;
}
if(files_read == 0)
return -1;
if(files_nonzero == 0)
return 0;
return (int)files_nonzero;
}
static int read_per_core_time_in_state_files(struct cpu_chart *all_cpu_charts, size_t len, size_t index) {
size_t x, files_read = 0, files_nonzero = 0;
for(x = 0; x < len ; x++) {
struct per_core_single_number_file *f = &all_cpu_charts[x].files[index];
struct per_core_time_in_state_file *tsf = &all_cpu_charts[x].time_in_state_files;
f->found = 0;
if(unlikely(!tsf->filename))
continue;
if(unlikely(!tsf->ff)) {
tsf->ff = procfile_open(tsf->filename, " \t:", PROCFILE_FLAG_DEFAULT);
if(unlikely(!tsf->ff))
{
error("Cannot open file '%s'", tsf->filename);
continue;
}
}
tsf->ff = procfile_readall(tsf->ff);
if(unlikely(!tsf->ff)) {
error("Cannot read file '%s'", tsf->filename);
procfile_close(tsf->ff);
tsf->ff = NULL;
continue;
}
else {
// successful read
size_t lines = procfile_lines(tsf->ff), l;
size_t words;
unsigned long long total_ticks_since_last = 0, avg_freq = 0;
// Check if there is at least one frequency in time_in_state
if (procfile_word(tsf->ff, 0)[0] == '\0') {
if(unlikely(keep_per_core_fds_open != CONFIG_BOOLEAN_YES)) {
procfile_close(tsf->ff);
tsf->ff = NULL;
}
// TODO: Is there a better way to avoid spikes than calculating the average over
// the whole period under schedutil governor?
// freez(tsf->last_ticks);
// tsf->last_ticks = NULL;
// tsf->last_ticks_len = 0;
continue;
}
if (unlikely(tsf->last_ticks_len < lines || tsf->last_ticks == NULL)) {
tsf->last_ticks = reallocz(tsf->last_ticks, sizeof(struct last_ticks) * lines);
memset(tsf->last_ticks, 0, sizeof(struct last_ticks) * lines);
tsf->last_ticks_len = lines;
}
f->value = 0;
for(l = 0; l < lines - 1 ;l++) {
unsigned long long frequency = 0, ticks = 0, ticks_since_last = 0;
words = procfile_linewords(tsf->ff, l);
if(unlikely(words < 2)) {
error("Cannot read time_in_state line. Expected 2 params, read %zu.", words);
continue;
}
frequency = str2ull(procfile_lineword(tsf->ff, l, 0));
ticks = str2ull(procfile_lineword(tsf->ff, l, 1));
// It is assumed that frequencies are static and sorted
ticks_since_last = ticks - tsf->last_ticks[l].ticks;
tsf->last_ticks[l].frequency = frequency;
tsf->last_ticks[l].ticks = ticks;
total_ticks_since_last += ticks_since_last;
avg_freq += frequency * ticks_since_last;
}
if (likely(total_ticks_since_last)) {
avg_freq /= total_ticks_since_last;
f->value = avg_freq;
}
if(unlikely(keep_per_core_fds_open != CONFIG_BOOLEAN_YES)) {
procfile_close(tsf->ff);
tsf->ff = NULL;
}
}
files_read++;
f->found = 1;
if(likely(f->value != 0))
files_nonzero++;
}
if(unlikely(files_read == 0))
return -1;
if(unlikely(files_nonzero == 0))
return 0;
return (int)files_nonzero;
}
static void chart_per_core_files(struct cpu_chart *all_cpu_charts, size_t len, size_t index, RRDSET *st, collected_number multiplier, collected_number divisor, RRD_ALGORITHM algorithm) {
size_t x;
for(x = 0; x < len ; x++) {
struct per_core_single_number_file *f = &all_cpu_charts[x].files[index];
if(unlikely(!f->found))
continue;
if(unlikely(!f->rd))
f->rd = rrddim_add(st, all_cpu_charts[x].id, NULL, multiplier, divisor, algorithm);
rrddim_set_by_pointer(st, f->rd, f->value);
}
}
struct cpuidle_state {
char *name;
char *time_filename;
int time_fd;
collected_number value;
RRDDIM *rd;
};
struct per_core_cpuidle_chart {
RRDSET *st;
RRDDIM *active_time_rd;
collected_number active_time;
collected_number last_active_time;
struct cpuidle_state *cpuidle_state;
size_t cpuidle_state_len;
int rescan_cpu_states;
};
static void* wake_cpu_thread(void* core) {
pthread_t thread;
cpu_set_t cpu_set;
static size_t cpu_wakeups = 0;
static int errors = 0;
CPU_ZERO(&cpu_set);
CPU_SET(*(int*)core, &cpu_set);
thread = pthread_self();
if(unlikely(pthread_setaffinity_np(thread, sizeof(cpu_set_t), &cpu_set))) {
if(unlikely(errors < 8)) {
error("Cannot set CPU affinity for core %d", *(int*)core);
errors++;
}
else if(unlikely(errors < 9)) {
error("CPU affinity errors are disabled");
errors++;
}
}
// Make the CPU core do something to force it to update its idle counters
cpu_wakeups++;
return 0;
}
static int read_schedstat(char *schedstat_filename, struct per_core_cpuidle_chart **cpuidle_charts_address, size_t *schedstat_cores_found) {
static size_t cpuidle_charts_len = 0;
static procfile *ff = NULL;
struct per_core_cpuidle_chart *cpuidle_charts = *cpuidle_charts_address;
size_t cores_found = 0;
if(unlikely(!ff)) {
ff = procfile_open(schedstat_filename, " \t:", PROCFILE_FLAG_DEFAULT);
if(unlikely(!ff)) return 1;
}
ff = procfile_readall(ff);
if(unlikely(!ff)) return 1;
size_t lines = procfile_lines(ff), l;
size_t words;
for(l = 0; l < lines ;l++) {
char *row_key = procfile_lineword(ff, l, 0);
// faster strncmp(row_key, "cpu", 3) == 0
if(likely(row_key[0] == 'c' && row_key[1] == 'p' && row_key[2] == 'u')) {
words = procfile_linewords(ff, l);
if(unlikely(words < 10)) {
error("Cannot read /proc/schedstat cpu line. Expected 9 params, read %zu.", words);
return 1;
}
cores_found++;
size_t core = str2ul(&row_key[3]);
if(unlikely(core >= cores_found)) {
error("Core %zu found but no more than %zu cores were expected.", core, cores_found);
return 1;
}
if(unlikely(cpuidle_charts_len < cores_found)) {
cpuidle_charts = reallocz(cpuidle_charts, sizeof(struct per_core_cpuidle_chart) * cores_found);
*cpuidle_charts_address = cpuidle_charts;
memset(cpuidle_charts + cpuidle_charts_len, 0, sizeof(struct per_core_cpuidle_chart) * (cores_found - cpuidle_charts_len));
cpuidle_charts_len = cores_found;
}
cpuidle_charts[core].active_time = str2ull(procfile_lineword(ff, l, 7)) / 1000;
}
}
*schedstat_cores_found = cores_found;
return 0;
}
static int read_one_state(char *buf, const char *filename, int *fd) {
ssize_t ret = read(*fd, buf, 50);
if(unlikely(ret <= 0)) {
// cannot read that file
error("Cannot read file '%s'", filename);
close(*fd);
*fd = -1;
return 0;
}
else {
// successful read
// terminate the buffer
buf[ret - 1] = '\0';
if(unlikely(keep_cpuidle_fds_open != CONFIG_BOOLEAN_YES)) {
close(*fd);
*fd = -1;
}
else if(lseek(*fd, 0, SEEK_SET) == -1) {
error("Cannot seek in file '%s'", filename);
close(*fd);
*fd = -1;
}
}
return 1;
}
static int read_cpuidle_states(char *cpuidle_name_filename , char *cpuidle_time_filename, struct per_core_cpuidle_chart *cpuidle_charts, size_t core) {
char filename[FILENAME_MAX + 1];
static char next_state_filename[FILENAME_MAX + 1];
struct stat stbuf;
struct per_core_cpuidle_chart *cc = &cpuidle_charts[core];
size_t state;
if(unlikely(!cc->cpuidle_state_len || cc->rescan_cpu_states)) {
int state_file_found = 1; // check at least one state
if(cc->cpuidle_state_len) {
for(state = 0; state < cc->cpuidle_state_len; state++) {
freez(cc->cpuidle_state[state].name);
freez(cc->cpuidle_state[state].time_filename);
close(cc->cpuidle_state[state].time_fd);
cc->cpuidle_state[state].time_fd = -1;
}
freez(cc->cpuidle_state);
cc->cpuidle_state = NULL;
cc->cpuidle_state_len = 0;
cc->active_time_rd = NULL;
cc->st = NULL;
}
while(likely(state_file_found)) {
snprintfz(filename, FILENAME_MAX, cpuidle_name_filename, core, cc->cpuidle_state_len);
if (stat(filename, &stbuf) == 0)
cc->cpuidle_state_len++;
else
state_file_found = 0;
}
snprintfz(next_state_filename, FILENAME_MAX, cpuidle_name_filename, core, cc->cpuidle_state_len);
if(likely(cc->cpuidle_state_len))
cc->cpuidle_state = callocz(cc->cpuidle_state_len, sizeof(struct cpuidle_state));
for(state = 0; state < cc->cpuidle_state_len; state++) {
char name_buf[50 + 1];
snprintfz(filename, FILENAME_MAX, cpuidle_name_filename, core, state);
int fd = open(filename, O_RDONLY, 0666);
if(unlikely(fd == -1)) {
error("Cannot open file '%s'", filename);
cc->rescan_cpu_states = 1;
return 1;
}
ssize_t r = read(fd, name_buf, 50);
if(unlikely(r < 1)) {
error("Cannot read file '%s'", filename);
close(fd);
cc->rescan_cpu_states = 1;
return 1;
}
name_buf[r - 1] = '\0'; // erase extra character
cc->cpuidle_state[state].name = strdupz(trim(name_buf));
close(fd);
snprintfz(filename, FILENAME_MAX, cpuidle_time_filename, core, state);
cc->cpuidle_state[state].time_filename = strdupz(filename);
cc->cpuidle_state[state].time_fd = -1;
}
cc->rescan_cpu_states = 0;
}
for(state = 0; state < cc->cpuidle_state_len; state++) {
struct cpuidle_state *cs = &cc->cpuidle_state[state];
if(unlikely(cs->time_fd == -1)) {
cs->time_fd = open(cs->time_filename, O_RDONLY);
if (unlikely(cs->time_fd == -1)) {
error("Cannot open file '%s'", cs->time_filename);
cc->rescan_cpu_states = 1;
return 1;
}
}
char time_buf[50 + 1];
if(likely(read_one_state(time_buf, cs->time_filename, &cs->time_fd))) {
cs->value = str2ll(time_buf, NULL);
}
else {
cc->rescan_cpu_states = 1;
return 1;
}
}
// check if the number of states was increased
if(unlikely(stat(next_state_filename, &stbuf) == 0)) {
cc->rescan_cpu_states = 1;
return 1;
}
return 0;
}
int do_proc_stat(int update_every, usec_t dt) {
(void)dt;
static struct cpu_chart *all_cpu_charts = NULL;
static size_t all_cpu_charts_size = 0;
static procfile *ff = NULL;
static int do_cpu = -1, do_cpu_cores = -1, do_interrupts = -1, do_context = -1, do_forks = -1, do_processes = -1,
do_core_throttle_count = -1, do_package_throttle_count = -1, do_cpu_freq = -1, do_cpuidle = -1;
static uint32_t hash_intr, hash_ctxt, hash_processes, hash_procs_running, hash_procs_blocked;
static char *core_throttle_count_filename = NULL, *package_throttle_count_filename = NULL, *scaling_cur_freq_filename = NULL,
*time_in_state_filename = NULL, *schedstat_filename = NULL, *cpuidle_name_filename = NULL, *cpuidle_time_filename = NULL;
static const RRDVAR_ACQUIRED *cpus_var = NULL;
static int accurate_freq_avail = 0, accurate_freq_is_used = 0;
size_t cores_found = (size_t)processors;
if(unlikely(do_cpu == -1)) {
do_cpu = config_get_boolean("plugin:proc:/proc/stat", "cpu utilization", CONFIG_BOOLEAN_YES);
do_cpu_cores = config_get_boolean("plugin:proc:/proc/stat", "per cpu core utilization", CONFIG_BOOLEAN_YES);
do_interrupts = config_get_boolean("plugin:proc:/proc/stat", "cpu interrupts", CONFIG_BOOLEAN_YES);
do_context = config_get_boolean("plugin:proc:/proc/stat", "context switches", CONFIG_BOOLEAN_YES);
do_forks = config_get_boolean("plugin:proc:/proc/stat", "processes started", CONFIG_BOOLEAN_YES);
do_processes = config_get_boolean("plugin:proc:/proc/stat", "processes running", CONFIG_BOOLEAN_YES);
// give sane defaults based on the number of processors
if(unlikely(processors > 50)) {
// the system has too many processors
keep_per_core_fds_open = CONFIG_BOOLEAN_NO;
do_core_throttle_count = CONFIG_BOOLEAN_NO;
do_package_throttle_count = CONFIG_BOOLEAN_NO;
do_cpu_freq = CONFIG_BOOLEAN_NO;
do_cpuidle = CONFIG_BOOLEAN_NO;
}
else {
// the system has a reasonable number of processors
keep_per_core_fds_open = CONFIG_BOOLEAN_YES;
do_core_throttle_count = CONFIG_BOOLEAN_AUTO;
do_package_throttle_count = CONFIG_BOOLEAN_NO;
do_cpu_freq = CONFIG_BOOLEAN_YES;
do_cpuidle = CONFIG_BOOLEAN_YES;
}
if(unlikely(processors > 24)) {
// the system has too many processors
keep_cpuidle_fds_open = CONFIG_BOOLEAN_NO;
}
else {
// the system has a reasonable number of processors
keep_cpuidle_fds_open = CONFIG_BOOLEAN_YES;
}
keep_per_core_fds_open = config_get_boolean("plugin:proc:/proc/stat", "keep per core files open", keep_per_core_fds_open);
keep_cpuidle_fds_open = config_get_boolean("plugin:proc:/proc/stat", "keep cpuidle files open", keep_cpuidle_fds_open);
do_core_throttle_count = config_get_boolean_ondemand("plugin:proc:/proc/stat", "core_throttle_count", do_core_throttle_count);
do_package_throttle_count = config_get_boolean_ondemand("plugin:proc:/proc/stat", "package_throttle_count", do_package_throttle_count);
do_cpu_freq = config_get_boolean_ondemand("plugin:proc:/proc/stat", "cpu frequency", do_cpu_freq);
do_cpuidle = config_get_boolean_ondemand("plugin:proc:/proc/stat", "cpu idle states", do_cpuidle);
hash_intr = simple_hash("intr");
hash_ctxt = simple_hash("ctxt");
hash_processes = simple_hash("processes");
hash_procs_running = simple_hash("procs_running");
hash_procs_blocked = simple_hash("procs_blocked");
char filename[FILENAME_MAX + 1];
snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/%s/thermal_throttle/core_throttle_count");
core_throttle_count_filename = config_get("plugin:proc:/proc/stat", "core_throttle_count filename to monitor", filename);
snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/%s/thermal_throttle/package_throttle_count");
package_throttle_count_filename = config_get("plugin:proc:/proc/stat", "package_throttle_count filename to monitor", filename);
snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/%s/cpufreq/scaling_cur_freq");
scaling_cur_freq_filename = config_get("plugin:proc:/proc/stat", "scaling_cur_freq filename to monitor", filename);
snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/%s/cpufreq/stats/time_in_state");
time_in_state_filename = config_get("plugin:proc:/proc/stat", "time_in_state filename to monitor", filename);
snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/proc/schedstat");
schedstat_filename = config_get("plugin:proc:/proc/stat", "schedstat filename to monitor", filename);
if(do_cpuidle != CONFIG_BOOLEAN_NO) {
struct stat stbuf;
if (stat(schedstat_filename, &stbuf))
do_cpuidle = CONFIG_BOOLEAN_NO;
}
snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/cpu%zu/cpuidle/state%zu/name");
cpuidle_name_filename = config_get("plugin:proc:/proc/stat", "cpuidle name filename to monitor", filename);
snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/sys/devices/system/cpu/cpu%zu/cpuidle/state%zu/time");
cpuidle_time_filename = config_get("plugin:proc:/proc/stat", "cpuidle time filename to monitor", filename);
}
if(unlikely(!ff)) {
char filename[FILENAME_MAX + 1];
snprintfz(filename, FILENAME_MAX, "%s%s", netdata_configured_host_prefix, "/proc/stat");
ff = procfile_open(config_get("plugin:proc:/proc/stat", "filename to monitor", filename), " \t:", PROCFILE_FLAG_DEFAULT);
if(unlikely(!ff)) return 1;
}
ff = procfile_readall(ff);
if(unlikely(!ff)) return 0; // we return 0, so that we will retry to open it next time
size_t lines = procfile_lines(ff), l;
size_t words;
unsigned long long processes = 0, running = 0 , blocked = 0;
for(l = 0; l < lines ;l++) {
char *row_key = procfile_lineword(ff, l, 0);
uint32_t hash = simple_hash(row_key);
// faster strncmp(row_key, "cpu", 3) == 0
if(likely(row_key[0] == 'c' && row_key[1] == 'p' && row_key[2] == 'u')) {
words = procfile_linewords(ff, l);
if(unlikely(words < 9)) {
error("Cannot read /proc/stat cpu line. Expected 9 params, read %zu.", words);
continue;
}
size_t core = (row_key[3] == '\0') ? 0 : str2ul(&row_key[3]) + 1;
if(likely(core > 0)) cores_found = core;
if(likely((core == 0 && do_cpu) || (core > 0 && do_cpu_cores))) {
char *id;
unsigned long long user = 0, nice = 0, system = 0, idle = 0, iowait = 0, irq = 0, softirq = 0, steal = 0, guest = 0, guest_nice = 0;
id = row_key;
user = str2ull(procfile_lineword(ff, l, 1));
nice = str2ull(procfile_lineword(ff, l, 2));
system = str2ull(procfile_lineword(ff, l, 3));
idle = str2ull(procfile_lineword(ff, l, 4));
iowait = str2ull(procfile_lineword(ff, l, 5));
irq = str2ull(procfile_lineword(ff, l, 6));
softirq = str2ull(procfile_lineword(ff, l, 7));
steal = str2ull(procfile_lineword(ff, l, 8));
guest = str2ull(procfile_lineword(ff, l, 9));
user -= guest;
guest_nice = str2ull(procfile_lineword(ff, l, 10));
nice -= guest_nice;
char *title, *type, *context, *family;
long priority;
if(unlikely(core >= all_cpu_charts_size)) {
size_t old_cpu_charts_size = all_cpu_charts_size;
all_cpu_charts_size = core + 1;
all_cpu_charts = reallocz(all_cpu_charts, sizeof(struct cpu_chart) * all_cpu_charts_size);
memset(&all_cpu_charts[old_cpu_charts_size], 0, sizeof(struct cpu_chart) * (all_cpu_charts_size - old_cpu_charts_size));
}
struct cpu_chart *cpu_chart = &all_cpu_charts[core];
if(unlikely(!cpu_chart->st)) {
cpu_chart->id = strdupz(id);
if(unlikely(core == 0)) {
title = "Total CPU utilization";
type = "system";
context = "system.cpu";
family = id;
priority = NETDATA_CHART_PRIO_SYSTEM_CPU;
}
else {
title = "Core utilization";
type = "cpu";
context = "cpu.cpu";
family = "utilization";
priority = NETDATA_CHART_PRIO_CPU_PER_CORE;
char filename[FILENAME_MAX + 1];
struct stat stbuf;
if(do_core_throttle_count != CONFIG_BOOLEAN_NO) {
snprintfz(filename, FILENAME_MAX, core_throttle_count_filename, id);
if (stat(filename, &stbuf) == 0) {
cpu_chart->files[CORE_THROTTLE_COUNT_INDEX].filename = strdupz(filename);
cpu_chart->files[CORE_THROTTLE_COUNT_INDEX].fd = -1;
do_core_throttle_count = CONFIG_BOOLEAN_YES;
}
}
if(do_package_throttle_count != CONFIG_BOOLEAN_NO) {
snprintfz(filename, FILENAME_MAX, package_throttle_count_filename, id);
if (stat(filename, &stbuf) == 0) {
cpu_chart->files[PACKAGE_THROTTLE_COUNT_INDEX].filename = strdupz(filename);
cpu_chart->files[PACKAGE_THROTTLE_COUNT_INDEX].fd = -1;
do_package_throttle_count = CONFIG_BOOLEAN_YES;
}
}
if(do_cpu_freq != CONFIG_BOOLEAN_NO) {
snprintfz(filename, FILENAME_MAX, scaling_cur_freq_filename, id);
if (stat(filename, &stbuf) == 0) {
cpu_chart->files[CPU_FREQ_INDEX].filename = strdupz(filename);
cpu_chart->files[CPU_FREQ_INDEX].fd = -1;
do_cpu_freq = CONFIG_BOOLEAN_YES;
}
snprintfz(filename, FILENAME_MAX, time_in_state_filename, id);
if (stat(filename, &stbuf) == 0) {
cpu_chart->time_in_state_files.filename = strdupz(filename);
cpu_chart->time_in_state_files.ff = NULL;
do_cpu_freq = CONFIG_BOOLEAN_YES;
accurate_freq_avail = 1;
}
}
}
cpu_chart->st = rrdset_create_localhost(
type
, id
, NULL
, family
, context
, title
, "percentage"
, PLUGIN_PROC_NAME
, PLUGIN_PROC_MODULE_STAT_NAME
, priority + core
, update_every
, RRDSET_TYPE_STACKED
);
long multiplier = 1;
long divisor = 1; // sysconf(_SC_CLK_TCK);
cpu_chart->rd_guest_nice = rrddim_add(cpu_chart->st, "guest_nice", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
cpu_chart->rd_guest = rrddim_add(cpu_chart->st, "guest", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
cpu_chart->rd_steal = rrddim_add(cpu_chart->st, "steal", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
cpu_chart->rd_softirq = rrddim_add(cpu_chart->st, "softirq", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
cpu_chart->rd_irq = rrddim_add(cpu_chart->st, "irq", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
cpu_chart->rd_user = rrddim_add(cpu_chart->st, "user", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
cpu_chart->rd_system = rrddim_add(cpu_chart->st, "system", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
cpu_chart->rd_nice = rrddim_add(cpu_chart->st, "nice", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
cpu_chart->rd_iowait = rrddim_add(cpu_chart->st, "iowait", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
cpu_chart->rd_idle = rrddim_add(cpu_chart->st, "idle", NULL, multiplier, divisor, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
rrddim_hide(cpu_chart->st, "idle");
if(unlikely(core == 0 && cpus_var == NULL))
cpus_var = rrdvar_custom_host_variable_add_and_acquire(localhost, "active_processors");
}
else rrdset_next(cpu_chart->st);
rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_user, user);
rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_nice, nice);
rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_system, system);
rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_idle, idle);
rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_iowait, iowait);
rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_irq, irq);
rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_softirq, softirq);
rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_steal, steal);
rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_guest, guest);
rrddim_set_by_pointer(cpu_chart->st, cpu_chart->rd_guest_nice, guest_nice);
rrdset_done(cpu_chart->st);
}
}
else if(unlikely(hash == hash_intr && strcmp(row_key, "intr") == 0)) {
if(likely(do_interrupts)) {
static RRDSET *st_intr = NULL;
static RRDDIM *rd_interrupts = NULL;
unsigned long long value = str2ull(procfile_lineword(ff, l, 1));
if(unlikely(!st_intr)) {
st_intr = rrdset_create_localhost(
"system"
, "intr"
, NULL
, "interrupts"
, NULL
, "CPU Interrupts"
, "interrupts/s"
, PLUGIN_PROC_NAME
, PLUGIN_PROC_MODULE_STAT_NAME
, NETDATA_CHART_PRIO_SYSTEM_INTR
, update_every
, RRDSET_TYPE_LINE
);
rrdset_flag_set(st_intr, RRDSET_FLAG_DETAIL);
rd_interrupts = rrddim_add(st_intr, "interrupts", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL);
}
else rrdset_next(st_intr);
rrddim_set_by_pointer(st_intr, rd_interrupts, value);
rrdset_done(st_intr);
}
}
else if(unlikely(hash == hash_ctxt && strcmp(row_key, "ctxt") == 0)) {
if(likely(do_context)) {
static RRDSET *st_ctxt = NULL;
static RRDDIM *rd_switches = NULL;
unsigned long long value = str2ull(procfile_lineword(ff, l, 1));
if(unlikely(!st_ctxt)) {
st_ctxt = rrdset_create_localhost(
"system"
, "ctxt"
, NULL
, "processes"
, NULL
, "CPU Context Switches"
, "context switches/s"
, PLUGIN_PROC_NAME
, PLUGIN_PROC_MODULE_STAT_NAME
, NETDATA_CHART_PRIO_SYSTEM_CTXT
, update_every
, RRDSET_TYPE_LINE
);
rd_switches = rrddim_add(st_ctxt, "switches", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL);
}
else rrdset_next(st_ctxt);
rrddim_set_by_pointer(st_ctxt, rd_switches, value);
rrdset_done(st_ctxt);
}
}
else if(unlikely(hash == hash_processes && !processes && strcmp(row_key, "processes") == 0)) {
processes = str2ull(procfile_lineword(ff, l, 1));
}
else if(unlikely(hash == hash_procs_running && !running && strcmp(row_key, "procs_running") == 0)) {
running = str2ull(procfile_lineword(ff, l, 1));
}
else if(unlikely(hash == hash_procs_blocked && !blocked && strcmp(row_key, "procs_blocked") == 0)) {
blocked = str2ull(procfile_lineword(ff, l, 1));
}
}
// --------------------------------------------------------------------
if(likely(do_forks)) {
static RRDSET *st_forks = NULL;
static RRDDIM *rd_started = NULL;
if(unlikely(!st_forks)) {
st_forks = rrdset_create_localhost(
"system"
, "forks"
, NULL
, "processes"
, NULL
, "Started Processes"
, "processes/s"
, PLUGIN_PROC_NAME
, PLUGIN_PROC_MODULE_STAT_NAME
, NETDATA_CHART_PRIO_SYSTEM_FORKS
, update_every
, RRDSET_TYPE_LINE
);
rrdset_flag_set(st_forks, RRDSET_FLAG_DETAIL);
rd_started = rrddim_add(st_forks, "started", NULL, 1, 1, RRD_ALGORITHM_INCREMENTAL);
}
else rrdset_next(st_forks);
rrddim_set_by_pointer(st_forks, rd_started, processes);
rrdset_done(st_forks);
}
// --------------------------------------------------------------------
if(likely(do_processes)) {
static RRDSET *st_processes = NULL;
static RRDDIM *rd_running = NULL;
static RRDDIM *rd_blocked = NULL;
if(unlikely(!st_processes)) {
st_processes = rrdset_create_localhost(
"system"
, "processes"
, NULL
, "processes"
, NULL
, "System Processes"
, "processes"
, PLUGIN_PROC_NAME
, PLUGIN_PROC_MODULE_STAT_NAME
, NETDATA_CHART_PRIO_SYSTEM_PROCESSES
, update_every
, RRDSET_TYPE_LINE
);
rd_running = rrddim_add(st_processes, "running", NULL, 1, 1, RRD_ALGORITHM_ABSOLUTE);
rd_blocked = rrddim_add(st_processes, "blocked", NULL, -1, 1, RRD_ALGORITHM_ABSOLUTE);
}
else rrdset_next(st_processes);
rrddim_set_by_pointer(st_processes, rd_running, running);
rrddim_set_by_pointer(st_processes, rd_blocked, blocked);
rrdset_done(st_processes);
}
if(likely(all_cpu_charts_size > 1)) {
if(likely(do_core_throttle_count != CONFIG_BOOLEAN_NO)) {
int r = read_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, CORE_THROTTLE_COUNT_INDEX);
if(likely(r != -1 && (do_core_throttle_count == CONFIG_BOOLEAN_YES || r > 0))) {
do_core_throttle_count = CONFIG_BOOLEAN_YES;
static RRDSET *st_core_throttle_count = NULL;
if (unlikely(!st_core_throttle_count))
st_core_throttle_count = rrdset_create_localhost(
"cpu"
, "core_throttling"
, NULL
, "throttling"
, "cpu.core_throttling"
, "Core Thermal Throttling Events"
, "events/s"
, PLUGIN_PROC_NAME
, PLUGIN_PROC_MODULE_STAT_NAME
, NETDATA_CHART_PRIO_CORE_THROTTLING
, update_every
, RRDSET_TYPE_LINE
);
else
rrdset_next(st_core_throttle_count);
chart_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, CORE_THROTTLE_COUNT_INDEX, st_core_throttle_count, 1, 1, RRD_ALGORITHM_INCREMENTAL);
rrdset_done(st_core_throttle_count);
}
}
if(likely(do_package_throttle_count != CONFIG_BOOLEAN_NO)) {
int r = read_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, PACKAGE_THROTTLE_COUNT_INDEX);
if(likely(r != -1 && (do_package_throttle_count == CONFIG_BOOLEAN_YES || r > 0))) {
do_package_throttle_count = CONFIG_BOOLEAN_YES;
static RRDSET *st_package_throttle_count = NULL;
if(unlikely(!st_package_throttle_count))
st_package_throttle_count = rrdset_create_localhost(
"cpu"
, "package_throttling"
, NULL
, "throttling"
, "cpu.package_throttling"
, "Package Thermal Throttling Events"
, "events/s"
, PLUGIN_PROC_NAME
, PLUGIN_PROC_MODULE_STAT_NAME
, NETDATA_CHART_PRIO_PACKAGE_THROTTLING
, update_every
, RRDSET_TYPE_LINE
);
else
rrdset_next(st_package_throttle_count);
chart_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, PACKAGE_THROTTLE_COUNT_INDEX, st_package_throttle_count, 1, 1, RRD_ALGORITHM_INCREMENTAL);
rrdset_done(st_package_throttle_count);
}
}
if(likely(do_cpu_freq != CONFIG_BOOLEAN_NO)) {
char filename[FILENAME_MAX + 1];
int r = 0;
if (accurate_freq_avail) {
r = read_per_core_time_in_state_files(&all_cpu_charts[1], all_cpu_charts_size - 1, CPU_FREQ_INDEX);
if(r > 0 && !accurate_freq_is_used) {
accurate_freq_is_used = 1;
snprintfz(filename, FILENAME_MAX, time_in_state_filename, "cpu*");
info("cpufreq is using %s", filename);
}
}
if (r < 1) {
r = read_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, CPU_FREQ_INDEX);
if(accurate_freq_is_used) {
accurate_freq_is_used = 0;
snprintfz(filename, FILENAME_MAX, scaling_cur_freq_filename, "cpu*");
info("cpufreq fell back to %s", filename);
}
}
if(likely(r != -1 && (do_cpu_freq == CONFIG_BOOLEAN_YES || r > 0))) {
do_cpu_freq = CONFIG_BOOLEAN_YES;
static RRDSET *st_scaling_cur_freq = NULL;
if(unlikely(!st_scaling_cur_freq))
st_scaling_cur_freq = rrdset_create_localhost(
"cpu"
, "cpufreq"
, NULL
, "cpufreq"
, "cpufreq.cpufreq"
, "Current CPU Frequency"
, "MHz"
, PLUGIN_PROC_NAME
, PLUGIN_PROC_MODULE_STAT_NAME
, NETDATA_CHART_PRIO_CPUFREQ_SCALING_CUR_FREQ
, update_every
, RRDSET_TYPE_LINE
);
else
rrdset_next(st_scaling_cur_freq);
chart_per_core_files(&all_cpu_charts[1], all_cpu_charts_size - 1, CPU_FREQ_INDEX, st_scaling_cur_freq, 1, 1000, RRD_ALGORITHM_ABSOLUTE);
rrdset_done(st_scaling_cur_freq);
}
}
}
// --------------------------------------------------------------------
static struct per_core_cpuidle_chart *cpuidle_charts = NULL;
size_t schedstat_cores_found = 0;
if(likely(do_cpuidle != CONFIG_BOOLEAN_NO && !read_schedstat(schedstat_filename, &cpuidle_charts, &schedstat_cores_found))) {
int cpu_states_updated = 0;
size_t core, state;
// proc.plugin runs on Linux systems only. Multi-platform compatibility is not needed here,
// so bare pthread functions are used to avoid unneeded overheads.
for(core = 0; core < schedstat_cores_found; core++) {
if(unlikely(!(cpuidle_charts[core].active_time - cpuidle_charts[core].last_active_time))) {
pthread_t thread;
cpu_set_t global_cpu_set;
if (likely(!pthread_getaffinity_np(pthread_self(), sizeof(cpu_set_t), &global_cpu_set))) {
if (unlikely(!CPU_ISSET(core, &global_cpu_set))) {
continue;
}
}
else
error("Cannot read current process affinity");
// These threads are very ephemeral and don't need to have a specific name
if(unlikely(pthread_create(&thread, NULL, wake_cpu_thread, (void *)&core)))
error("Cannot create wake_cpu_thread");
else if(unlikely(pthread_join(thread, NULL)))
error("Cannot join wake_cpu_thread");
cpu_states_updated = 1;
}
}
if(unlikely(!cpu_states_updated || !read_schedstat(schedstat_filename, &cpuidle_charts, &schedstat_cores_found))) {
for(core = 0; core < schedstat_cores_found; core++) {
cpuidle_charts[core].last_active_time = cpuidle_charts[core].active_time;
int r = read_cpuidle_states(cpuidle_name_filename, cpuidle_time_filename, cpuidle_charts, core);
if(likely(r != -1 && (do_cpuidle == CONFIG_BOOLEAN_YES || r > 0))) {
do_cpuidle = CONFIG_BOOLEAN_YES;
char cpuidle_chart_id[RRD_ID_LENGTH_MAX + 1];
snprintfz(cpuidle_chart_id, RRD_ID_LENGTH_MAX, "cpu%zu_cpuidle", core);
if(unlikely(!cpuidle_charts[core].st)) {
cpuidle_charts[core].st = rrdset_create_localhost(
"cpu"
, cpuidle_chart_id
, NULL
, "cpuidle"
, "cpuidle.cpu_cstate_residency_time"
, "C-state residency time"
, "percentage"
, PLUGIN_PROC_NAME
, PLUGIN_PROC_MODULE_STAT_NAME
, NETDATA_CHART_PRIO_CPUIDLE + core
, update_every
, RRDSET_TYPE_STACKED
);
char corebuf[50+1];
snprintfz(corebuf, 50, "cpu%zu", core);
rrdlabels_add(cpuidle_charts[core].st->rrdlabels, "cpu", corebuf, RRDLABEL_SRC_AUTO);
char cpuidle_dim_id[RRD_ID_LENGTH_MAX + 1];
cpuidle_charts[core].active_time_rd = rrddim_add(cpuidle_charts[core].st, "active", "C0 (active)", 1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
for(state = 0; state < cpuidle_charts[core].cpuidle_state_len; state++) {
strncpyz(cpuidle_dim_id, cpuidle_charts[core].cpuidle_state[state].name, RRD_ID_LENGTH_MAX);
for(int i = 0; cpuidle_dim_id[i]; i++)
cpuidle_dim_id[i] = tolower(cpuidle_dim_id[i]);
cpuidle_charts[core].cpuidle_state[state].rd = rrddim_add(cpuidle_charts[core].st, cpuidle_dim_id,
cpuidle_charts[core].cpuidle_state[state].name,
1, 1, RRD_ALGORITHM_PCENT_OVER_DIFF_TOTAL);
}
}
else
rrdset_next(cpuidle_charts[core].st);
rrddim_set_by_pointer(cpuidle_charts[core].st, cpuidle_charts[core].active_time_rd, cpuidle_charts[core].active_time);
for(state = 0; state < cpuidle_charts[core].cpuidle_state_len; state++) {
rrddim_set_by_pointer(cpuidle_charts[core].st, cpuidle_charts[core].cpuidle_state[state].rd, cpuidle_charts[core].cpuidle_state[state].value);
}
rrdset_done(cpuidle_charts[core].st);
}
}
}
}
if(cpus_var)
rrdvar_custom_host_variable_set(localhost, cpus_var, cores_found);
return 0;
}