netdata/web/api/queries/weights.c

1221 lines
46 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
#include "daemon/common.h"
#include "database/KolmogorovSmirnovDist.h"
#define MAX_POINTS 10000
int enable_metric_correlations = CONFIG_BOOLEAN_YES;
int metric_correlations_version = 1;
WEIGHTS_METHOD default_metric_correlations_method = WEIGHTS_METHOD_MC_KS2;
typedef struct weights_stats {
NETDATA_DOUBLE max_base_high_ratio;
size_t db_points;
size_t result_points;
size_t db_queries;
size_t db_points_per_tier[RRD_STORAGE_TIERS];
size_t binary_searches;
} WEIGHTS_STATS;
// ----------------------------------------------------------------------------
// parse and render metric correlations methods
static struct {
const char *name;
WEIGHTS_METHOD value;
} weights_methods[] = {
{ "ks2" , WEIGHTS_METHOD_MC_KS2}
, { "volume" , WEIGHTS_METHOD_MC_VOLUME}
, { "anomaly-rate" , WEIGHTS_METHOD_ANOMALY_RATE}
, { NULL , 0 }
};
WEIGHTS_METHOD weights_string_to_method(const char *method) {
for(int i = 0; weights_methods[i].name ;i++)
if(strcmp(method, weights_methods[i].name) == 0)
return weights_methods[i].value;
return default_metric_correlations_method;
}
const char *weights_method_to_string(WEIGHTS_METHOD method) {
for(int i = 0; weights_methods[i].name ;i++)
if(weights_methods[i].value == method)
return weights_methods[i].name;
return "unknown";
}
// ----------------------------------------------------------------------------
// The results per dimension are aggregated into a dictionary
typedef enum {
RESULT_IS_BASE_HIGH_RATIO = (1 << 0),
RESULT_IS_PERCENTAGE_OF_TIME = (1 << 1),
} RESULT_FLAGS;
struct register_result {
RESULT_FLAGS flags;
RRDSET *st;
const char *chart_id;
const char *context;
const char *dim_name;
NETDATA_DOUBLE value;
struct register_result *next; // used to link contexts together
};
static void register_result_insert_callback(const char *name, void *value, void *data) {
(void)name;
(void)data;
struct register_result *t = (struct register_result *)value;
if(t->chart_id) t->chart_id = strdupz(t->chart_id);
if(t->context) t->context = strdupz(t->context);
if(t->dim_name) t->dim_name = strdupz(t->dim_name);
}
static void register_result_delete_callback(const char *name, void *value, void *data) {
(void)name;
(void)data;
struct register_result *t = (struct register_result *)value;
freez((void *)t->chart_id);
freez((void *)t->context);
freez((void *)t->dim_name);
}
static DICTIONARY *register_result_init() {
DICTIONARY *results = dictionary_create(DICTIONARY_FLAG_SINGLE_THREADED);
dictionary_register_insert_callback(results, register_result_insert_callback, results);
dictionary_register_delete_callback(results, register_result_delete_callback, results);
return results;
}
static void register_result_destroy(DICTIONARY *results) {
dictionary_destroy(results);
}
static void register_result(DICTIONARY *results,
RRDSET *st,
RRDDIM *d,
NETDATA_DOUBLE value,
RESULT_FLAGS flags,
WEIGHTS_STATS *stats,
bool register_zero) {
if(!netdata_double_isnumber(value)) return;
// make it positive
NETDATA_DOUBLE v = fabsndd(value);
// no need to store zero scored values
if(unlikely(fpclassify(v) == FP_ZERO && !register_zero))
return;
// keep track of the max of the baseline / highlight ratio
if(flags & RESULT_IS_BASE_HIGH_RATIO && v > stats->max_base_high_ratio)
stats->max_base_high_ratio = v;
struct register_result t = {
.flags = flags,
.st = st,
.chart_id = rrdset_id(st),
.context = rrdset_context(st),
.dim_name = rrddim_name(d),
.value = v
};
char buf[5000 + 1];
snprintfz(buf, 5000, "%s:%s", rrdset_id(st), rrddim_name(d));
dictionary_set(results, buf, &t, sizeof(struct register_result));
}
// ----------------------------------------------------------------------------
// Generation of JSON output for the results
static void results_header_to_json(DICTIONARY *results __maybe_unused, BUFFER *wb,
long long after, long long before,
long long baseline_after, long long baseline_before,
long points, WEIGHTS_METHOD method,
RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
size_t examined_dimensions __maybe_unused, usec_t duration,
WEIGHTS_STATS *stats) {
buffer_sprintf(wb, "{\n"
"\t\"after\": %lld,\n"
"\t\"before\": %lld,\n"
"\t\"duration\": %lld,\n"
"\t\"points\": %ld,\n",
after,
before,
before - after,
points
);
if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME)
buffer_sprintf(wb, ""
"\t\"baseline_after\": %lld,\n"
"\t\"baseline_before\": %lld,\n"
"\t\"baseline_duration\": %lld,\n"
"\t\"baseline_points\": %ld,\n",
baseline_after,
baseline_before,
baseline_before - baseline_after,
points << shifts
);
buffer_sprintf(wb, ""
"\t\"statistics\": {\n"
"\t\t\"query_time_ms\": %f,\n"
"\t\t\"db_queries\": %zu,\n"
"\t\t\"query_result_points\": %zu,\n"
"\t\t\"binary_searches\": %zu,\n"
"\t\t\"db_points_read\": %zu,\n"
"\t\t\"db_points_per_tier\": [ ",
(double)duration / (double)USEC_PER_MS,
stats->db_queries,
stats->result_points,
stats->binary_searches,
stats->db_points
);
for(int tier = 0; tier < storage_tiers ;tier++)
buffer_sprintf(wb, "%s%zu", tier?", ":"", stats->db_points_per_tier[tier]);
buffer_sprintf(wb, " ]\n"
"\t},\n"
"\t\"group\": \"%s\",\n"
"\t\"method\": \"%s\",\n"
"\t\"options\": \"",
web_client_api_request_v1_data_group_to_string(group),
weights_method_to_string(method)
);
web_client_api_request_v1_data_options_to_string(wb, options);
}
static size_t registered_results_to_json_charts(DICTIONARY *results, BUFFER *wb,
long long after, long long before,
long long baseline_after, long long baseline_before,
long points, WEIGHTS_METHOD method,
RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
size_t examined_dimensions, usec_t duration,
WEIGHTS_STATS *stats) {
results_header_to_json(results, wb, after, before, baseline_after, baseline_before,
points, method, group, options, shifts, examined_dimensions, duration, stats);
buffer_strcat(wb, "\",\n\t\"correlated_charts\": {\n");
size_t charts = 0, chart_dims = 0, total_dimensions = 0;
struct register_result *t;
RRDSET *last_st = NULL; // never access this - we use it only for comparison
dfe_start_read(results, t) {
if(!last_st || t->st != last_st) {
last_st = t->st;
if(charts) buffer_strcat(wb, "\n\t\t\t}\n\t\t},\n");
buffer_strcat(wb, "\t\t\"");
buffer_strcat(wb, t->chart_id);
buffer_strcat(wb, "\": {\n");
buffer_strcat(wb, "\t\t\t\"context\": \"");
buffer_strcat(wb, t->context);
buffer_strcat(wb, "\",\n\t\t\t\"dimensions\": {\n");
charts++;
chart_dims = 0;
}
if (chart_dims) buffer_sprintf(wb, ",\n");
buffer_sprintf(wb, "\t\t\t\t\"%s\": " NETDATA_DOUBLE_FORMAT, t->dim_name, t->value);
chart_dims++;
total_dimensions++;
}
dfe_done(t);
// close dimensions and chart
if (total_dimensions)
buffer_strcat(wb, "\n\t\t\t}\n\t\t}\n");
// close correlated_charts
buffer_sprintf(wb, "\t},\n"
"\t\"correlated_dimensions\": %zu,\n"
"\t\"total_dimensions_count\": %zu\n"
"}\n",
total_dimensions,
examined_dimensions
);
return total_dimensions;
}
static size_t registered_results_to_json_contexts(DICTIONARY *results, BUFFER *wb,
long long after, long long before,
long long baseline_after, long long baseline_before,
long points, WEIGHTS_METHOD method,
RRDR_GROUPING group, RRDR_OPTIONS options, uint32_t shifts,
size_t examined_dimensions, usec_t duration,
WEIGHTS_STATS *stats) {
results_header_to_json(results, wb, after, before, baseline_after, baseline_before,
points, method, group, options, shifts, examined_dimensions, duration, stats);
DICTIONARY *context_results = dictionary_create(
DICTIONARY_FLAG_SINGLE_THREADED
|DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE
|DICTIONARY_FLAG_NAME_LINK_DONT_CLONE
|DICTIONARY_FLAG_DONT_OVERWRITE_VALUE
);
struct register_result *t;
dfe_start_read(results, t) {
struct register_result *tc = dictionary_set(context_results, t->context, t, sizeof(*t));
if(tc == t)
t->next = NULL;
else {
t->next = tc->next;
tc->next = t;
}
}
dfe_done(t);
buffer_strcat(wb, "\",\n\t\"contexts\": {\n");
size_t contexts = 0, total_dimensions = 0, charts = 0, context_dims = 0, chart_dims = 0;
NETDATA_DOUBLE contexts_total_weight = 0.0, charts_total_weight = 0.0;
RRDSET *last_st = NULL; // never access this - we use it only for comparison
dfe_start_read(context_results, t) {
if(contexts)
buffer_sprintf(wb, "\n\t\t\t\t\t},\n\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n\t\t\t\t}\n\t\t\t},\n\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n\t\t},\n", charts_total_weight / chart_dims, contexts_total_weight / context_dims);
contexts++;
context_dims = 0;
contexts_total_weight = 0.0;
buffer_strcat(wb, "\t\t\"");
buffer_strcat(wb, t->context);
buffer_strcat(wb, "\": {\n\t\t\t\"charts\":{\n");
charts = 0;
chart_dims = 0;
struct register_result *tt;
for(tt = t; tt ; tt = tt->next) {
if(!last_st || tt->st != last_st) {
last_st = tt->st;
if(charts)
buffer_sprintf(wb, "\n\t\t\t\t\t},\n\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n\t\t\t\t},\n", charts_total_weight / chart_dims);
buffer_strcat(wb, "\t\t\t\t\"");
buffer_strcat(wb, tt->chart_id);
buffer_strcat(wb, "\": {\n");
buffer_strcat(wb, "\t\t\t\t\t\"dimensions\": {\n");
charts++;
chart_dims = 0;
charts_total_weight = 0.0;
}
if (chart_dims) buffer_sprintf(wb, ",\n");
buffer_sprintf(wb, "\t\t\t\t\t\t\"%s\": " NETDATA_DOUBLE_FORMAT, tt->dim_name, tt->value);
charts_total_weight += tt->value;
contexts_total_weight += tt->value;
chart_dims++;
context_dims++;
total_dimensions++;
}
}
dfe_done(t);
dictionary_destroy(context_results);
// close dimensions and chart
if (total_dimensions)
buffer_sprintf(wb, "\n\t\t\t\t\t},\n\t\t\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n\t\t\t\t}\n\t\t\t},\n\t\t\t\"weight\":" NETDATA_DOUBLE_FORMAT "\n\t\t}\n", charts_total_weight / chart_dims, contexts_total_weight / context_dims);
// close correlated_charts
buffer_sprintf(wb, "\t},\n"
"\t\"weighted_dimensions\": %zu,\n"
"\t\"total_dimensions_count\": %zu\n"
"}\n",
total_dimensions,
examined_dimensions
);
return total_dimensions;
}
// ----------------------------------------------------------------------------
// KS2 algorithm functions
typedef long int DIFFS_NUMBERS;
#define DOUBLE_TO_INT_MULTIPLIER 100000
static inline int binary_search_bigger_than(const DIFFS_NUMBERS arr[], int left, int size, DIFFS_NUMBERS K) {
// binary search to find the index the smallest index
// of the first value in the array that is greater than K
int right = size;
while(left < right) {
int middle = (int)(((unsigned int)(left + right)) >> 1);
if(arr[middle] > K)
right = middle;
else
left = middle + 1;
}
return left;
}
int compare_diffs(const void *left, const void *right) {
DIFFS_NUMBERS lt = *(DIFFS_NUMBERS *)left;
DIFFS_NUMBERS rt = *(DIFFS_NUMBERS *)right;
// https://stackoverflow.com/a/3886497/1114110
return (lt > rt) - (lt < rt);
}
static size_t calculate_pairs_diff(DIFFS_NUMBERS *diffs, NETDATA_DOUBLE *arr, size_t size) {
NETDATA_DOUBLE *last = &arr[size - 1];
size_t added = 0;
while(last > arr) {
NETDATA_DOUBLE second = *last--;
NETDATA_DOUBLE first = *last;
*diffs++ = (DIFFS_NUMBERS)((first - second) * (NETDATA_DOUBLE)DOUBLE_TO_INT_MULTIPLIER);
added++;
}
return added;
}
static double ks_2samp(DIFFS_NUMBERS baseline_diffs[], int base_size, DIFFS_NUMBERS highlight_diffs[], int high_size, uint32_t base_shifts) {
qsort(baseline_diffs, base_size, sizeof(DIFFS_NUMBERS), compare_diffs);
qsort(highlight_diffs, high_size, sizeof(DIFFS_NUMBERS), compare_diffs);
// Now we should be calculating this:
//
// For each number in the diffs arrays, we should find the index of the
// number bigger than them in both arrays and calculate the % of this index
// vs the total array size. Once we have the 2 percentages, we should find
// the min and max across the delta of all of them.
//
// It should look like this:
//
// base_pcent = binary_search_bigger_than(...) / base_size;
// high_pcent = binary_search_bigger_than(...) / high_size;
// delta = base_pcent - high_pcent;
// if(delta < min) min = delta;
// if(delta > max) max = delta;
//
// This would require a lot of multiplications and divisions.
//
// To speed it up, we do the binary search to find the index of each number
// but then we divide the base index by the power of two number (shifts) it
// is bigger than high index. So the 2 indexes are now comparable.
// We also keep track of the original indexes with min and max, to properly
// calculate their percentages once the loops finish.
// initialize min and max using the first number of baseline_diffs
DIFFS_NUMBERS K = baseline_diffs[0];
int base_idx = binary_search_bigger_than(baseline_diffs, 1, base_size, K);
int high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K);
int delta = base_idx - (high_idx << base_shifts);
int min = delta, max = delta;
int base_min_idx = base_idx;
int base_max_idx = base_idx;
int high_min_idx = high_idx;
int high_max_idx = high_idx;
// do the baseline_diffs starting from 1 (we did position 0 above)
for(int i = 1; i < base_size; i++) {
K = baseline_diffs[i];
base_idx = binary_search_bigger_than(baseline_diffs, i + 1, base_size, K); // starting from i, since data1 is sorted
high_idx = binary_search_bigger_than(highlight_diffs, 0, high_size, K);
delta = base_idx - (high_idx << base_shifts);
if(delta < min) {
min = delta;
base_min_idx = base_idx;
high_min_idx = high_idx;
}
else if(delta > max) {
max = delta;
base_max_idx = base_idx;
high_max_idx = high_idx;
}
}
// do the highlight_diffs starting from 0
for(int i = 0; i < high_size; i++) {
K = highlight_diffs[i];
base_idx = binary_search_bigger_than(baseline_diffs, 0, base_size, K);
high_idx = binary_search_bigger_than(highlight_diffs, i + 1, high_size, K); // starting from i, since data2 is sorted
delta = base_idx - (high_idx << base_shifts);
if(delta < min) {
min = delta;
base_min_idx = base_idx;
high_min_idx = high_idx;
}
else if(delta > max) {
max = delta;
base_max_idx = base_idx;
high_max_idx = high_idx;
}
}
// now we have the min, max and their indexes
// properly calculate min and max as dmin and dmax
double dbase_size = (double)base_size;
double dhigh_size = (double)high_size;
double dmin = ((double)base_min_idx / dbase_size) - ((double)high_min_idx / dhigh_size);
double dmax = ((double)base_max_idx / dbase_size) - ((double)high_max_idx / dhigh_size);
dmin = -dmin;
if(islessequal(dmin, 0.0)) dmin = 0.0;
else if(isgreaterequal(dmin, 1.0)) dmin = 1.0;
double d;
if(isgreaterequal(dmin, dmax)) d = dmin;
else d = dmax;
double en = round(dbase_size * dhigh_size / (dbase_size + dhigh_size));
// under these conditions, KSfbar() crashes
if(unlikely(isnan(en) || isinf(en) || en == 0.0 || isnan(d) || isinf(d)))
return NAN;
return KSfbar((int)en, d);
}
static double kstwo(
NETDATA_DOUBLE baseline[], int baseline_points,
NETDATA_DOUBLE highlight[], int highlight_points, uint32_t base_shifts) {
// -1 in size, since the calculate_pairs_diffs() returns one less point
DIFFS_NUMBERS baseline_diffs[baseline_points - 1];
DIFFS_NUMBERS highlight_diffs[highlight_points - 1];
int base_size = (int)calculate_pairs_diff(baseline_diffs, baseline, baseline_points);
int high_size = (int)calculate_pairs_diff(highlight_diffs, highlight, highlight_points);
if(unlikely(!base_size || !high_size))
return NAN;
if(unlikely(base_size != baseline_points - 1 || high_size != highlight_points - 1)) {
error("Metric correlations: internal error - calculate_pairs_diff() returns the wrong number of entries");
return NAN;
}
return ks_2samp(baseline_diffs, base_size, highlight_diffs, high_size, base_shifts);
}
static int rrdset_metric_correlations_ks2(RRDSET *st, DICTIONARY *results,
long long baseline_after, long long baseline_before,
long long after, long long before,
long long points, RRDR_OPTIONS options,
RRDR_GROUPING group, const char *group_options, int tier,
uint32_t shifts, int timeout,
WEIGHTS_STATS *stats, bool register_zero) {
options |= RRDR_OPTION_NATURAL_POINTS;
long group_time = 0;
struct context_param *context_param_list = NULL;
int examined_dimensions = 0;
RRDR *high_rrdr = NULL;
RRDR *base_rrdr = NULL;
// get first the highlight to find the number of points available
stats->db_queries++;
usec_t started_usec = now_realtime_usec();
ONEWAYALLOC *owa = onewayalloc_create(0);
high_rrdr = rrd2rrdr(owa, st, points,
after, before, group,
group_time, options, NULL, context_param_list, group_options,
timeout, tier);
if(!high_rrdr) {
info("Metric correlations: rrd2rrdr() failed for the highlighted window on chart '%s'.", rrdset_name(st));
goto cleanup;
}
for(int i = 0; i < storage_tiers ;i++)
stats->db_points_per_tier[i] += high_rrdr->internal.tier_points_read[i];
stats->db_points += high_rrdr->internal.db_points_read;
stats->result_points += high_rrdr->internal.result_points_generated;
if(!high_rrdr->d) {
info("Metric correlations: rrd2rrdr() did not return any dimensions on chart '%s'.", rrdset_name(st));
goto cleanup;
}
if(high_rrdr->result_options & RRDR_RESULT_OPTION_CANCEL) {
info("Metric correlations: rrd2rrdr() on highlighted window timed out '%s'.", rrdset_name(st));
goto cleanup;
}
int high_points = rrdr_rows(high_rrdr);
usec_t now_usec = now_realtime_usec();
if(now_usec - started_usec > timeout * USEC_PER_MS)
goto cleanup;
// get the baseline, requesting the same number of points as the highlight
stats->db_queries++;
base_rrdr = rrd2rrdr(owa, st,high_points << shifts,
baseline_after, baseline_before, group,
group_time, options, NULL, context_param_list, group_options,
(int)(timeout - ((now_usec - started_usec) / USEC_PER_MS)), tier);
if(!base_rrdr) {
info("Metric correlations: rrd2rrdr() failed for the baseline window on chart '%s'.", rrdset_name(st));
goto cleanup;
}
for(int i = 0; i < storage_tiers ;i++)
stats->db_points_per_tier[i] += base_rrdr->internal.tier_points_read[i];
stats->db_points += base_rrdr->internal.db_points_read;
stats->result_points += base_rrdr->internal.result_points_generated;
if(!base_rrdr->d) {
info("Metric correlations: rrd2rrdr() did not return any dimensions on chart '%s'.", rrdset_name(st));
goto cleanup;
}
if (base_rrdr->d != high_rrdr->d) {
info("Cannot generate metric correlations for chart '%s' when the baseline and the highlight have different number of dimensions.", rrdset_name(st));
goto cleanup;
}
if(base_rrdr->result_options & RRDR_RESULT_OPTION_CANCEL) {
info("Metric correlations: rrd2rrdr() on baseline window timed out '%s'.", rrdset_name(st));
goto cleanup;
}
int base_points = rrdr_rows(base_rrdr);
now_usec = now_realtime_usec();
if(now_usec - started_usec > timeout * USEC_PER_MS)
goto cleanup;
// we need at least 2 points to do the job
if(base_points < 2 || high_points < 2)
goto cleanup;
// for each dimension
RRDDIM *d;
int i;
for(i = 0, d = base_rrdr->st->dimensions; d && i < base_rrdr->d; i++, d = d->next) {
// skip the not evaluated ones
if(unlikely(base_rrdr->od[i] & RRDR_DIMENSION_HIDDEN) || (high_rrdr->od[i] & RRDR_DIMENSION_HIDDEN))
continue;
examined_dimensions++;
// skip the dimensions that are just zero for both the baseline and the highlight
if(unlikely(!(base_rrdr->od[i] & RRDR_DIMENSION_NONZERO) && !(high_rrdr->od[i] & RRDR_DIMENSION_NONZERO)))
continue;
// copy the baseline points of the dimension to a contiguous array
// there is no need to check for empty values, since empty are already zero
NETDATA_DOUBLE baseline[base_points];
for(int c = 0; c < base_points; c++)
baseline[c] = base_rrdr->v[ c * base_rrdr->d + i ];
// copy the highlight points of the dimension to a contiguous array
// there is no need to check for empty values, since empty values are already zero
// https://github.com/netdata/netdata/blob/6e3144683a73a2024d51425b20ecfd569034c858/web/api/queries/average/average.c#L41-L43
NETDATA_DOUBLE highlight[high_points];
for(int c = 0; c < high_points; c++)
highlight[c] = high_rrdr->v[ c * high_rrdr->d + i ];
stats->binary_searches += 2 * (base_points - 1) + 2 * (high_points - 1);
double prob = kstwo(baseline, base_points, highlight, high_points, shifts);
if(!isnan(prob) && !isinf(prob)) {
// these conditions should never happen, but still let's check
if(unlikely(prob < 0.0)) {
error("Metric correlations: kstwo() returned a negative number: %f", prob);
prob = -prob;
}
if(unlikely(prob > 1.0)) {
error("Metric correlations: kstwo() returned a number above 1.0: %f", prob);
prob = 1.0;
}
// to spread the results evenly, 0.0 needs to be the less correlated and 1.0 the most correlated
// so we flip the result of kstwo()
register_result(results, base_rrdr->st, d, 1.0 - prob, RESULT_IS_BASE_HIGH_RATIO, stats, register_zero);
}
}
cleanup:
rrdr_free(owa, high_rrdr);
rrdr_free(owa, base_rrdr);
onewayalloc_destroy(owa);
return examined_dimensions;
}
// ----------------------------------------------------------------------------
// VOLUME algorithm functions
static int rrdset_metric_correlations_volume(RRDSET *st, DICTIONARY *results,
long long baseline_after, long long baseline_before,
long long after, long long before,
RRDR_OPTIONS options, RRDR_GROUPING group, const char *group_options,
int tier, int timeout,
WEIGHTS_STATS *stats, bool register_zero) {
options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ABSOLUTE | RRDR_OPTION_NATURAL_POINTS;
long group_time = 0;
int examined_dimensions = 0;
int ret, value_is_null;
usec_t started_usec = now_realtime_usec();
RRDDIM *d;
for(d = st->dimensions; d ; d = d->next) {
usec_t now_usec = now_realtime_usec();
if(now_usec - started_usec > timeout * USEC_PER_MS)
return examined_dimensions;
// we count how many metrics we evaluated
examined_dimensions++;
// there is no point to pass a timeout to these queries
// since the query engine checks for a timeout between
// dimensions, and we query a single dimension at a time.
stats->db_queries++;
NETDATA_DOUBLE baseline_average = NAN;
NETDATA_DOUBLE base_anomaly_rate = 0;
value_is_null = 1;
ret = rrdset2value_api_v1(st, NULL, &baseline_average, rrddim_id(d), 1,
baseline_after, baseline_before,
group, group_options, group_time, options,
NULL, NULL,
&stats->db_points, stats->db_points_per_tier,
&stats->result_points,
&value_is_null, &base_anomaly_rate, 0, tier);
if(ret != HTTP_RESP_OK || value_is_null || !netdata_double_isnumber(baseline_average)) {
// this means no data for the baseline window, but we may have data for the highlighted one - assume zero
baseline_average = 0.0;
}
stats->db_queries++;
NETDATA_DOUBLE highlight_average = NAN;
NETDATA_DOUBLE high_anomaly_rate = 0;
value_is_null = 1;
ret = rrdset2value_api_v1(st, NULL, &highlight_average, rrddim_id(d), 1,
after, before,
group, group_options, group_time, options,
NULL, NULL,
&stats->db_points, stats->db_points_per_tier,
&stats->result_points,
&value_is_null, &high_anomaly_rate, 0, tier);
if(ret != HTTP_RESP_OK || value_is_null || !netdata_double_isnumber(highlight_average)) {
// this means no data for the highlighted duration - so skip it
continue;
}
if(baseline_average == highlight_average) {
// they are the same - let's move on
continue;
}
stats->db_queries++;
NETDATA_DOUBLE highlight_countif = NAN;
value_is_null = 1;
char highlighted_countif_options[50 + 1];
snprintfz(highlighted_countif_options, 50, "%s" NETDATA_DOUBLE_FORMAT, highlight_average < baseline_average ? "<":">", baseline_average);
ret = rrdset2value_api_v1(st, NULL, &highlight_countif, rrddim_id(d), 1,
after, before,
RRDR_GROUPING_COUNTIF,highlighted_countif_options,
group_time, options,
NULL, NULL,
&stats->db_points, stats->db_points_per_tier,
&stats->result_points,
&value_is_null, NULL, 0, tier);
if(ret != HTTP_RESP_OK || value_is_null || !netdata_double_isnumber(highlight_countif)) {
info("MC: highlighted countif query failed, but highlighted average worked - strange...");
continue;
}
// this represents the percentage of time
// the highlighted window was above/below the baseline window
// (above or below depending on their averages)
highlight_countif = highlight_countif / 100.0; // countif returns 0 - 100.0
RESULT_FLAGS flags;
NETDATA_DOUBLE pcent = NAN;
if(isgreater(baseline_average, 0.0) || isless(baseline_average, 0.0)) {
flags = RESULT_IS_BASE_HIGH_RATIO;
pcent = (highlight_average - baseline_average) / baseline_average * highlight_countif;
}
else {
flags = RESULT_IS_PERCENTAGE_OF_TIME;
pcent = highlight_countif;
}
register_result(results, st, d, pcent, flags, stats, register_zero);
}
return examined_dimensions;
}
// ----------------------------------------------------------------------------
// ANOMALY RATE algorithm functions
static int rrdset_weights_anomaly_rate(RRDSET *st, DICTIONARY *results,
long long after, long long before,
RRDR_OPTIONS options, RRDR_GROUPING group, const char *group_options,
int tier, int timeout,
WEIGHTS_STATS *stats, bool register_zero) {
options |= RRDR_OPTION_MATCH_IDS | RRDR_OPTION_ANOMALY_BIT | RRDR_OPTION_NATURAL_POINTS;
long group_time = 0;
int examined_dimensions = 0;
int ret, value_is_null;
usec_t started_usec = now_realtime_usec();
RRDDIM *d;
for(d = st->dimensions; d ; d = d->next) {
usec_t now_usec = now_realtime_usec();
if(now_usec - started_usec > timeout * USEC_PER_MS)
return examined_dimensions;
// we count how many metrics we evaluated
examined_dimensions++;
// there is no point to pass a timeout to these queries
// since the query engine checks for a timeout between
// dimensions, and we query a single dimension at a time.
stats->db_queries++;
NETDATA_DOUBLE average = NAN;
NETDATA_DOUBLE anomaly_rate = 0;
value_is_null = 1;
ret = rrdset2value_api_v1(st, NULL, &average, rrddim_id(d), 1,
after, before,
group, group_options, group_time, options,
NULL, NULL,
&stats->db_points, stats->db_points_per_tier,
&stats->result_points,
&value_is_null, &anomaly_rate, 0, tier);
if(ret == HTTP_RESP_OK || !value_is_null || netdata_double_isnumber(average))
register_result(results, st, d, average, 0, stats, register_zero);
}
return examined_dimensions;
}
// ----------------------------------------------------------------------------
int compare_netdata_doubles(const void *left, const void *right) {
NETDATA_DOUBLE lt = *(NETDATA_DOUBLE *)left;
NETDATA_DOUBLE rt = *(NETDATA_DOUBLE *)right;
// https://stackoverflow.com/a/3886497/1114110
return (lt > rt) - (lt < rt);
}
static inline int binary_search_bigger_than_netdata_double(const NETDATA_DOUBLE arr[], int left, int size, NETDATA_DOUBLE K) {
// binary search to find the index the smallest index
// of the first value in the array that is greater than K
int right = size;
while(left < right) {
int middle = (int)(((unsigned int)(left + right)) >> 1);
if(arr[middle] > K)
right = middle;
else
left = middle + 1;
}
return left;
}
// ----------------------------------------------------------------------------
// spread the results evenly according to their value
static size_t spread_results_evenly(DICTIONARY *results, WEIGHTS_STATS *stats) {
struct register_result *t;
// count the dimensions
size_t dimensions = dictionary_stats_entries(results);
if(!dimensions) return 0;
if(stats->max_base_high_ratio == 0.0)
stats->max_base_high_ratio = 1.0;
// create an array of the right size and copy all the values in it
NETDATA_DOUBLE slots[dimensions];
dimensions = 0;
dfe_start_read(results, t) {
if(t->flags & (RESULT_IS_PERCENTAGE_OF_TIME))
t->value = t->value * stats->max_base_high_ratio;
slots[dimensions++] = t->value;
}
dfe_done(t);
// sort the array with the values of all dimensions
qsort(slots, dimensions, sizeof(NETDATA_DOUBLE), compare_netdata_doubles);
// skip the duplicates in the sorted array
NETDATA_DOUBLE last_value = NAN;
size_t unique_values = 0;
for(size_t i = 0; i < dimensions ;i++) {
if(likely(slots[i] != last_value))
slots[unique_values++] = last_value = slots[i];
}
// this cannot happen, but coverity thinks otherwise...
if(!unique_values)
unique_values = dimensions;
// calculate the weight of each slot, using the number of unique values
NETDATA_DOUBLE slot_weight = 1.0 / (NETDATA_DOUBLE)unique_values;
dfe_start_read(results, t) {
int slot = binary_search_bigger_than_netdata_double(slots, 0, (int)unique_values, t->value);
NETDATA_DOUBLE v = slot * slot_weight;
if(unlikely(v > 1.0)) v = 1.0;
v = 1.0 - v;
t->value = v;
}
dfe_done(t);
return dimensions;
}
// ----------------------------------------------------------------------------
// The main function
int web_api_v1_weights(RRDHOST *host, BUFFER *wb, WEIGHTS_METHOD method, WEIGHTS_FORMAT format,
RRDR_GROUPING group, const char *group_options,
long long baseline_after, long long baseline_before,
long long after, long long before,
long long points, RRDR_OPTIONS options, SIMPLE_PATTERN *contexts, int tier, int timeout) {
WEIGHTS_STATS stats = {};
DICTIONARY *results = register_result_init();
DICTIONARY *charts = dictionary_create(DICTIONARY_FLAG_SINGLE_THREADED|DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE);;
char *error = NULL;
int resp = HTTP_RESP_OK;
// if the user didn't give a timeout
// assume 60 seconds
if(!timeout)
timeout = 60 * MSEC_PER_SEC;
// if the timeout is less than 1 second
// make it at least 1 second
if(timeout < (long)(1 * MSEC_PER_SEC))
timeout = 1 * MSEC_PER_SEC;
usec_t timeout_usec = timeout * USEC_PER_MS;
usec_t started_usec = now_realtime_usec();
if(!rrdr_relative_window_to_absolute(&after, &before))
buffer_no_cacheable(wb);
if (before <= after) {
resp = HTTP_RESP_BAD_REQUEST;
error = "Invalid selected time-range.";
goto cleanup;
}
uint32_t shifts = 0;
if(method == WEIGHTS_METHOD_MC_KS2 || method == WEIGHTS_METHOD_MC_VOLUME) {
if(!points) points = 500;
if(baseline_before <= API_RELATIVE_TIME_MAX)
baseline_before += after;
rrdr_relative_window_to_absolute(&baseline_after, &baseline_before);
if (baseline_before <= baseline_after) {
resp = HTTP_RESP_BAD_REQUEST;
error = "Invalid baseline time-range.";
goto cleanup;
}
// baseline should be a power of two multiple of highlight
long long base_delta = baseline_before - baseline_after;
long long high_delta = before - after;
uint32_t multiplier = (uint32_t)round((double)base_delta / (double)high_delta);
// check if the multiplier is a power of two
// https://stackoverflow.com/a/600306/1114110
if((multiplier & (multiplier - 1)) != 0) {
// it is not power of two
// let's find the closest power of two
// https://stackoverflow.com/a/466242/1114110
multiplier--;
multiplier |= multiplier >> 1;
multiplier |= multiplier >> 2;
multiplier |= multiplier >> 4;
multiplier |= multiplier >> 8;
multiplier |= multiplier >> 16;
multiplier++;
}
// convert the multiplier to the number of shifts
// we need to do, to divide baseline numbers to match
// the highlight ones
while(multiplier > 1) {
shifts++;
multiplier = multiplier >> 1;
}
// if the baseline size will not comply to MAX_POINTS
// lower the window of the baseline
while(shifts && (points << shifts) > MAX_POINTS)
shifts--;
// if the baseline size still does not comply to MAX_POINTS
// lower the resolution of the highlight and the baseline
while((points << shifts) > MAX_POINTS)
points = points >> 1;
if(points < 15) {
resp = HTTP_RESP_BAD_REQUEST;
error = "Too few points available, at least 15 are needed.";
goto cleanup;
}
// adjust the baseline to be multiplier times bigger than the highlight
baseline_after = baseline_before - (high_delta << shifts);
}
// dont lock here and wait for results
// get the charts and run mc after
RRDSET *st;
rrdhost_rdlock(host);
rrdset_foreach_read(st, host) {
if (rrdset_is_available_for_viewers(st)) {
if(!contexts || simple_pattern_matches(contexts, rrdset_context(st)))
dictionary_set(charts, rrdset_name(st), NULL, 0);
}
}
rrdhost_unlock(host);
size_t examined_dimensions = 0;
void *ptr;
bool register_zero = true;
if(options & RRDR_OPTION_NONZERO) {
register_zero = false;
options &= ~RRDR_OPTION_NONZERO;
}
// for every chart in the dictionary
dfe_start_read(charts, ptr) {
usec_t now_usec = now_realtime_usec();
if(now_usec - started_usec > timeout_usec) {
error = "timed out";
resp = HTTP_RESP_GATEWAY_TIMEOUT;
goto cleanup;
}
st = rrdset_find_byname(host, ptr_name);
if(!st) continue;
rrdset_rdlock(st);
switch(method) {
case WEIGHTS_METHOD_ANOMALY_RATE:
options |= RRDR_OPTION_ANOMALY_BIT;
points = 1;
examined_dimensions += rrdset_weights_anomaly_rate(st, results,
after, before,
options, group, group_options, tier,
(int)(timeout - ((now_usec - started_usec) / USEC_PER_MS)),
&stats, register_zero);
break;
case WEIGHTS_METHOD_MC_VOLUME:
points = 1;
examined_dimensions += rrdset_metric_correlations_volume(st, results,
baseline_after, baseline_before,
after, before,
options, group, group_options, tier,
(int)(timeout - ((now_usec - started_usec) / USEC_PER_MS)),
&stats, register_zero);
break;
default:
case WEIGHTS_METHOD_MC_KS2:
examined_dimensions += rrdset_metric_correlations_ks2(st, results,
baseline_after, baseline_before,
after, before,
points, options, group, group_options, tier, shifts,
(int)(timeout - ((now_usec - started_usec) / USEC_PER_MS)),
&stats, register_zero);
break;
}
rrdset_unlock(st);
}
dfe_done(ptr);
if(!register_zero)
options |= RRDR_OPTION_NONZERO;
if(!(options & RRDR_OPTION_RETURN_RAW))
spread_results_evenly(results, &stats);
usec_t ended_usec = now_realtime_usec();
// generate the json output we need
buffer_flush(wb);
size_t added_dimensions = 0;
switch(format) {
case WEIGHTS_FORMAT_CHARTS:
added_dimensions = registered_results_to_json_charts(results, wb,
after, before,
baseline_after, baseline_before,
points, method, group, options, shifts,
examined_dimensions,
ended_usec - started_usec, &stats);
break;
default:
case WEIGHTS_FORMAT_CONTEXTS:
added_dimensions = registered_results_to_json_contexts(results, wb,
after, before,
baseline_after, baseline_before,
points, method, group, options, shifts,
examined_dimensions,
ended_usec - started_usec, &stats);
break;
}
if(!added_dimensions) {
error = "no results produced.";
resp = HTTP_RESP_NOT_FOUND;
}
cleanup:
if(charts) dictionary_destroy(charts);
if(results) register_result_destroy(results);
if(error) {
buffer_flush(wb);
buffer_sprintf(wb, "{\"error\": \"%s\" }", error);
}
return resp;
}
// ----------------------------------------------------------------------------
// unittest
/*
Unit tests against the output of this:
https://github.com/scipy/scipy/blob/4cf21e753cf937d1c6c2d2a0e372fbc1dbbeea81/scipy/stats/_stats_py.py#L7275-L7449
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import scipy as sp
from scipy import stats
data1 = np.array([ 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 ])
data2 = np.array([365, -123, 0])
data1 = np.sort(data1)
data2 = np.sort(data2)
n1 = data1.shape[0]
n2 = data2.shape[0]
data_all = np.concatenate([data1, data2])
cdf1 = np.searchsorted(data1, data_all, side='right') / n1
cdf2 = np.searchsorted(data2, data_all, side='right') / n2
print(data_all)
print("\ndata1", data1, cdf1)
print("\ndata2", data2, cdf2)
cddiffs = cdf1 - cdf2
print("\ncddiffs", cddiffs)
minS = np.clip(-np.min(cddiffs), 0, 1)
maxS = np.max(cddiffs)
print("\nmin", minS)
print("max", maxS)
m, n = sorted([float(n1), float(n2)], reverse=True)
en = m * n / (m + n)
d = max(minS, maxS)
prob = stats.distributions.kstwo.sf(d, np.round(en))
print("\nprob", prob)
*/
static int double_expect(double v, const char *str, const char *descr) {
char buf[100 + 1];
snprintfz(buf, 100, "%0.6f", v);
int ret = strcmp(buf, str) ? 1 : 0;
fprintf(stderr, "%s %s, expected %s, got %s\n", ret?"FAILED":"OK", descr, str, buf);
return ret;
}
static int mc_unittest1(void) {
int bs = 3, hs = 3;
DIFFS_NUMBERS base[3] = { 1, 2, 3 };
DIFFS_NUMBERS high[3] = { 3, 4, 6 };
double prob = ks_2samp(base, bs, high, hs, 0);
return double_expect(prob, "0.222222", "3x3");
}
static int mc_unittest2(void) {
int bs = 6, hs = 3;
DIFFS_NUMBERS base[6] = { 1, 2, 3, 10, 10, 15 };
DIFFS_NUMBERS high[3] = { 3, 4, 6 };
double prob = ks_2samp(base, bs, high, hs, 1);
return double_expect(prob, "0.500000", "6x3");
}
static int mc_unittest3(void) {
int bs = 12, hs = 3;
DIFFS_NUMBERS base[12] = { 1, 2, 3, 10, 10, 15, 111, 19999, 8, 55, -1, -73 };
DIFFS_NUMBERS high[3] = { 3, 4, 6 };
double prob = ks_2samp(base, bs, high, hs, 2);
return double_expect(prob, "0.347222", "12x3");
}
static int mc_unittest4(void) {
int bs = 12, hs = 3;
DIFFS_NUMBERS base[12] = { 1111, -2222, 33, 100, 100, 15555, -1, 19999, 888, 755, -1, -730 };
DIFFS_NUMBERS high[3] = { 365, -123, 0 };
double prob = ks_2samp(base, bs, high, hs, 2);
return double_expect(prob, "0.777778", "12x3");
}
int mc_unittest(void) {
int errors = 0;
errors += mc_unittest1();
errors += mc_unittest2();
errors += mc_unittest3();
errors += mc_unittest4();
return errors;
}