netdata/libnetdata/clocks/clocks.c

318 lines
9.2 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#include "../libnetdata.h"
// defaults are for compatibility
// call clocks_init() once, to optimize these default settings
static clockid_t clock_boottime_to_use = CLOCK_MONOTONIC;
static clockid_t clock_monotonic_to_use = CLOCK_MONOTONIC;
#ifndef HAVE_CLOCK_GETTIME
inline int clock_gettime(clockid_t clk_id, struct timespec *ts) {
struct timeval tv;
if(unlikely(gettimeofday(&tv, NULL) == -1)) {
error("gettimeofday() failed.");
return -1;
}
ts->tv_sec = tv.tv_sec;
ts->tv_nsec = (tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC;
return 0;
}
#endif
// When running a binary with CLOCK_MONOTONIC_COARSE defined on a system with a linux kernel older than Linux 2.6.32 the
// clock_gettime(2) system call fails with EINVAL. In that case it must fall-back to CLOCK_MONOTONIC.
static void test_clock_monotonic_coarse(void) {
struct timespec ts;
if(clock_gettime(CLOCK_MONOTONIC_COARSE, &ts) == -1 && errno == EINVAL)
clock_monotonic_to_use = CLOCK_MONOTONIC;
else
clock_monotonic_to_use = CLOCK_MONOTONIC_COARSE;
}
// When running a binary with CLOCK_BOOTTIME defined on a system with a linux kernel older than Linux 2.6.39 the
// clock_gettime(2) system call fails with EINVAL. In that case it must fall-back to CLOCK_MONOTONIC.
static void test_clock_boottime(void) {
struct timespec ts;
if(clock_gettime(CLOCK_BOOTTIME, &ts) == -1 && errno == EINVAL)
clock_boottime_to_use = clock_monotonic_to_use;
else
clock_boottime_to_use = CLOCK_BOOTTIME;
}
// perform any initializations required for clocks
void clocks_init(void) {
// monotonic coarse has to be tested before boottime
test_clock_monotonic_coarse();
// boottime has to be tested after monotonic coarse
test_clock_boottime();
}
inline time_t now_sec(clockid_t clk_id) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
error("clock_gettime(%d, &timespec) failed.", clk_id);
return 0;
}
return ts.tv_sec;
}
inline usec_t now_usec(clockid_t clk_id) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
error("clock_gettime(%d, &timespec) failed.", clk_id);
return 0;
}
return (usec_t)ts.tv_sec * USEC_PER_SEC + (ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC;
}
inline int now_timeval(clockid_t clk_id, struct timeval *tv) {
struct timespec ts;
if(unlikely(clock_gettime(clk_id, &ts) == -1)) {
error("clock_gettime(%d, &timespec) failed.", clk_id);
tv->tv_sec = 0;
tv->tv_usec = 0;
return -1;
}
tv->tv_sec = ts.tv_sec;
tv->tv_usec = (suseconds_t)((ts.tv_nsec % NSEC_PER_SEC) / NSEC_PER_USEC);
return 0;
}
inline time_t now_realtime_sec(void) {
return now_sec(CLOCK_REALTIME);
}
inline usec_t now_realtime_usec(void) {
return now_usec(CLOCK_REALTIME);
}
inline int now_realtime_timeval(struct timeval *tv) {
return now_timeval(CLOCK_REALTIME, tv);
}
inline time_t now_monotonic_sec(void) {
return now_sec(clock_monotonic_to_use);
}
inline usec_t now_monotonic_usec(void) {
return now_usec(clock_monotonic_to_use);
}
inline int now_monotonic_timeval(struct timeval *tv) {
return now_timeval(clock_monotonic_to_use, tv);
}
inline time_t now_monotonic_high_precision_sec(void) {
return now_sec(CLOCK_MONOTONIC);
}
inline usec_t now_monotonic_high_precision_usec(void) {
return now_usec(CLOCK_MONOTONIC);
}
inline int now_monotonic_high_precision_timeval(struct timeval *tv) {
return now_timeval(CLOCK_MONOTONIC, tv);
}
inline time_t now_boottime_sec(void) {
return now_sec(clock_boottime_to_use);
}
inline usec_t now_boottime_usec(void) {
return now_usec(clock_boottime_to_use);
}
inline int now_boottime_timeval(struct timeval *tv) {
return now_timeval(clock_boottime_to_use, tv);
}
inline usec_t timeval_usec(struct timeval *tv) {
return (usec_t)tv->tv_sec * USEC_PER_SEC + (tv->tv_usec % USEC_PER_SEC);
}
inline msec_t timeval_msec(struct timeval *tv) {
return (msec_t)tv->tv_sec * MSEC_PER_SEC + ((tv->tv_usec % USEC_PER_SEC) / MSEC_PER_SEC);
}
inline susec_t dt_usec_signed(struct timeval *now, struct timeval *old) {
usec_t ts1 = timeval_usec(now);
usec_t ts2 = timeval_usec(old);
if(likely(ts1 >= ts2)) return (susec_t)(ts1 - ts2);
return -((susec_t)(ts2 - ts1));
}
inline usec_t dt_usec(struct timeval *now, struct timeval *old) {
usec_t ts1 = timeval_usec(now);
usec_t ts2 = timeval_usec(old);
return (ts1 > ts2) ? (ts1 - ts2) : (ts2 - ts1);
}
inline void heartbeat_init(heartbeat_t *hb) {
hb->monotonic = hb->realtime = 0ULL;
}
// waits for the next heartbeat
// it waits using the monotonic clock
// it returns the dt using the realtime clock
usec_t heartbeat_next(heartbeat_t *hb, usec_t tick) {
heartbeat_t now;
now.monotonic = now_monotonic_usec();
now.realtime = now_realtime_usec();
usec_t next_monotonic = now.monotonic - (now.monotonic % tick) + tick;
while(now.monotonic < next_monotonic) {
sleep_usec(next_monotonic - now.monotonic);
now.monotonic = now_monotonic_usec();
now.realtime = now_realtime_usec();
}
if(likely(hb->realtime != 0ULL)) {
usec_t dt_monotonic = now.monotonic - hb->monotonic;
usec_t dt_realtime = now.realtime - hb->realtime;
hb->monotonic = now.monotonic;
hb->realtime = now.realtime;
if(unlikely(dt_monotonic >= tick + tick / 2)) {
errno = 0;
error("heartbeat missed %llu monotonic microseconds", dt_monotonic - tick);
}
return dt_realtime;
}
else {
hb->monotonic = now.monotonic;
hb->realtime = now.realtime;
return 0ULL;
}
}
// returned the elapsed time, since the last heartbeat
// using the monotonic clock
inline usec_t heartbeat_monotonic_dt_to_now_usec(heartbeat_t *hb) {
if(!hb || !hb->monotonic) return 0ULL;
return now_monotonic_usec() - hb->monotonic;
}
int sleep_usec(usec_t usec) {
#ifndef NETDATA_WITH_USLEEP
// we expect microseconds (1.000.000 per second)
// but timespec is nanoseconds (1.000.000.000 per second)
struct timespec rem, req = {
.tv_sec = (time_t) (usec / 1000000),
.tv_nsec = (suseconds_t) ((usec % 1000000) * 1000)
};
while (nanosleep(&req, &rem) == -1) {
if (likely(errno == EINTR)) {
debug(D_SYSTEM, "nanosleep() interrupted (while sleeping for %llu microseconds).", usec);
req.tv_sec = rem.tv_sec;
req.tv_nsec = rem.tv_nsec;
} else {
error("Cannot nanosleep() for %llu microseconds.", usec);
break;
}
}
return 0;
#else
int ret = usleep(usec);
if(unlikely(ret == -1 && errno == EINVAL)) {
// on certain systems, usec has to be up to 999999
if(usec > 999999) {
int counter = usec / 999999;
while(counter--)
usleep(999999);
usleep(usec % 999999);
}
else {
error("Cannot usleep() for %llu microseconds.", usec);
return ret;
}
}
if(ret != 0)
error("usleep() failed for %llu microseconds.", usec);
return ret;
#endif
}
static inline collected_number uptime_from_boottime(void) {
#ifdef CLOCK_BOOTTIME_IS_AVAILABLE
return now_boottime_usec() / 1000;
#else
error("uptime cannot be read from CLOCK_BOOTTIME on this system.");
return 0;
#endif
}
static procfile *read_proc_uptime_ff = NULL;
static inline collected_number read_proc_uptime(char *filename) {
if(unlikely(!read_proc_uptime_ff)) {
read_proc_uptime_ff = procfile_open(filename, " \t", PROCFILE_FLAG_DEFAULT);
if(unlikely(!read_proc_uptime_ff)) return 0;
}
read_proc_uptime_ff = procfile_readall(read_proc_uptime_ff);
if(unlikely(!read_proc_uptime_ff)) return 0;
if(unlikely(procfile_lines(read_proc_uptime_ff) < 1)) {
error("/proc/uptime has no lines.");
return 0;
}
if(unlikely(procfile_linewords(read_proc_uptime_ff, 0) < 1)) {
error("/proc/uptime has less than 1 word in it.");
return 0;
}
return (collected_number)(strtold(procfile_lineword(read_proc_uptime_ff, 0, 0), NULL) * 1000.0);
}
inline collected_number uptime_msec(char *filename){
static int use_boottime = -1;
if(unlikely(use_boottime == -1)) {
collected_number uptime_boottime = uptime_from_boottime();
collected_number uptime_proc = read_proc_uptime(filename);
long long delta = (long long)uptime_boottime - (long long)uptime_proc;
if(delta < 0) delta = -delta;
if(delta <= 1000 && uptime_boottime != 0) {
procfile_close(read_proc_uptime_ff);
info("Using now_boottime_usec() for uptime (dt is %lld ms)", delta);
use_boottime = 1;
}
else if(uptime_proc != 0) {
info("Using /proc/uptime for uptime (dt is %lld ms)", delta);
use_boottime = 0;
}
else {
error("Cannot find any way to read uptime on this system.");
return 1;
}
}
collected_number uptime;
if(use_boottime)
uptime = uptime_from_boottime();
else
uptime = read_proc_uptime(filename);
return uptime;
}