netdata/libnetdata/statistical/statistical.c

461 lines
14 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// SPDX-License-Identifier: GPL-3.0-or-later
#include "../libnetdata.h"
NETDATA_DOUBLE default_single_exponential_smoothing_alpha = 0.1;
void log_series_to_stderr(NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE result, const char *msg) {
const NETDATA_DOUBLE *value, *end = &series[entries];
fprintf(stderr, "%s of %zu entries [ ", msg, entries);
for(value = series; value < end ;value++) {
if(value != series) fprintf(stderr, ", ");
fprintf(stderr, "%" NETDATA_DOUBLE_MODIFIER, *value);
}
fprintf(stderr, " ] results in " NETDATA_DOUBLE_FORMAT "\n", result);
}
// --------------------------------------------------------------------------------------------------------------------
inline NETDATA_DOUBLE sum_and_count(const NETDATA_DOUBLE *series, size_t entries, size_t *count) {
const NETDATA_DOUBLE *value, *end = &series[entries];
NETDATA_DOUBLE sum = 0;
size_t c = 0;
for(value = series; value < end ; value++) {
if(netdata_double_isnumber(*value)) {
sum += *value;
c++;
}
}
if(unlikely(!c)) sum = NAN;
if(likely(count)) *count = c;
return sum;
}
inline NETDATA_DOUBLE sum(const NETDATA_DOUBLE *series, size_t entries) {
return sum_and_count(series, entries, NULL);
}
inline NETDATA_DOUBLE average(const NETDATA_DOUBLE *series, size_t entries) {
size_t count = 0;
NETDATA_DOUBLE sum = sum_and_count(series, entries, &count);
if(unlikely(!count)) return NAN;
return sum / (NETDATA_DOUBLE)count;
}
// --------------------------------------------------------------------------------------------------------------------
NETDATA_DOUBLE moving_average(const NETDATA_DOUBLE *series, size_t entries, size_t period) {
if(unlikely(period <= 0))
return 0.0;
size_t i, count;
NETDATA_DOUBLE sum = 0, avg = 0;
NETDATA_DOUBLE p[period];
for(count = 0; count < period ; count++)
p[count] = 0.0;
for(i = 0, count = 0; i < entries; i++) {
NETDATA_DOUBLE value = series[i];
if(unlikely(!netdata_double_isnumber(value))) continue;
if(unlikely(count < period)) {
sum += value;
avg = (count == period - 1) ? sum / (NETDATA_DOUBLE)period : 0;
}
else {
sum = sum - p[count % period] + value;
avg = sum / (NETDATA_DOUBLE)period;
}
p[count % period] = value;
count++;
}
return avg;
}
// --------------------------------------------------------------------------------------------------------------------
static int qsort_compare(const void *a, const void *b) {
NETDATA_DOUBLE *p1 = (NETDATA_DOUBLE *)a, *p2 = (NETDATA_DOUBLE *)b;
NETDATA_DOUBLE n1 = *p1, n2 = *p2;
if(unlikely(isnan(n1) || isnan(n2))) {
if(isnan(n1) && !isnan(n2)) return -1;
if(!isnan(n1) && isnan(n2)) return 1;
return 0;
}
if(unlikely(isinf(n1) || isinf(n2))) {
if(!isinf(n1) && isinf(n2)) return -1;
if(isinf(n1) && !isinf(n2)) return 1;
return 0;
}
if(unlikely(n1 < n2)) return -1;
if(unlikely(n1 > n2)) return 1;
return 0;
}
inline void sort_series(NETDATA_DOUBLE *series, size_t entries) {
qsort(series, entries, sizeof(NETDATA_DOUBLE), qsort_compare);
}
inline NETDATA_DOUBLE *copy_series(const NETDATA_DOUBLE *series, size_t entries) {
NETDATA_DOUBLE *copy = mallocz(sizeof(NETDATA_DOUBLE) * entries);
memcpy(copy, series, sizeof(NETDATA_DOUBLE) * entries);
return copy;
}
NETDATA_DOUBLE median_on_sorted_series(const NETDATA_DOUBLE *series, size_t entries) {
if(unlikely(entries == 0)) return NAN;
if(unlikely(entries == 1)) return series[0];
if(unlikely(entries == 2)) return (series[0] + series[1]) / 2;
NETDATA_DOUBLE average;
if(entries % 2 == 0) {
size_t m = entries / 2;
average = (series[m] + series[m + 1]) / 2;
}
else {
average = series[entries / 2];
}
return average;
}
NETDATA_DOUBLE median(const NETDATA_DOUBLE *series, size_t entries) {
if(unlikely(entries == 0)) return NAN;
if(unlikely(entries == 1)) return series[0];
if(unlikely(entries == 2))
return (series[0] + series[1]) / 2;
NETDATA_DOUBLE *copy = copy_series(series, entries);
sort_series(copy, entries);
NETDATA_DOUBLE avg = median_on_sorted_series(copy, entries);
freez(copy);
return avg;
}
// --------------------------------------------------------------------------------------------------------------------
NETDATA_DOUBLE moving_median(const NETDATA_DOUBLE *series, size_t entries, size_t period) {
if(entries <= period)
return median(series, entries);
NETDATA_DOUBLE *data = copy_series(series, entries);
size_t i;
for(i = period; i < entries; i++) {
data[i - period] = median(&series[i - period], period);
}
NETDATA_DOUBLE avg = median(data, entries - period);
freez(data);
return avg;
}
// --------------------------------------------------------------------------------------------------------------------
// http://stackoverflow.com/a/15150143/4525767
NETDATA_DOUBLE running_median_estimate(const NETDATA_DOUBLE *series, size_t entries) {
NETDATA_DOUBLE median = 0.0f;
NETDATA_DOUBLE average = 0.0f;
size_t i;
for(i = 0; i < entries ; i++) {
NETDATA_DOUBLE value = series[i];
if(unlikely(!netdata_double_isnumber(value))) continue;
average += ( value - average ) * 0.1f; // rough running average.
median += copysignndd( average * 0.01, value - median );
}
return median;
}
// --------------------------------------------------------------------------------------------------------------------
NETDATA_DOUBLE standard_deviation(const NETDATA_DOUBLE *series, size_t entries) {
if(unlikely(entries == 0)) return NAN;
if(unlikely(entries == 1)) return series[0];
const NETDATA_DOUBLE *value, *end = &series[entries];
size_t count;
NETDATA_DOUBLE sum;
for(count = 0, sum = 0, value = series ; value < end ;value++) {
if(likely(netdata_double_isnumber(*value))) {
count++;
sum += *value;
}
}
if(unlikely(count == 0)) return NAN;
if(unlikely(count == 1)) return sum;
NETDATA_DOUBLE average = sum / (NETDATA_DOUBLE)count;
for(count = 0, sum = 0, value = series ; value < end ;value++) {
if(netdata_double_isnumber(*value)) {
count++;
sum += powndd(*value - average, 2);
}
}
if(unlikely(count == 0)) return NAN;
if(unlikely(count == 1)) return average;
NETDATA_DOUBLE variance = sum / (NETDATA_DOUBLE)(count); // remove -1 from count to have a population stddev
NETDATA_DOUBLE stddev = sqrtndd(variance);
return stddev;
}
// --------------------------------------------------------------------------------------------------------------------
NETDATA_DOUBLE single_exponential_smoothing(const NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE alpha) {
if(unlikely(entries == 0))
return NAN;
if(unlikely(isnan(alpha)))
alpha = default_single_exponential_smoothing_alpha;
const NETDATA_DOUBLE *value = series, *end = &series[entries];
NETDATA_DOUBLE level = (1.0 - alpha) * (*value);
for(value++ ; value < end; value++) {
if(likely(netdata_double_isnumber(*value)))
level = alpha * (*value) + (1.0 - alpha) * level;
}
return level;
}
NETDATA_DOUBLE single_exponential_smoothing_reverse(const NETDATA_DOUBLE *series, size_t entries, NETDATA_DOUBLE alpha) {
if(unlikely(entries == 0))
return NAN;
if(unlikely(isnan(alpha)))
alpha = default_single_exponential_smoothing_alpha;
const NETDATA_DOUBLE *value = &series[entries -1];
NETDATA_DOUBLE level = (1.0 - alpha) * (*value);
for(value++ ; value >= series; value--) {
if(likely(netdata_double_isnumber(*value)))
level = alpha * (*value) + (1.0 - alpha) * level;
}
return level;
}
// --------------------------------------------------------------------------------------------------------------------
// http://grisha.org/blog/2016/02/16/triple-exponential-smoothing-forecasting-part-ii/
NETDATA_DOUBLE double_exponential_smoothing(const NETDATA_DOUBLE *series, size_t entries,
NETDATA_DOUBLE alpha,
NETDATA_DOUBLE beta,
NETDATA_DOUBLE *forecast) {
if(unlikely(entries == 0))
return NAN;
NETDATA_DOUBLE level, trend;
if(unlikely(isnan(alpha)))
alpha = 0.3;
if(unlikely(isnan(beta)))
beta = 0.05;
level = series[0];
if(likely(entries > 1))
trend = series[1] - series[0];
else
trend = 0;
const NETDATA_DOUBLE *value = series;
for(value++ ; value >= series; value--) {
if(likely(netdata_double_isnumber(*value))) {
NETDATA_DOUBLE last_level = level;
level = alpha * *value + (1.0 - alpha) * (level + trend);
trend = beta * (level - last_level) + (1.0 - beta) * trend;
}
}
if(forecast)
*forecast = level + trend;
return level;
}
// --------------------------------------------------------------------------------------------------------------------
/*
* Based on th R implementation
*
* a: level component
* b: trend component
* s: seasonal component
*
* Additive:
*
* Yhat[t+h] = a[t] + h * b[t] + s[t + 1 + (h - 1) mod p],
* a[t] = α (Y[t] - s[t-p]) + (1-α) (a[t-1] + b[t-1])
* b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]
* s[t] = γ (Y[t] - a[t]) + (1-γ) s[t-p]
*
* Multiplicative:
*
* Yhat[t+h] = (a[t] + h * b[t]) * s[t + 1 + (h - 1) mod p],
* a[t] = α (Y[t] / s[t-p]) + (1-α) (a[t-1] + b[t-1])
* b[t] = β (a[t] - a[t-1]) + (1-β) b[t-1]
* s[t] = γ (Y[t] / a[t]) + (1-γ) s[t-p]
*/
static int __HoltWinters(
const NETDATA_DOUBLE *series,
int entries, // start_time + h
NETDATA_DOUBLE alpha, // alpha parameter of Holt-Winters Filter.
NETDATA_DOUBLE
beta, // beta parameter of Holt-Winters Filter. If set to 0, the function will do exponential smoothing.
NETDATA_DOUBLE
gamma, // gamma parameter used for the seasonal component. If set to 0, an non-seasonal model is fitted.
const int *seasonal,
const int *period,
const NETDATA_DOUBLE *a, // Start value for level (a[0]).
const NETDATA_DOUBLE *b, // Start value for trend (b[0]).
NETDATA_DOUBLE *s, // Vector of start values for the seasonal component (s_1[0] ... s_p[0])
/* return values */
NETDATA_DOUBLE *SSE, // The final sum of squared errors achieved in optimizing
NETDATA_DOUBLE *level, // Estimated values for the level component (size entries - t + 2)
NETDATA_DOUBLE *trend, // Estimated values for the trend component (size entries - t + 2)
NETDATA_DOUBLE *season // Estimated values for the seasonal component (size entries - t + 2)
)
{
if(unlikely(entries < 4))
return 0;
int start_time = 2;
NETDATA_DOUBLE res = 0, xhat = 0, stmp = 0;
int i, i0, s0;
/* copy start values to the beginning of the vectors */
level[0] = *a;
if(beta > 0) trend[0] = *b;
if(gamma > 0) memcpy(season, s, *period * sizeof(NETDATA_DOUBLE));
for(i = start_time - 1; i < entries; i++) {
/* indices for period i */
i0 = i - start_time + 2;
s0 = i0 + *period - 1;
/* forecast *for* period i */
xhat = level[i0 - 1] + (beta > 0 ? trend[i0 - 1] : 0);
stmp = gamma > 0 ? season[s0 - *period] : (*seasonal != 1);
if (*seasonal == 1)
xhat += stmp;
else
xhat *= stmp;
/* Sum of Squared Errors */
res = series[i] - xhat;
*SSE += res * res;
/* estimate of level *in* period i */
if (*seasonal == 1)
level[i0] = alpha * (series[i] - stmp)
+ (1 - alpha) * (level[i0 - 1] + trend[i0 - 1]);
else
level[i0] = alpha * (series[i] / stmp)
+ (1 - alpha) * (level[i0 - 1] + trend[i0 - 1]);
/* estimate of trend *in* period i */
if (beta > 0)
trend[i0] = beta * (level[i0] - level[i0 - 1])
+ (1 - beta) * trend[i0 - 1];
/* estimate of seasonal component *in* period i */
if (gamma > 0) {
if (*seasonal == 1)
season[s0] = gamma * (series[i] - level[i0])
+ (1 - gamma) * stmp;
else
season[s0] = gamma * (series[i] / level[i0])
+ (1 - gamma) * stmp;
}
}
return 1;
}
NETDATA_DOUBLE holtwinters(const NETDATA_DOUBLE *series, size_t entries,
NETDATA_DOUBLE alpha,
NETDATA_DOUBLE beta,
NETDATA_DOUBLE gamma,
NETDATA_DOUBLE *forecast) {
if(unlikely(isnan(alpha)))
alpha = 0.3;
if(unlikely(isnan(beta)))
beta = 0.05;
if(unlikely(isnan(gamma)))
gamma = 0;
int seasonal = 0;
int period = 0;
NETDATA_DOUBLE a0 = series[0];
NETDATA_DOUBLE b0 = 0;
NETDATA_DOUBLE s[] = {};
NETDATA_DOUBLE errors = 0.0;
size_t nb_computations = entries;
NETDATA_DOUBLE *estimated_level = callocz(nb_computations, sizeof(NETDATA_DOUBLE));
NETDATA_DOUBLE *estimated_trend = callocz(nb_computations, sizeof(NETDATA_DOUBLE));
NETDATA_DOUBLE *estimated_season = callocz(nb_computations, sizeof(NETDATA_DOUBLE));
int ret = __HoltWinters(
series,
(int)entries,
alpha,
beta,
gamma,
&seasonal,
&period,
&a0,
&b0,
s,
&errors,
estimated_level,
estimated_trend,
estimated_season
);
NETDATA_DOUBLE value = estimated_level[nb_computations - 1];
if(forecast)
*forecast = 0.0;
freez(estimated_level);
freez(estimated_trend);
freez(estimated_season);
if(!ret)
return 0.0;
return value;
}