netdata/libnetdata/dictionary/dictionary.c

2635 lines
97 KiB
C

// SPDX-License-Identifier: GPL-3.0-or-later
// NOT TO BE USED BY USERS
#define DICTIONARY_FLAG_EXCLUSIVE_ACCESS (1 << 28) // there is only one thread accessing the dictionary
#define DICTIONARY_FLAG_DESTROYED (1 << 29) // this dictionary has been destroyed
#define DICTIONARY_FLAG_DEFER_ALL_DELETIONS (1 << 30) // defer all deletions of items in the dictionary
// our reserved flags that cannot be set by users
#define DICTIONARY_FLAGS_RESERVED (DICTIONARY_FLAG_EXCLUSIVE_ACCESS|DICTIONARY_FLAG_DESTROYED|DICTIONARY_FLAG_DEFER_ALL_DELETIONS)
#define DICTIONARY_INTERNALS
#include "../libnetdata.h"
#include <Judy.h>
typedef enum name_value_flags {
NAME_VALUE_FLAG_NONE = 0,
NAME_VALUE_FLAG_NAME_IS_ALLOCATED = (1 << 0), // the name pointer is a STRING
NAME_VALUE_FLAG_DELETED = (1 << 1), // this item is deleted, so it is not available for traversal
NAME_VALUE_FLAG_NEW_OR_UPDATED = (1 << 2), // this item is new or just updated (used by the react callback)
// IMPORTANT: IF YOU ADD ANOTHER FLAG, YOU NEED TO ALLOCATE ANOTHER BIT TO FLAGS IN NAME_VALUE !!!
} NAME_VALUE_FLAGS;
/*
* Every item in the dictionary has the following structure.
*/
typedef struct name_value {
#ifdef NETDATA_INTERNAL_CHECKS
DICTIONARY *dict;
#endif
struct name_value *next; // a double linked list to allow fast insertions and deletions
struct name_value *prev;
uint32_t refcount; // the reference counter
uint32_t value_len:29; // the size of the value (assumed binary)
uint8_t flags:3; // the flags for this item
void *value; // the value of the dictionary item
union {
STRING *string_name; // the name of the dictionary item
char *caller_name; // the user supplied string pointer
};
} NAME_VALUE;
struct dictionary {
#ifdef NETDATA_INTERNAL_CHECKS
const char *creation_function;
const char *creation_file;
size_t creation_line;
#endif
DICTIONARY_FLAGS flags; // the flags of the dictionary
NAME_VALUE *first_item; // the double linked list base pointers
NAME_VALUE *last_item;
Pvoid_t JudyHSArray; // the hash table
netdata_rwlock_t rwlock; // the r/w lock when DICTIONARY_FLAG_SINGLE_THREADED is not set
void (*ins_callback)(const char *name, void *value, void *data);
void *ins_callback_data;
void (*react_callback)(const char *name, void *value, void *data);
void *react_callback_data;
void (*del_callback)(const char *name, void *value, void *data);
void *del_callback_data;
void (*conflict_callback)(const char *name, void *old_value, void *new_value, void *data);
void *conflict_callback_data;
size_t version; // the current version of the dictionary
size_t inserts; // how many index insertions have been performed
size_t deletes; // how many index deletions have been performed
size_t searches; // how many index searches have been performed
size_t resets; // how many times items have reset their values
size_t walkthroughs; // how many walkthroughs have been done
long int memory; // how much memory the dictionary has currently allocated
long int entries; // how many items are currently in the index (the linked list may have more)
long int referenced_items; // how many items of the dictionary are currently being used by 3rd parties
long int pending_deletion_items; // how many items of the dictionary have been deleted, but have not been removed yet
int readers; // how many readers are currently using the dictionary
int writers; // how many writers are currently using the dictionary
size_t scratchpad_size; // the size of the scratchpad in bytes
uint8_t scratchpad[]; // variable size scratchpad requested by the caller
};
static inline void linkedlist_namevalue_unlink_unsafe(DICTIONARY *dict, NAME_VALUE *nv);
static size_t namevalue_destroy_unsafe(DICTIONARY *dict, NAME_VALUE *nv);
static inline const char *namevalue_get_name(NAME_VALUE *nv);
// ----------------------------------------------------------------------------
// callbacks registration
void dictionary_register_insert_callback(DICTIONARY *dict, void (*ins_callback)(const char *name, void *value, void *data), void *data) {
dict->ins_callback = ins_callback;
dict->ins_callback_data = data;
}
void dictionary_register_delete_callback(DICTIONARY *dict, void (*del_callback)(const char *name, void *value, void *data), void *data) {
dict->del_callback = del_callback;
dict->del_callback_data = data;
}
void dictionary_register_conflict_callback(DICTIONARY *dict, void (*conflict_callback)(const char *name, void *old_value, void *new_value, void *data), void *data) {
dict->conflict_callback = conflict_callback;
dict->conflict_callback_data = data;
}
void dictionary_register_react_callback(DICTIONARY *dict, void (*react_callback)(const char *name, void *value, void *data), void *data) {
dict->react_callback = react_callback;
dict->react_callback_data = data;
}
// ----------------------------------------------------------------------------
// dictionary statistics maintenance
long int dictionary_stats_allocated_memory(DICTIONARY *dict) {
return dict->memory;
}
long int dictionary_stats_entries(DICTIONARY *dict) {
return dict->entries;
}
size_t dictionary_stats_version(DICTIONARY *dict) {
return dict->version;
}
size_t dictionary_stats_searches(DICTIONARY *dict) {
return dict->searches;
}
size_t dictionary_stats_inserts(DICTIONARY *dict) {
return dict->inserts;
}
size_t dictionary_stats_deletes(DICTIONARY *dict) {
return dict->deletes;
}
size_t dictionary_stats_resets(DICTIONARY *dict) {
return dict->resets;
}
size_t dictionary_stats_walkthroughs(DICTIONARY *dict) {
return dict->walkthroughs;
}
size_t dictionary_stats_referenced_items(DICTIONARY *dict) {
return __atomic_load_n(&dict->referenced_items, __ATOMIC_SEQ_CST);
}
static inline void DICTIONARY_STATS_SEARCHES_PLUS1(DICTIONARY *dict) {
if(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS) {
dict->searches++;
}
else {
__atomic_fetch_add(&dict->searches, 1, __ATOMIC_RELAXED);
}
}
static inline void DICTIONARY_STATS_ENTRIES_PLUS1(DICTIONARY *dict, size_t size) {
if(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS) {
dict->version++;
dict->inserts++;
dict->entries++;
dict->memory += (long)size;
}
else {
__atomic_fetch_add(&dict->version, 1, __ATOMIC_SEQ_CST);
__atomic_fetch_add(&dict->inserts, 1, __ATOMIC_RELAXED);
__atomic_fetch_add(&dict->entries, 1, __ATOMIC_RELAXED);
__atomic_fetch_add(&dict->memory, (long)size, __ATOMIC_RELAXED);
}
}
static inline void DICTIONARY_STATS_ENTRIES_MINUS1(DICTIONARY *dict) {
if(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS) {
dict->version++;
dict->deletes++;
dict->entries--;
}
else {
__atomic_fetch_add(&dict->version, 1, __ATOMIC_SEQ_CST);
__atomic_fetch_add(&dict->deletes, 1, __ATOMIC_RELAXED);
__atomic_fetch_sub(&dict->entries, 1, __ATOMIC_RELAXED);
}
}
static inline void DICTIONARY_STATS_ENTRIES_MINUS_MEMORY(DICTIONARY *dict, size_t size) {
if(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS) {
dict->memory -= (long)size;
}
else {
__atomic_fetch_sub(&dict->memory, (long)size, __ATOMIC_RELAXED);
}
}
static inline void DICTIONARY_STATS_VALUE_RESETS_PLUS1(DICTIONARY *dict, size_t oldsize, size_t newsize) {
if(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS) {
dict->version++;
dict->resets++;
dict->memory += (long)newsize;
dict->memory -= (long)oldsize;
}
else {
__atomic_fetch_add(&dict->version, 1, __ATOMIC_SEQ_CST);
__atomic_fetch_add(&dict->resets, 1, __ATOMIC_RELAXED);
__atomic_fetch_add(&dict->memory, (long)newsize, __ATOMIC_RELAXED);
__atomic_fetch_sub(&dict->memory, (long)oldsize, __ATOMIC_RELAXED);
}
}
static inline void DICTIONARY_STATS_WALKTHROUGHS_PLUS1(DICTIONARY *dict) {
if(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS) {
dict->walkthroughs++;
}
else {
__atomic_fetch_add(&dict->walkthroughs, 1, __ATOMIC_RELAXED);
}
}
static inline size_t DICTIONARY_STATS_REFERENCED_ITEMS_PLUS1(DICTIONARY *dict) {
return __atomic_add_fetch(&dict->referenced_items, 1, __ATOMIC_SEQ_CST);
}
static inline size_t DICTIONARY_STATS_REFERENCED_ITEMS_MINUS1(DICTIONARY *dict) {
return __atomic_sub_fetch(&dict->referenced_items, 1, __ATOMIC_SEQ_CST);
}
static inline size_t DICTIONARY_STATS_PENDING_DELETES_PLUS1(DICTIONARY *dict) {
return __atomic_add_fetch(&dict->pending_deletion_items, 1, __ATOMIC_SEQ_CST);
}
static inline size_t DICTIONARY_STATS_PENDING_DELETES_MINUS1(DICTIONARY *dict) {
return __atomic_sub_fetch(&dict->pending_deletion_items, 1, __ATOMIC_SEQ_CST);
}
static inline size_t DICTIONARY_STATS_PENDING_DELETES_GET(DICTIONARY *dict) {
return __atomic_load_n(&dict->pending_deletion_items, __ATOMIC_SEQ_CST);
}
static inline int DICTIONARY_NAME_VALUE_REFCOUNT_GET(NAME_VALUE *nv) {
return __atomic_load_n(&nv->refcount, __ATOMIC_SEQ_CST);
}
// ----------------------------------------------------------------------------
// garbage collector
// it is called every time someone gets a write lock to the dictionary
static void garbage_collect_pending_deletes_unsafe(DICTIONARY *dict) {
if(!(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS)) return;
if(likely(!DICTIONARY_STATS_PENDING_DELETES_GET(dict))) return;
NAME_VALUE *nv = dict->first_item;
while(nv) {
if((nv->flags & NAME_VALUE_FLAG_DELETED) && DICTIONARY_NAME_VALUE_REFCOUNT_GET(nv) == 0) {
NAME_VALUE *nv_next = nv->next;
linkedlist_namevalue_unlink_unsafe(dict, nv);
namevalue_destroy_unsafe(dict, nv);
size_t pending = DICTIONARY_STATS_PENDING_DELETES_MINUS1(dict);
if(!pending) break;
nv = nv_next;
}
else
nv = nv->next;
}
}
// ----------------------------------------------------------------------------
// dictionary locks
static inline size_t dictionary_lock_init(DICTIONARY *dict) {
if(likely(!(dict->flags & DICTIONARY_FLAG_SINGLE_THREADED))) {
netdata_rwlock_init(&dict->rwlock);
if(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS)
dict->flags &= ~DICTIONARY_FLAG_EXCLUSIVE_ACCESS;
return 0;
}
// we are single threaded
dict->flags |= DICTIONARY_FLAG_EXCLUSIVE_ACCESS;
return 0;
}
static inline size_t dictionary_lock_free(DICTIONARY *dict) {
if(likely(!(dict->flags & DICTIONARY_FLAG_SINGLE_THREADED))) {
netdata_rwlock_destroy(&dict->rwlock);
return 0;
}
return 0;
}
static void dictionary_lock(DICTIONARY *dict, char rw) {
if(rw == DICTIONARY_LOCK_NONE || rw == 'U') return;
if(rw == DICTIONARY_LOCK_READ || rw == DICTIONARY_LOCK_REENTRANT || rw == 'R') {
// read lock
__atomic_add_fetch(&dict->readers, 1, __ATOMIC_RELAXED);
}
else {
// write lock
__atomic_add_fetch(&dict->writers, 1, __ATOMIC_RELAXED);
}
if(likely(dict->flags & DICTIONARY_FLAG_SINGLE_THREADED))
return;
if(rw == DICTIONARY_LOCK_READ || rw == DICTIONARY_LOCK_REENTRANT || rw == 'R') {
// read lock
netdata_rwlock_rdlock(&dict->rwlock);
if(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS) {
internal_error(true, "DICTIONARY: left-over exclusive access to dictionary created by %s (%zu@%s) found", dict->creation_function, dict->creation_line, dict->creation_file);
dict->flags &= ~DICTIONARY_FLAG_EXCLUSIVE_ACCESS;
}
}
else {
// write lock
netdata_rwlock_wrlock(&dict->rwlock);
dict->flags |= DICTIONARY_FLAG_EXCLUSIVE_ACCESS;
}
}
static void dictionary_unlock(DICTIONARY *dict, char rw) {
if(rw == DICTIONARY_LOCK_NONE || rw == 'U') return;
if(rw == DICTIONARY_LOCK_READ || rw == DICTIONARY_LOCK_REENTRANT || rw == 'R') {
// read unlock
__atomic_sub_fetch(&dict->readers, 1, __ATOMIC_RELAXED);
}
else {
// write unlock
garbage_collect_pending_deletes_unsafe(dict);
__atomic_sub_fetch(&dict->writers, 1, __ATOMIC_RELAXED);
}
if(likely(dict->flags & DICTIONARY_FLAG_SINGLE_THREADED))
return;
if(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS)
dict->flags &= ~DICTIONARY_FLAG_EXCLUSIVE_ACCESS;
netdata_rwlock_unlock(&dict->rwlock);
}
// ----------------------------------------------------------------------------
// deferred deletions
void dictionary_defer_all_deletions_unsafe(DICTIONARY *dict, char rw) {
if(rw == 'r' || rw == 'R') {
// read locked - no need to defer deletions
;
}
else {
// write locked - defer deletions
dict->flags |= DICTIONARY_FLAG_DEFER_ALL_DELETIONS;
}
}
void dictionary_restore_all_deletions_unsafe(DICTIONARY *dict, char rw) {
if(rw == 'r' || rw == 'R') {
// read locked - no need to defer deletions
internal_error(dict->flags & DICTIONARY_FLAG_DEFER_ALL_DELETIONS, "DICTIONARY: deletions are deferred on a read lock");
}
else {
// write locked - defer deletions
if(dict->flags & DICTIONARY_FLAG_DEFER_ALL_DELETIONS)
dict->flags &= ~DICTIONARY_FLAG_DEFER_ALL_DELETIONS;
}
}
// ----------------------------------------------------------------------------
// reference counters
static inline size_t reference_counter_init(DICTIONARY *dict) {
(void)dict;
// allocate memory required for reference counters
// return number of bytes
return 0;
}
static inline size_t reference_counter_free(DICTIONARY *dict) {
(void)dict;
// free memory required for reference counters
// return number of bytes
return 0;
}
static int reference_counter_increase(NAME_VALUE *nv) {
int refcount = __atomic_add_fetch(&nv->refcount, 1, __ATOMIC_SEQ_CST);
if(refcount == 1)
fatal("DICTIONARY: request to dup item '%s' but its reference counter was zero", namevalue_get_name(nv));
return refcount;
}
static int reference_counter_acquire(DICTIONARY *dict, NAME_VALUE *nv) {
int refcount;
if(likely(dict->flags & DICTIONARY_FLAG_SINGLE_THREADED))
refcount = ++nv->refcount;
else
refcount = __atomic_add_fetch(&nv->refcount, 1, __ATOMIC_SEQ_CST);
if(refcount == 1) {
// referenced items counts number of unique items referenced
// so, we increase it only when refcount == 1
DICTIONARY_STATS_REFERENCED_ITEMS_PLUS1(dict);
// if this is a deleted item, but the counter increased to 1
// we need to remove it from the pending items to delete
if (nv->flags & NAME_VALUE_FLAG_DELETED)
DICTIONARY_STATS_PENDING_DELETES_MINUS1(dict);
}
return refcount;
}
static uint32_t reference_counter_release(DICTIONARY *dict, NAME_VALUE *nv, bool can_get_write_lock) {
// this function may be called without any lock on the dictionary
// or even when someone else has a write lock on the dictionary
// so, we cannot check for EXCLUSIVE ACCESS
uint32_t refcount;
if(likely(dict->flags & DICTIONARY_FLAG_SINGLE_THREADED))
refcount = nv->refcount--;
else
refcount = __atomic_fetch_sub(&nv->refcount, 1, __ATOMIC_SEQ_CST);
if(refcount == 0) {
internal_error(true, "DICTIONARY: attempted to release item without references: '%s' on dictionary created by %s() (%zu@%s)", namevalue_get_name(nv), dict->creation_function, dict->creation_line, dict->creation_file);
fatal("DICTIONARY: attempted to release item without references: '%s'", namevalue_get_name(nv));
}
if(refcount == 1) {
if((nv->flags & NAME_VALUE_FLAG_DELETED))
DICTIONARY_STATS_PENDING_DELETES_PLUS1(dict);
// referenced items counts number of unique items referenced
// so, we decrease it only when refcount == 0
DICTIONARY_STATS_REFERENCED_ITEMS_MINUS1(dict);
}
if(can_get_write_lock && DICTIONARY_STATS_PENDING_DELETES_GET(dict)) {
// we can garbage collect now
dictionary_lock(dict, DICTIONARY_LOCK_WRITE);
garbage_collect_pending_deletes_unsafe(dict);
dictionary_unlock(dict, DICTIONARY_LOCK_WRITE);
}
return refcount;
}
// ----------------------------------------------------------------------------
// hash table
static void hashtable_init_unsafe(DICTIONARY *dict) {
dict->JudyHSArray = NULL;
}
static size_t hashtable_destroy_unsafe(DICTIONARY *dict) {
if(unlikely(!dict->JudyHSArray)) return 0;
JError_t J_Error;
Word_t ret = JudyHSFreeArray(&dict->JudyHSArray, &J_Error);
if(unlikely(ret == (Word_t) JERR)) {
error("DICTIONARY: Cannot destroy JudyHS, JU_ERRNO_* == %u, ID == %d",
JU_ERRNO(&J_Error), JU_ERRID(&J_Error));
}
debug(D_DICTIONARY, "Dictionary: hash table freed %lu bytes", ret);
dict->JudyHSArray = NULL;
return (size_t)ret;
}
static inline void **hashtable_insert_unsafe(DICTIONARY *dict, const char *name, size_t name_len) {
internal_error(!(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS), "DICTIONARY: inserting item from the index without exclusive access to the dictionary created by %s() (%zu@%s)", dict->creation_function, dict->creation_line, dict->creation_file);
JError_t J_Error;
Pvoid_t *Rc = JudyHSIns(&dict->JudyHSArray, (void *)name, name_len, &J_Error);
if (unlikely(Rc == PJERR)) {
fatal("DICTIONARY: Cannot insert entry with name '%s' to JudyHS, JU_ERRNO_* == %u, ID == %d",
name, JU_ERRNO(&J_Error), JU_ERRID(&J_Error));
}
// if *Rc == 0, new item added to the array
// otherwise the existing item value is returned in *Rc
// we return a pointer to a pointer, so that the caller can
// put anything needed at the value of the index.
// The pointer to pointer we return has to be used before
// any other operation that may change the index (insert/delete).
return Rc;
}
static inline int hashtable_delete_unsafe(DICTIONARY *dict, const char *name, size_t name_len, void *nv) {
internal_error(!(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS), "DICTIONARY: deleting item from the index without exclusive access to the dictionary created by %s() (%zu@%s)", dict->creation_function, dict->creation_line, dict->creation_file);
(void)nv;
if(unlikely(!dict->JudyHSArray)) return 0;
JError_t J_Error;
int ret = JudyHSDel(&dict->JudyHSArray, (void *)name, name_len, &J_Error);
if(unlikely(ret == JERR)) {
error("DICTIONARY: Cannot delete entry with name '%s' from JudyHS, JU_ERRNO_* == %u, ID == %d", name,
JU_ERRNO(&J_Error), JU_ERRID(&J_Error));
return 0;
}
// Hey, this is problematic! We need the value back, not just an int with a status!
// https://sourceforge.net/p/judy/feature-requests/23/
if(unlikely(ret == 0)) {
// not found in the dictionary
return 0;
}
else {
// found and deleted from the dictionary
return 1;
}
}
static inline NAME_VALUE *hashtable_get_unsafe(DICTIONARY *dict, const char *name, size_t name_len) {
if(unlikely(!dict->JudyHSArray)) return NULL;
DICTIONARY_STATS_SEARCHES_PLUS1(dict);
Pvoid_t *Rc;
Rc = JudyHSGet(dict->JudyHSArray, (void *)name, name_len);
if(likely(Rc)) {
// found in the hash table
return (NAME_VALUE *)*Rc;
}
else {
// not found in the hash table
return NULL;
}
}
static inline void hashtable_inserted_name_value_unsafe(DICTIONARY *dict, void *nv) {
(void)dict;
(void)nv;
;
}
// ----------------------------------------------------------------------------
// linked list management
static inline void linkedlist_namevalue_link_unsafe(DICTIONARY *dict, NAME_VALUE *nv) {
internal_error(!(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS), "DICTIONARY: adding item to the linked-list without exclusive access to the dictionary created by %s() (%zu@%s)", dict->creation_function, dict->creation_line, dict->creation_file);
if (unlikely(!dict->first_item)) {
// we are the only ones here
nv->next = NULL;
nv->prev = NULL;
dict->first_item = dict->last_item = nv;
return;
}
if(dict->flags & DICTIONARY_FLAG_ADD_IN_FRONT) {
// add it at the beginning
nv->prev = NULL;
nv->next = dict->first_item;
if (likely(nv->next)) nv->next->prev = nv;
dict->first_item = nv;
}
else {
// add it at the end
nv->next = NULL;
nv->prev = dict->last_item;
if (likely(nv->prev)) nv->prev->next = nv;
dict->last_item = nv;
}
}
static inline void linkedlist_namevalue_unlink_unsafe(DICTIONARY *dict, NAME_VALUE *nv) {
internal_error(!(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS), "DICTIONARY: removing item from the linked-list without exclusive access to the dictionary created by %s() (%zu@%s)", dict->creation_function, dict->creation_line, dict->creation_file);
if(nv->next) nv->next->prev = nv->prev;
if(nv->prev) nv->prev->next = nv->next;
if(dict->first_item == nv) dict->first_item = nv->next;
if(dict->last_item == nv) dict->last_item = nv->prev;
}
// ----------------------------------------------------------------------------
// NAME_VALUE methods
static inline size_t namevalue_set_name(DICTIONARY *dict, NAME_VALUE *nv, const char *name, size_t name_len) {
if(likely(dict->flags & DICTIONARY_FLAG_NAME_LINK_DONT_CLONE)) {
nv->caller_name = (char *)name;
return 0;
}
nv->string_name = string_strdupz(name);
nv->flags |= NAME_VALUE_FLAG_NAME_IS_ALLOCATED;
return name_len;
}
static inline size_t namevalue_free_name(DICTIONARY *dict, NAME_VALUE *nv) {
if(unlikely(!(dict->flags & DICTIONARY_FLAG_NAME_LINK_DONT_CLONE)))
string_freez(nv->string_name);
return 0;
}
static inline const char *namevalue_get_name(NAME_VALUE *nv) {
if(nv->flags & NAME_VALUE_FLAG_NAME_IS_ALLOCATED)
return string2str(nv->string_name);
else
return nv->caller_name;
}
static NAME_VALUE *namevalue_create_unsafe(DICTIONARY *dict, const char *name, size_t name_len, void *value, size_t value_len) {
debug(D_DICTIONARY, "Creating name value entry for name '%s'.", name);
size_t size = sizeof(NAME_VALUE);
NAME_VALUE *nv = mallocz(size);
size_t allocated = size;
#ifdef NETDATA_INTERNAL_CHECKS
nv->dict = dict;
#endif
nv->refcount = 0;
nv->flags = NAME_VALUE_FLAG_NONE;
nv->value_len = value_len;
allocated += namevalue_set_name(dict, nv, name, name_len);
if(likely(dict->flags & DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE))
nv->value = value;
else {
if(likely(value_len)) {
if (value) {
// a value has been supplied
// copy it
nv->value = mallocz(value_len);
memcpy(nv->value, value, value_len);
}
else {
// no value has been supplied
// allocate a clear memory block
nv->value = callocz(1, value_len);
}
}
else {
// the caller wants an item without any value
nv->value = NULL;
}
allocated += value_len;
}
DICTIONARY_STATS_ENTRIES_PLUS1(dict, allocated);
if(dict->ins_callback)
dict->ins_callback(namevalue_get_name(nv), nv->value, dict->ins_callback_data);
return nv;
}
static void namevalue_reset_unsafe(DICTIONARY *dict, NAME_VALUE *nv, void *value, size_t value_len) {
debug(D_DICTIONARY, "Dictionary entry with name '%s' found. Changing its value.", namevalue_get_name(nv));
DICTIONARY_STATS_VALUE_RESETS_PLUS1(dict, nv->value_len, value_len);
if(dict->del_callback)
dict->del_callback(namevalue_get_name(nv), nv->value, dict->del_callback_data);
if(likely(dict->flags & DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE)) {
debug(D_DICTIONARY, "Dictionary: linking value to '%s'", namevalue_get_name(nv));
nv->value = value;
nv->value_len = value_len;
}
else {
debug(D_DICTIONARY, "Dictionary: cloning value to '%s'", namevalue_get_name(nv));
void *oldvalue = nv->value;
void *newvalue = NULL;
if(value_len) {
newvalue = mallocz(value_len);
if(value) memcpy(newvalue, value, value_len);
else memset(newvalue, 0, value_len);
}
nv->value = newvalue;
nv->value_len = value_len;
debug(D_DICTIONARY, "Dictionary: freeing old value of '%s'", namevalue_get_name(nv));
freez(oldvalue);
}
if(dict->ins_callback)
dict->ins_callback(namevalue_get_name(nv), nv->value, dict->ins_callback_data);
}
static size_t namevalue_destroy_unsafe(DICTIONARY *dict, NAME_VALUE *nv) {
debug(D_DICTIONARY, "Destroying name value entry for name '%s'.", namevalue_get_name(nv));
if(dict->del_callback)
dict->del_callback(namevalue_get_name(nv), nv->value, dict->del_callback_data);
size_t freed = 0;
if(unlikely(!(dict->flags & DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE))) {
debug(D_DICTIONARY, "Dictionary freeing value of '%s'", namevalue_get_name(nv));
freez(nv->value);
freed += nv->value_len;
}
if(unlikely(!(dict->flags & DICTIONARY_FLAG_NAME_LINK_DONT_CLONE))) {
debug(D_DICTIONARY, "Dictionary freeing name '%s'", namevalue_get_name(nv));
freed += namevalue_free_name(dict, nv);
}
freez(nv);
freed += sizeof(NAME_VALUE);
DICTIONARY_STATS_ENTRIES_MINUS_MEMORY(dict, freed);
return freed;
}
// if a dictionary item can be deleted, return true, otherwise return false
static bool name_value_can_be_deleted(DICTIONARY *dict, NAME_VALUE *nv) {
if(unlikely(dict->flags & DICTIONARY_FLAG_DEFER_ALL_DELETIONS))
return false;
if(unlikely(DICTIONARY_NAME_VALUE_REFCOUNT_GET(nv) > 0))
return false;
return true;
}
// ----------------------------------------------------------------------------
// API - dictionary management
#ifdef NETDATA_INTERNAL_CHECKS
DICTIONARY *dictionary_create_advanced_with_trace(DICTIONARY_FLAGS flags, size_t scratchpad_size, const char *function, size_t line, const char *file) {
#else
DICTIONARY *dictionary_create_advanced(DICTIONARY_FLAGS flags, size_t scratchpad_size) {
#endif
debug(D_DICTIONARY, "Creating dictionary.");
if(unlikely(flags & DICTIONARY_FLAGS_RESERVED))
flags &= ~DICTIONARY_FLAGS_RESERVED;
DICTIONARY *dict = callocz(1, sizeof(DICTIONARY) + scratchpad_size);
size_t allocated = sizeof(DICTIONARY) + scratchpad_size;
dict->scratchpad_size = scratchpad_size;
dict->flags = flags;
dict->first_item = dict->last_item = NULL;
allocated += dictionary_lock_init(dict);
allocated += reference_counter_init(dict);
dict->memory = (long)allocated;
hashtable_init_unsafe(dict);
#ifdef NETDATA_INTERNAL_CHECKS
dict->creation_function = function;
dict->creation_file = file;
dict->creation_line = line;
#endif
return (DICTIONARY *)dict;
}
void *dictionary_scratchpad(DICTIONARY *dict) {
return &dict->scratchpad;
}
size_t dictionary_destroy(DICTIONARY *dict) {
if(!dict) return 0;
NAME_VALUE *nv;
debug(D_DICTIONARY, "Destroying dictionary.");
long referenced_items = 0;
size_t retries = 0;
do {
referenced_items = __atomic_load_n(&dict->referenced_items, __ATOMIC_SEQ_CST);
if (referenced_items) {
dictionary_lock(dict, DICTIONARY_LOCK_WRITE);
// there are referenced items
// delete all items individually, so that only the referenced will remain
NAME_VALUE *nv_next;
for (nv = dict->first_item; nv; nv = nv_next) {
nv_next = nv->next;
size_t refcount = DICTIONARY_NAME_VALUE_REFCOUNT_GET(nv);
if (!refcount && !(nv->flags & NAME_VALUE_FLAG_DELETED))
dictionary_del_unsafe(dict, namevalue_get_name(nv));
}
internal_error(
retries == 0,
"DICTIONARY: waiting (try %zu) for destruction of dictionary created from %s() %zu@%s, because it has %ld referenced items in it (%ld total).",
retries + 1,
dict->creation_function,
dict->creation_line,
dict->creation_file,
referenced_items,
dict->entries);
dictionary_unlock(dict, DICTIONARY_LOCK_WRITE);
sleep_usec(10000);
}
} while(referenced_items > 0 && ++retries < 10);
if(referenced_items) {
dictionary_lock(dict, DICTIONARY_LOCK_WRITE);
dict->flags |= DICTIONARY_FLAG_DESTROYED;
internal_error(
true,
"DICTIONARY: delaying destruction of dictionary created from %s() %zu@%s after %zu retries, because it has %ld referenced items in it (%ld total).",
dict->creation_function,
dict->creation_line,
dict->creation_file,
retries,
referenced_items,
dict->entries);
dictionary_unlock(dict, DICTIONARY_LOCK_WRITE);
return 0;
}
dictionary_lock(dict, DICTIONARY_LOCK_WRITE);
size_t freed = 0;
nv = dict->first_item;
while (nv) {
// cache nv->next
// because we are going to free nv
NAME_VALUE *nv_next = nv->next;
freed += namevalue_destroy_unsafe(dict, nv);
nv = nv_next;
// to speed up destruction, we don't
// unlink nv from the linked-list here
}
dict->first_item = NULL;
dict->last_item = NULL;
// destroy the dictionary
freed += hashtable_destroy_unsafe(dict);
dictionary_unlock(dict, DICTIONARY_LOCK_WRITE);
freed += dictionary_lock_free(dict);
freed += reference_counter_free(dict);
freed += sizeof(DICTIONARY) + dict->scratchpad_size;
freez(dict);
return freed;
}
// ----------------------------------------------------------------------------
// helpers
static NAME_VALUE *dictionary_set_name_value_unsafe(DICTIONARY *dict, const char *name, void *value, size_t value_len) {
if(unlikely(!name)) {
internal_error(true, "DICTIONARY: attempted to dictionary_set() a dictionary item without a name");
return NULL;
}
if(unlikely(dict->flags & DICTIONARY_FLAG_DESTROYED)) {
internal_error(true, "DICTIONARY: attempted to dictionary_set() on a destroyed dictionary");
return NULL;
}
internal_error(!(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS), "DICTIONARY: inserting dictionary item '%s' without exclusive access to dictionary", name);
size_t name_len = strlen(name) + 1; // we need the terminating null too
debug(D_DICTIONARY, "SET dictionary entry with name '%s'.", name);
// DISCUSSION:
// Is it better to gain a read-lock and do a hashtable_get_unsafe()
// before we write lock to do hashtable_insert_unsafe()?
//
// Probably this depends on the use case.
// For statsd for example that does dictionary_set() to update received values,
// it could be beneficial to do a get() before we insert().
//
// But the caller has the option to do this on his/her own.
// So, let's do the fastest here and let the caller decide the flow of calls.
NAME_VALUE *nv, **pnv = (NAME_VALUE **)hashtable_insert_unsafe(dict, name, name_len);
if(likely(*pnv == 0)) {
// a new item added to the index
nv = *pnv = namevalue_create_unsafe(dict, name, name_len, value, value_len);
hashtable_inserted_name_value_unsafe(dict, nv);
linkedlist_namevalue_link_unsafe(dict, nv);
nv->flags |= NAME_VALUE_FLAG_NEW_OR_UPDATED;
}
else {
// the item is already in the index
// so, either we will return the old one
// or overwrite the value, depending on dictionary flags
nv = *pnv;
if(!(dict->flags & DICTIONARY_FLAG_DONT_OVERWRITE_VALUE)) {
namevalue_reset_unsafe(dict, nv, value, value_len);
nv->flags |= NAME_VALUE_FLAG_NEW_OR_UPDATED;
}
else if(dict->conflict_callback) {
dict->conflict_callback(namevalue_get_name(nv), nv->value, value, dict->conflict_callback_data);
nv->flags |= NAME_VALUE_FLAG_NEW_OR_UPDATED;
}
else {
// make sure this flag is not set
nv->flags &= ~NAME_VALUE_FLAG_NEW_OR_UPDATED;
}
}
return nv;
}
static NAME_VALUE *dictionary_get_name_value_unsafe(DICTIONARY *dict, const char *name) {
if(unlikely(!name)) {
internal_error(true, "attempted to dictionary_get() without a name");
return NULL;
}
if(unlikely(dict->flags & DICTIONARY_FLAG_DESTROYED)) {
internal_error(true, "DICTIONARY: attempted to dictionary_get() on a destroyed dictionary");
return NULL;
}
size_t name_len = strlen(name) + 1; // we need the terminating null too
debug(D_DICTIONARY, "GET dictionary entry with name '%s'.", name);
NAME_VALUE *nv = hashtable_get_unsafe(dict, name, name_len);
if(unlikely(!nv)) {
debug(D_DICTIONARY, "Not found dictionary entry with name '%s'.", name);
return NULL;
}
debug(D_DICTIONARY, "Found dictionary entry with name '%s'.", name);
return nv;
}
// ----------------------------------------------------------------------------
// API - items management
void *dictionary_set_unsafe(DICTIONARY *dict, const char *name, void *value, size_t value_len) {
NAME_VALUE *nv = dictionary_set_name_value_unsafe(dict, name, value, value_len);
if(unlikely(dict->react_callback && nv && (nv->flags & NAME_VALUE_FLAG_NEW_OR_UPDATED))) {
// we need to call the react callback with a reference counter on nv
reference_counter_acquire(dict, nv);
dict->react_callback(namevalue_get_name(nv), nv->value, dict->react_callback_data);
reference_counter_release(dict, nv, false);
}
return nv ? nv->value : NULL;
}
void *dictionary_set(DICTIONARY *dict, const char *name, void *value, size_t value_len) {
dictionary_lock(dict, DICTIONARY_LOCK_WRITE);
NAME_VALUE *nv = dictionary_set_name_value_unsafe(dict, name, value, value_len);
// we need to get a reference counter for the react callback
// before we unlock the dictionary
if(unlikely(dict->react_callback && nv && (nv->flags & NAME_VALUE_FLAG_NEW_OR_UPDATED)))
reference_counter_acquire(dict, nv);
dictionary_unlock(dict, DICTIONARY_LOCK_WRITE);
if(unlikely(dict->react_callback && nv && (nv->flags & NAME_VALUE_FLAG_NEW_OR_UPDATED))) {
// we got the reference counter we need, above
dict->react_callback(namevalue_get_name(nv), nv->value, dict->react_callback_data);
reference_counter_release(dict, nv, false);
}
return nv ? nv->value : NULL;
}
DICTIONARY_ITEM *dictionary_set_and_acquire_item_unsafe(DICTIONARY *dict, const char *name, void *value, size_t value_len) {
NAME_VALUE *nv = dictionary_set_name_value_unsafe(dict, name, value, value_len);
if(unlikely(!nv))
return NULL;
reference_counter_acquire(dict, nv);
if(unlikely(dict->react_callback && (nv->flags & NAME_VALUE_FLAG_NEW_OR_UPDATED))) {
dict->react_callback(namevalue_get_name(nv), nv->value, dict->react_callback_data);
}
return (DICTIONARY_ITEM *)nv;
}
DICTIONARY_ITEM *dictionary_set_and_acquire_item(DICTIONARY *dict, const char *name, void *value, size_t value_len) {
dictionary_lock(dict, DICTIONARY_LOCK_WRITE);
NAME_VALUE *nv = dictionary_set_name_value_unsafe(dict, name, value, value_len);
// we need to get the reference counter before we unlock
if(nv) reference_counter_acquire(dict, nv);
dictionary_unlock(dict, DICTIONARY_LOCK_WRITE);
if(unlikely(dict->react_callback && nv && (nv->flags & NAME_VALUE_FLAG_NEW_OR_UPDATED))) {
// we already have a reference counter, for the caller, no need for another one
dict->react_callback(namevalue_get_name(nv), nv->value, dict->react_callback_data);
}
return (DICTIONARY_ITEM *)nv;
}
void *dictionary_get_unsafe(DICTIONARY *dict, const char *name) {
NAME_VALUE *nv = dictionary_get_name_value_unsafe(dict, name);
if(unlikely(!nv))
return NULL;
return nv->value;
}
void *dictionary_get(DICTIONARY *dict, const char *name) {
dictionary_lock(dict, DICTIONARY_LOCK_READ);
void *ret = dictionary_get_unsafe(dict, name);
dictionary_unlock(dict, DICTIONARY_LOCK_READ);
return ret;
}
DICTIONARY_ITEM *dictionary_get_and_acquire_item_unsafe(DICTIONARY *dict, const char *name) {
NAME_VALUE *nv = dictionary_get_name_value_unsafe(dict, name);
if(unlikely(!nv))
return NULL;
reference_counter_acquire(dict, nv);
return (DICTIONARY_ITEM *)nv;
}
DICTIONARY_ITEM *dictionary_get_and_acquire_item(DICTIONARY *dict, const char *name) {
dictionary_lock(dict, DICTIONARY_LOCK_READ);
void *ret = dictionary_get_and_acquire_item_unsafe(dict, name);
dictionary_unlock(dict, DICTIONARY_LOCK_READ);
return ret;
}
DICTIONARY_ITEM *dictionary_acquired_item_dup(DICTIONARY_ITEM *item) {
if(unlikely(!item)) return NULL;
reference_counter_increase((NAME_VALUE *)item);
return item;
}
const char *dictionary_acquired_item_name(DICTIONARY_ITEM *item) {
if(unlikely(!item)) return NULL;
return namevalue_get_name((NAME_VALUE *)item);
}
void *dictionary_acquired_item_value(DICTIONARY_ITEM *item) {
if(unlikely(!item)) return NULL;
return ((NAME_VALUE *)item)->value;
}
void dictionary_acquired_item_release_unsafe(DICTIONARY *dict, DICTIONARY_ITEM *item) {
if(unlikely(!item)) return;
#ifdef NETDATA_INTERNAL_CHECKS
if(((NAME_VALUE *)item)->dict != dict)
fatal("DICTIONARY: %s(): name_value item with name '%s' does not belong to this dictionary", __FUNCTION__, namevalue_get_name((NAME_VALUE *)item));
#endif
reference_counter_release(dict, (NAME_VALUE *)item, false);
}
void dictionary_acquired_item_release(DICTIONARY *dict, DICTIONARY_ITEM *item) {
if(unlikely(!item)) return;
#ifdef NETDATA_INTERNAL_CHECKS
if(((NAME_VALUE *)item)->dict != dict)
fatal("DICTIONARY: %s(): name_value item with name '%s' does not belong to this dictionary", __FUNCTION__, namevalue_get_name((NAME_VALUE *)item));
#endif
// no need to get a lock here
// we pass the last parameter to reference_counter_release() as true
// so that the release may get a write-lock if required to clean up
reference_counter_release(dict, (NAME_VALUE *)item, true);
if(unlikely(dict->flags & DICTIONARY_FLAG_DESTROYED))
dictionary_destroy(dict);
}
int dictionary_del_unsafe(DICTIONARY *dict, const char *name) {
if(unlikely(dict->flags & DICTIONARY_FLAG_DESTROYED)) {
internal_error(true, "DICTIONARY: attempted to dictionary_del() on a destroyed dictionary");
return -1;
}
if(unlikely(!name || !*name)) {
internal_error(true, "DICTIONARY: attempted to dictionary_del() without a name");
return -1;
}
internal_error(!(dict->flags & DICTIONARY_FLAG_EXCLUSIVE_ACCESS), "DICTIONARY: INTERNAL ERROR: deleting dictionary item '%s' without exclusive access to dictionary", name);
size_t name_len = strlen(name) + 1; // we need the terminating null too
debug(D_DICTIONARY, "DEL dictionary entry with name '%s'.", name);
// Unfortunately, the JudyHSDel() does not return the value of the
// item that was deleted, so we have to find it before we delete it,
// since we need to release our structures too.
int ret;
NAME_VALUE *nv = hashtable_get_unsafe(dict, name, name_len);
if(unlikely(!nv)) {
debug(D_DICTIONARY, "Not found dictionary entry with name '%s'.", name);
ret = -1;
}
else {
debug(D_DICTIONARY, "Found dictionary entry with name '%s'.", name);
if(hashtable_delete_unsafe(dict, name, name_len, nv) == 0)
error("DICTIONARY: INTERNAL ERROR: tried to delete item with name '%s' that is not in the index", name);
if(name_value_can_be_deleted(dict, nv)) {
linkedlist_namevalue_unlink_unsafe(dict, nv);
namevalue_destroy_unsafe(dict, nv);
}
else
nv->flags |= NAME_VALUE_FLAG_DELETED;
ret = 0;
DICTIONARY_STATS_ENTRIES_MINUS1(dict);
}
return ret;
}
int dictionary_del(DICTIONARY *dict, const char *name) {
dictionary_lock(dict, DICTIONARY_LOCK_WRITE);
int ret = dictionary_del_unsafe(dict, name);
dictionary_unlock(dict, DICTIONARY_LOCK_WRITE);
return ret;
}
// ----------------------------------------------------------------------------
// traversal with loop
void *dictionary_foreach_start_rw(DICTFE *dfe, DICTIONARY *dict, char rw) {
if(unlikely(!dfe || !dict)) return NULL;
if(unlikely(dict->flags & DICTIONARY_FLAG_DESTROYED)) {
internal_error(true, "DICTIONARY: attempted to dictionary_foreach_start_rw() on a destroyed dictionary");
dfe->last_item = NULL;
dfe->name = NULL;
dfe->value = NULL;
return NULL;
}
dfe->dict = dict;
dfe->rw = rw;
dfe->started_ut = now_realtime_usec();
dictionary_lock(dict, dfe->rw);
DICTIONARY_STATS_WALKTHROUGHS_PLUS1(dict);
// get the first item from the list
NAME_VALUE *nv = dict->first_item;
// skip all the deleted items
while(nv && (nv->flags & NAME_VALUE_FLAG_DELETED))
nv = nv->next;
if(likely(nv)) {
dfe->last_item = nv;
dfe->name = (char *)namevalue_get_name(nv);
dfe->value = nv->value;
reference_counter_acquire(dict, nv);
}
else {
dfe->last_item = NULL;
dfe->name = NULL;
dfe->value = NULL;
}
if(unlikely(dfe->rw == DICTIONARY_LOCK_REENTRANT))
dictionary_unlock(dfe->dict, dfe->rw);
return dfe->value;
}
void *dictionary_foreach_next(DICTFE *dfe) {
if(unlikely(!dfe || !dfe->dict)) return NULL;
if(unlikely(dfe->dict->flags & DICTIONARY_FLAG_DESTROYED)) {
internal_error(true, "DICTIONARY: attempted to dictionary_foreach_next() on a destroyed dictionary");
dfe->last_item = NULL;
dfe->name = NULL;
dfe->value = NULL;
return NULL;
}
if(unlikely(dfe->rw == DICTIONARY_LOCK_REENTRANT))
dictionary_lock(dfe->dict, dfe->rw);
// the item we just did
NAME_VALUE *nv = (NAME_VALUE *)dfe->last_item;
// get the next item from the list
NAME_VALUE *nv_next = (nv) ? nv->next : NULL;
// skip all the deleted items
while(nv_next && (nv_next->flags & NAME_VALUE_FLAG_DELETED))
nv_next = nv_next->next;
// release the old, so that it can possibly be deleted
if(likely(nv))
reference_counter_release(dfe->dict, nv, false);
if(likely(nv = nv_next)) {
dfe->last_item = nv;
dfe->name = (char *)namevalue_get_name(nv);
dfe->value = nv->value;
reference_counter_acquire(dfe->dict, nv);
}
else {
dfe->last_item = NULL;
dfe->name = NULL;
dfe->value = NULL;
}
if(unlikely(dfe->rw == DICTIONARY_LOCK_REENTRANT))
dictionary_unlock(dfe->dict, dfe->rw);
return dfe->value;
}
usec_t dictionary_foreach_done(DICTFE *dfe) {
if(unlikely(!dfe || !dfe->dict)) return 0;
if(unlikely(dfe->dict->flags & DICTIONARY_FLAG_DESTROYED)) {
internal_error(true, "DICTIONARY: attempted to dictionary_foreach_next() on a destroyed dictionary");
return 0;
}
// the item we just did
NAME_VALUE *nv = (NAME_VALUE *)dfe->last_item;
// release it, so that it can possibly be deleted
if(likely(nv))
reference_counter_release(dfe->dict, nv, false);
if(likely(dfe->rw != DICTIONARY_LOCK_REENTRANT))
dictionary_unlock(dfe->dict, dfe->rw);
dfe->dict = NULL;
dfe->last_item = NULL;
dfe->name = NULL;
dfe->value = NULL;
usec_t usec = now_realtime_usec() - dfe->started_ut;
dfe->started_ut = 0;
return usec;
}
// ----------------------------------------------------------------------------
// API - walk through the dictionary
// the dictionary is locked for reading while this happens
// do not use other dictionary calls while walking the dictionary - deadlock!
int dictionary_walkthrough_rw(DICTIONARY *dict, char rw, int (*callback)(const char *name, void *entry, void *data), void *data) {
if(unlikely(!dict)) return 0;
if(unlikely(dict->flags & DICTIONARY_FLAG_DESTROYED)) {
internal_error(true, "DICTIONARY: attempted to dictionary_walkthrough_rw() on a destroyed dictionary");
return 0;
}
dictionary_lock(dict, rw);
DICTIONARY_STATS_WALKTHROUGHS_PLUS1(dict);
// written in such a way, that the callback can delete the active element
int ret = 0;
NAME_VALUE *nv = dict->first_item, *nv_next;
while(nv) {
// skip the deleted items
if(unlikely(nv->flags & NAME_VALUE_FLAG_DELETED)) {
nv = nv->next;
continue;
}
// get a reference counter, so that our item will not be deleted
// while we are using it
reference_counter_acquire(dict, nv);
if(unlikely(rw == DICTIONARY_LOCK_REENTRANT))
dictionary_unlock(dict, rw);
int r = callback(namevalue_get_name(nv), nv->value, data);
if(unlikely(rw == DICTIONARY_LOCK_REENTRANT))
dictionary_lock(dict, rw);
// since we have a reference counter, this item cannot be deleted
// until we release the reference counter, so the pointers are there
nv_next = nv->next;
reference_counter_release(dict, nv, false);
if(unlikely(r < 0)) {
ret = r;
break;
}
ret += r;
nv = nv_next;
}
dictionary_unlock(dict, rw);
return ret;
}
// ----------------------------------------------------------------------------
// sorted walkthrough
static int dictionary_sort_compar(const void *nv1, const void *nv2) {
return strcmp(namevalue_get_name((*(NAME_VALUE **)nv1)), namevalue_get_name((*(NAME_VALUE **)nv2)));
}
int dictionary_sorted_walkthrough_rw(DICTIONARY *dict, char rw, int (*callback)(const char *name, void *entry, void *data), void *data) {
if(unlikely(!dict || !dict->entries)) return 0;
if(unlikely(dict->flags & DICTIONARY_FLAG_DESTROYED)) {
internal_error(true, "DICTIONARY: attempted to dictionary_sorted_walkthrough_rw() on a destroyed dictionary");
return 0;
}
dictionary_lock(dict, rw);
dictionary_defer_all_deletions_unsafe(dict, rw);
DICTIONARY_STATS_WALKTHROUGHS_PLUS1(dict);
size_t count = dict->entries;
NAME_VALUE **array = mallocz(sizeof(NAME_VALUE *) * count);
size_t i;
NAME_VALUE *nv;
for(nv = dict->first_item, i = 0; nv && i < count ;nv = nv->next) {
if(likely(!(nv->flags & NAME_VALUE_FLAG_DELETED)))
array[i++] = nv;
}
internal_error(nv != NULL, "DICTIONARY: during sorting expected to have %zu items in dictionary, but there are more. Sorted results may be incomplete. Dictionary fails to maintain an accurate number of the number of entries it has.", count);
if(unlikely(i != count)) {
internal_error(true, "DICTIONARY: during sorting expected to have %zu items in dictionary, but there are %zu. Sorted results may be incomplete. Dictionary fails to maintain an accurate number of the number of entries it has.", count, i);
count = i;
}
qsort(array, count, sizeof(NAME_VALUE *), dictionary_sort_compar);
int ret = 0;
for(i = 0; i < count ;i++) {
nv = array[i];
if(likely(!(nv->flags & NAME_VALUE_FLAG_DELETED))) {
reference_counter_acquire(dict, nv);
if(unlikely(rw == DICTIONARY_LOCK_REENTRANT))
dictionary_unlock(dict, rw);
int r = callback(namevalue_get_name(nv), nv->value, data);
if(unlikely(rw == DICTIONARY_LOCK_REENTRANT))
dictionary_lock(dict, rw);
reference_counter_release(dict, nv, false);
if (r < 0) {
ret = r;
break;
}
ret += r;
}
}
dictionary_restore_all_deletions_unsafe(dict, rw);
dictionary_unlock(dict, rw);
freez(array);
return ret;
}
// ----------------------------------------------------------------------------
// STRING implementation - dedup all STRINGs
struct netdata_string {
uint32_t length; // the string length including the terminating '\0'
int32_t refcount; // how many times this string is used
// We use a signed number to be able to detect duplicate frees of a string.
// If at any point this goes below zero, we have a duplicate free.
const char str[]; // the string itself, is appended to this structure
};
static struct string_hashtable {
Pvoid_t JudyHSArray; // the Judy array - hashtable
netdata_rwlock_t rwlock; // the R/W lock to protect the Judy array
long int entries; // the number of entries in the index
long int active_references; // the number of active references alive
long int memory; // the memory used, without the JudyHS index
size_t inserts; // the number of successful inserts to the index
size_t deletes; // the number of successful deleted from the index
size_t searches; // the number of successful searches in the index
size_t duplications; // when a string is referenced
size_t releases; // when a string is unreferenced
#ifdef NETDATA_INTERNAL_CHECKS
// internal statistics
size_t found_deleted_on_search;
size_t found_available_on_search;
size_t found_deleted_on_insert;
size_t found_available_on_insert;
size_t spins;
#endif
} string_base = {
.JudyHSArray = NULL,
.rwlock = NETDATA_RWLOCK_INITIALIZER,
};
#ifdef NETDATA_INTERNAL_CHECKS
#define string_internal_stats_add(var, val) __atomic_add_fetch(&string_base.var, val, __ATOMIC_RELAXED)
#else
#define string_internal_stats_add(var, val) do {;} while(0)
#endif
#define string_stats_atomic_increment(var) __atomic_add_fetch(&string_base.var, 1, __ATOMIC_RELAXED)
#define string_stats_atomic_decrement(var) __atomic_sub_fetch(&string_base.var, 1, __ATOMIC_RELAXED)
void string_statistics(size_t *inserts, size_t *deletes, size_t *searches, size_t *entries, size_t *references, size_t *memory, size_t *duplications, size_t *releases) {
*inserts = string_base.inserts;
*deletes = string_base.deletes;
*searches = string_base.searches;
*entries = (size_t)string_base.entries;
*references = (size_t)string_base.active_references;
*memory = (size_t)string_base.memory;
*duplications = string_base.duplications;
*releases = string_base.releases;
}
#define string_entry_acquire(se) __atomic_add_fetch(&((se)->refcount), 1, __ATOMIC_SEQ_CST);
#define string_entry_release(se) __atomic_sub_fetch(&((se)->refcount), 1, __ATOMIC_SEQ_CST);
static inline bool string_entry_check_and_acquire(STRING *se) {
int32_t expected, desired, count = 0;
do {
count++;
expected = se->refcount;
if(expected <= 0) {
// We cannot use this.
// The reference counter reached value zero,
// so another thread is deleting this.
string_internal_stats_add(spins, count - 1);
return false;
}
desired = expected + 1;
}
while(!__atomic_compare_exchange_n(&se->refcount, &expected, desired, false, __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST));
string_internal_stats_add(spins, count - 1);
// statistics
// string_base.active_references is altered at the in string_strdupz() and string_freez()
string_stats_atomic_increment(duplications);
return true;
}
STRING *string_dup(STRING *string) {
if(unlikely(!string)) return NULL;
#ifdef NETDATA_INTERNAL_CHECKS
if(unlikely(__atomic_load_n(&string->refcount, __ATOMIC_SEQ_CST) <= 0))
fatal("STRING: tried to %s() a string that is freed (it has %d references).", __FUNCTION__, string->refcount);
#endif
string_entry_acquire(string);
// statistics
string_stats_atomic_increment(active_references);
string_stats_atomic_increment(duplications);
return string;
}
// Search the index and return an ACQUIRED string entry, or NULL
static inline STRING *string_index_search(const char *str, size_t length) {
if(unlikely(!string_base.JudyHSArray))
return NULL;
STRING *string;
// Find the string in the index
// With a read-lock so that multiple readers can use the index concurrently.
netdata_rwlock_rdlock(&string_base.rwlock);
Pvoid_t *Rc;
Rc = JudyHSGet(string_base.JudyHSArray, (void *)str, length);
if(likely(Rc)) {
// found in the hash table
string = *Rc;
if(string_entry_check_and_acquire(string)) {
// we can use this entry
string_internal_stats_add(found_available_on_search, 1);
}
else {
// this entry is about to be deleted by another thread
// do not touch it, let it go...
string = NULL;
string_internal_stats_add(found_deleted_on_search, 1);
}
}
else {
// not found in the hash table
string = NULL;
}
string_stats_atomic_increment(searches);
netdata_rwlock_unlock(&string_base.rwlock);
return string;
}
// Insert a string to the index and return an ACQUIRED string entry,
// or NULL if the call needs to be retried (a deleted entry with the same key is still in the index)
// The returned entry is ACQUIRED and it can either be:
// 1. a new item inserted, or
// 2. an item found in the index that is not currently deleted
static inline STRING *string_index_insert(const char *str, size_t length) {
STRING *string;
netdata_rwlock_wrlock(&string_base.rwlock);
STRING **ptr;
{
JError_t J_Error;
Pvoid_t *Rc = JudyHSIns(&string_base.JudyHSArray, (void *)str, length, &J_Error);
if (unlikely(Rc == PJERR)) {
fatal(
"STRING: Cannot insert entry with name '%s' to JudyHS, JU_ERRNO_* == %u, ID == %d",
str,
JU_ERRNO(&J_Error),
JU_ERRID(&J_Error));
}
ptr = (STRING **)Rc;
}
if (likely(*ptr == 0)) {
// a new item added to the index
size_t mem_size = sizeof(STRING) + length;
string = mallocz(mem_size);
strcpy((char *)string->str, str);
string->length = length;
string->refcount = 1;
*ptr = string;
string_base.inserts++;
string_base.entries++;
string_base.memory += (long)mem_size;
}
else {
// the item is already in the index
string = *ptr;
if(string_entry_check_and_acquire(string)) {
// we can use this entry
string_internal_stats_add(found_available_on_insert, 1);
}
else {
// this entry is about to be deleted by another thread
// do not touch it, let it go...
string = NULL;
string_internal_stats_add(found_deleted_on_insert, 1);
}
string_stats_atomic_increment(searches);
}
netdata_rwlock_unlock(&string_base.rwlock);
return string;
}
// delete an entry from the index
static inline void string_index_delete(STRING *string) {
netdata_rwlock_wrlock(&string_base.rwlock);
#ifdef NETDATA_INTERNAL_CHECKS
if(unlikely(__atomic_load_n(&string->refcount, __ATOMIC_SEQ_CST) != 0))
fatal("STRING: tried to delete a string at %s() that is already freed (it has %d references).", __FUNCTION__, string->refcount);
#endif
bool deleted = false;
if (likely(string_base.JudyHSArray)) {
JError_t J_Error;
int ret = JudyHSDel(&string_base.JudyHSArray, (void *)string->str, string->length, &J_Error);
if (unlikely(ret == JERR)) {
error(
"STRING: Cannot delete entry with name '%s' from JudyHS, JU_ERRNO_* == %u, ID == %d",
string->str,
JU_ERRNO(&J_Error),
JU_ERRID(&J_Error));
} else
deleted = true;
}
if (unlikely(!deleted))
error("STRING: tried to delete '%s' that is not in the index. Ignoring it.", string->str);
else {
size_t mem_size = sizeof(STRING) + string->length;
string_base.deletes++;
string_base.entries--;
string_base.memory -= (long)mem_size;
freez(string);
}
netdata_rwlock_unlock(&string_base.rwlock);
}
STRING *string_strdupz(const char *str) {
if(unlikely(!str || !*str)) return NULL;
size_t length = strlen(str) + 1;
STRING *string = string_index_search(str, length);
while(!string) {
// The search above did not find anything,
// We loop here, because during insert we may find an entry that is being deleted by another thread.
// So, we have to let it go and retry to insert it again.
string = string_index_insert(str, length);
}
// statistics
string_stats_atomic_increment(active_references);
return string;
}
void string_freez(STRING *string) {
if(unlikely(!string)) return;
int32_t refcount = string_entry_release(string);
#ifdef NETDATA_INTERNAL_CHECKS
if(unlikely(refcount < 0))
fatal("STRING: tried to %s() a string that is already freed (it has %d references).", __FUNCTION__, string->refcount);
#endif
if(unlikely(refcount == 0))
string_index_delete(string);
// statistics
string_stats_atomic_decrement(active_references);
string_stats_atomic_increment(releases);
}
size_t string_strlen(STRING *string) {
if(unlikely(!string)) return 0;
return string->length - 1;
}
const char *string2str(STRING *string) {
if(unlikely(!string)) return "";
return string->str;
}
STRING *string_2way_merge(STRING *a, STRING *b) {
static STRING *X = NULL;
if(unlikely(!X)) {
X = string_strdupz("[x]");
}
if(unlikely(a == b)) return string_dup(a);
if(unlikely(a == X)) return string_dup(a);
if(unlikely(b == X)) return string_dup(b);
if(unlikely(!a)) return string_dup(X);
if(unlikely(!b)) return string_dup(X);
size_t alen = string_strlen(a);
size_t blen = string_strlen(b);
size_t length = alen + blen + string_strlen(X) + 1;
char buf1[length + 1], buf2[length + 1], *dst1;
const char *s1, *s2;
s1 = string2str(a);
s2 = string2str(b);
dst1 = buf1;
for( ; *s1 && *s2 && *s1 == *s2 ;s1++, s2++)
*dst1++ = *s1;
*dst1 = '\0';
if(*s1 != '\0' || *s2 != '\0') {
*dst1++ = '[';
*dst1++ = 'x';
*dst1++ = ']';
s1 = &(string2str(a))[alen - 1];
s2 = &(string2str(b))[blen - 1];
char *dst2 = &buf2[length];
*dst2 = '\0';
for (; *s1 && *s2 && *s1 == *s2; s1--, s2--)
*(--dst2) = *s1;
strcpy(dst1, dst2);
}
return string_strdupz(buf1);
}
// ----------------------------------------------------------------------------
// THREAD_CACHE
static __thread Pvoid_t thread_cache_judy_array = NULL;
void *thread_cache_entry_get_or_set(void *key,
ssize_t key_length,
void *value,
void *(*transform_the_value_before_insert)(void *key, size_t key_length, void *value)
) {
if(unlikely(!key || !key_length)) return NULL;
if(key_length == -1)
key_length = (ssize_t)strlen((char *)key) + 1;
JError_t J_Error;
Pvoid_t *Rc = JudyHSIns(&thread_cache_judy_array, key, key_length, &J_Error);
if (unlikely(Rc == PJERR)) {
fatal("THREAD_CACHE: Cannot insert entry to JudyHS, JU_ERRNO_* == %u, ID == %d",
JU_ERRNO(&J_Error), JU_ERRID(&J_Error));
}
if(*Rc == 0) {
// new item added
*Rc = (transform_the_value_before_insert) ? transform_the_value_before_insert(key, key_length, value) : value;
}
return *Rc;
}
void thread_cache_destroy(void) {
if(unlikely(!thread_cache_judy_array)) return;
JError_t J_Error;
Word_t ret = JudyHSFreeArray(&thread_cache_judy_array, &J_Error);
if(unlikely(ret == (Word_t) JERR)) {
error("THREAD_CACHE: Cannot destroy JudyHS, JU_ERRNO_* == %u, ID == %d",
JU_ERRNO(&J_Error), JU_ERRID(&J_Error));
}
internal_error(true, "THREAD_CACHE: hash table freed %lu bytes", ret);
thread_cache_judy_array = NULL;
}
// ----------------------------------------------------------------------------
// unit test
static void dictionary_unittest_free_char_pp(char **pp, size_t entries) {
for(size_t i = 0; i < entries ;i++)
freez(pp[i]);
freez(pp);
}
static char **dictionary_unittest_generate_names(size_t entries) {
char **names = mallocz(sizeof(char *) * entries);
for(size_t i = 0; i < entries ;i++) {
char buf[25 + 1] = "";
snprintfz(buf, 25, "name.%zu.0123456789.%zu \t !@#$%%^&*(),./[]{}\\|~`", i, entries / 2 + i);
names[i] = strdupz(buf);
}
return names;
}
static char **dictionary_unittest_generate_values(size_t entries) {
char **values = mallocz(sizeof(char *) * entries);
for(size_t i = 0; i < entries ;i++) {
char buf[25 + 1] = "";
snprintfz(buf, 25, "value-%zu-0987654321.%zu%%^&*(),. \t !@#$/[]{}\\|~`", i, entries / 2 + i);
values[i] = strdupz(buf);
}
return values;
}
static size_t dictionary_unittest_set_clone(DICTIONARY *dict, char **names, char **values, size_t entries) {
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(values[i]) + 1;
char *val = (char *)dictionary_set(dict, names[i], values[i], vallen);
if(val == values[i]) { fprintf(stderr, ">>> %s() returns reference to value\n", __FUNCTION__); errors++; }
if(!val || memcmp(val, values[i], vallen) != 0) { fprintf(stderr, ">>> %s() returns invalid value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_set_null(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)values;
size_t errors = 0;
long i = 0;
for(; i < (long)entries ;i++) {
void *val = dictionary_set(dict, names[i], NULL, 0);
if(val != NULL) { fprintf(stderr, ">>> %s() returns a non NULL value\n", __FUNCTION__); errors++; }
}
if(dictionary_stats_entries(dict) != i) {
fprintf(stderr, ">>> %s() dictionary items do not match\n", __FUNCTION__);
errors++;
}
return errors;
}
static size_t dictionary_unittest_set_nonclone(DICTIONARY *dict, char **names, char **values, size_t entries) {
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(values[i]) + 1;
char *val = (char *)dictionary_set(dict, names[i], values[i], vallen);
if(val != values[i]) { fprintf(stderr, ">>> %s() returns invalid pointer to value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_get_clone(DICTIONARY *dict, char **names, char **values, size_t entries) {
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(values[i]) + 1;
char *val = (char *)dictionary_get(dict, names[i]);
if(val == values[i]) { fprintf(stderr, ">>> %s() returns reference to value\n", __FUNCTION__); errors++; }
if(!val || memcmp(val, values[i], vallen) != 0) { fprintf(stderr, ">>> %s() returns invalid value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_get_nonclone(DICTIONARY *dict, char **names, char **values, size_t entries) {
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
char *val = (char *)dictionary_get(dict, names[i]);
if(val != values[i]) { fprintf(stderr, ">>> %s() returns invalid pointer to value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_get_nonexisting(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
char *val = (char *)dictionary_get(dict, values[i]);
if(val) { fprintf(stderr, ">>> %s() returns non-existing item\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_del_nonexisting(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
int ret = dictionary_del(dict, values[i]);
if(ret != -1) { fprintf(stderr, ">>> %s() deleted non-existing item\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_del_existing(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)values;
size_t errors = 0;
size_t forward_from = 0, forward_to = entries / 3;
size_t middle_from = forward_to, middle_to = entries * 2 / 3;
size_t backward_from = middle_to, backward_to = entries;
for(size_t i = forward_from; i < forward_to ;i++) {
int ret = dictionary_del(dict, names[i]);
if(ret == -1) { fprintf(stderr, ">>> %s() didn't delete (forward) existing item\n", __FUNCTION__); errors++; }
}
for(size_t i = middle_to - 1; i >= middle_from ;i--) {
int ret = dictionary_del(dict, names[i]);
if(ret == -1) { fprintf(stderr, ">>> %s() didn't delete (middle) existing item\n", __FUNCTION__); errors++; }
}
for(size_t i = backward_to - 1; i >= backward_from ;i--) {
int ret = dictionary_del(dict, names[i]);
if(ret == -1) { fprintf(stderr, ">>> %s() didn't delete (backward) existing item\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_reset_clone(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)values;
// set the name as value too
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(names[i]) + 1;
char *val = (char *)dictionary_set(dict, names[i], names[i], vallen);
if(val == names[i]) { fprintf(stderr, ">>> %s() returns reference to value\n", __FUNCTION__); errors++; }
if(!val || memcmp(val, names[i], vallen) != 0) { fprintf(stderr, ">>> %s() returns invalid value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_reset_nonclone(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)values;
// set the name as value too
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(names[i]) + 1;
char *val = (char *)dictionary_set(dict, names[i], names[i], vallen);
if(val != names[i]) { fprintf(stderr, ">>> %s() returns invalid pointer to value\n", __FUNCTION__); errors++; }
if(!val) { fprintf(stderr, ">>> %s() returns invalid value\n", __FUNCTION__); errors++; }
}
return errors;
}
static size_t dictionary_unittest_reset_dont_overwrite_nonclone(DICTIONARY *dict, char **names, char **values, size_t entries) {
// set the name as value too
size_t errors = 0;
for(size_t i = 0; i < entries ;i++) {
size_t vallen = strlen(names[i]) + 1;
char *val = (char *)dictionary_set(dict, names[i], names[i], vallen);
if(val != values[i]) { fprintf(stderr, ">>> %s() returns invalid pointer to value\n", __FUNCTION__); errors++; }
}
return errors;
}
static int dictionary_unittest_walkthrough_callback(const char *name, void *value, void *data) {
(void)name;
(void)value;
(void)data;
return 1;
}
static size_t dictionary_unittest_walkthrough(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
int sum = dictionary_walkthrough_read(dict, dictionary_unittest_walkthrough_callback, NULL);
if(sum < (int)entries) return entries - sum;
else return sum - entries;
}
static int dictionary_unittest_walkthrough_delete_this_callback(const char *name, void *value, void *data) {
(void)value;
if(dictionary_del_having_write_lock((DICTIONARY *)data, name) == -1)
return 0;
return 1;
}
static size_t dictionary_unittest_walkthrough_delete_this(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
int sum = dictionary_walkthrough_write(dict, dictionary_unittest_walkthrough_delete_this_callback, dict);
if(sum < (int)entries) return entries - sum;
else return sum - entries;
}
static int dictionary_unittest_walkthrough_stop_callback(const char *name, void *value, void *data) {
(void)name;
(void)value;
(void)data;
return -1;
}
static size_t dictionary_unittest_walkthrough_stop(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
(void)entries;
int sum = dictionary_walkthrough_read(dict, dictionary_unittest_walkthrough_stop_callback, NULL);
if(sum != -1) return 1;
return 0;
}
static size_t dictionary_unittest_foreach(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
(void)entries;
size_t count = 0;
char *item;
dfe_start_read(dict, item)
count++;
dfe_done(item);
if(count > entries) return count - entries;
return entries - count;
}
static size_t dictionary_unittest_foreach_delete_this(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
(void)entries;
size_t count = 0;
char *item;
dfe_start_write(dict, item)
if(dictionary_del_having_write_lock(dict, item_name) != -1) count++;
dfe_done(item);
if(count > entries) return count - entries;
return entries - count;
}
static size_t dictionary_unittest_destroy(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
(void)entries;
size_t bytes = dictionary_destroy(dict);
fprintf(stderr, " %s() freed %zu bytes,", __FUNCTION__, bytes);
return 0;
}
static usec_t dictionary_unittest_run_and_measure_time(DICTIONARY *dict, char *message, char **names, char **values, size_t entries, size_t *errors, size_t (*callback)(DICTIONARY *dict, char **names, char **values, size_t entries)) {
fprintf(stderr, "%40s ... ", message);
usec_t started = now_realtime_usec();
size_t errs = callback(dict, names, values, entries);
usec_t ended = now_realtime_usec();
usec_t dt = ended - started;
if(callback == dictionary_unittest_destroy) dict = NULL;
fprintf(stderr, " %zu errors, %ld items in dictionary, %llu usec \n", errs, dict? dictionary_stats_entries(dict):0, dt);
*errors += errs;
return dt;
}
static void dictionary_unittest_clone(DICTIONARY *dict, char **names, char **values, size_t entries, size_t *errors) {
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, errors, dictionary_unittest_set_clone);
dictionary_unittest_run_and_measure_time(dict, "getting entries", names, values, entries, errors, dictionary_unittest_get_clone);
dictionary_unittest_run_and_measure_time(dict, "getting non-existing entries", names, values, entries, errors, dictionary_unittest_get_nonexisting);
dictionary_unittest_run_and_measure_time(dict, "resetting entries", names, values, entries, errors, dictionary_unittest_reset_clone);
dictionary_unittest_run_and_measure_time(dict, "deleting non-existing entries", names, values, entries, errors, dictionary_unittest_del_nonexisting);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach read loop", names, values, entries, errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback", names, values, entries, errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback stop", names, values, entries, errors, dictionary_unittest_walkthrough_stop);
dictionary_unittest_run_and_measure_time(dict, "deleting existing entries", names, values, entries, errors, dictionary_unittest_del_existing);
dictionary_unittest_run_and_measure_time(dict, "walking through empty", names, values, 0, errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach empty", names, values, 0, errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "destroying empty dictionary", names, values, entries, errors, dictionary_unittest_destroy);
}
static void dictionary_unittest_nonclone(DICTIONARY *dict, char **names, char **values, size_t entries, size_t *errors) {
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, errors, dictionary_unittest_set_nonclone);
dictionary_unittest_run_and_measure_time(dict, "getting entries", names, values, entries, errors, dictionary_unittest_get_nonclone);
dictionary_unittest_run_and_measure_time(dict, "getting non-existing entries", names, values, entries, errors, dictionary_unittest_get_nonexisting);
dictionary_unittest_run_and_measure_time(dict, "resetting entries", names, values, entries, errors, dictionary_unittest_reset_nonclone);
dictionary_unittest_run_and_measure_time(dict, "deleting non-existing entries", names, values, entries, errors, dictionary_unittest_del_nonexisting);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach read loop", names, values, entries, errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback", names, values, entries, errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback stop", names, values, entries, errors, dictionary_unittest_walkthrough_stop);
dictionary_unittest_run_and_measure_time(dict, "deleting existing entries", names, values, entries, errors, dictionary_unittest_del_existing);
dictionary_unittest_run_and_measure_time(dict, "walking through empty", names, values, 0, errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach empty", names, values, 0, errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "destroying empty dictionary", names, values, entries, errors, dictionary_unittest_destroy);
}
struct dictionary_unittest_sorting {
const char *oldname;
const char *oldvalue;
size_t count;
};
static int dictionary_unittest_sorting_callback(const char *name, void *value, void *data) {
struct dictionary_unittest_sorting *t = (struct dictionary_unittest_sorting *)data;
const char *v = (const char *)value;
int ret = 0;
if(t->oldname && strcmp(t->oldname, name) > 0) {
fprintf(stderr, "name '%s' should be after '%s'\n", t->oldname, name);
ret = 1;
}
t->count++;
t->oldname = name;
t->oldvalue = v;
return ret;
}
static size_t dictionary_unittest_sorted_walkthrough(DICTIONARY *dict, char **names, char **values, size_t entries) {
(void)names;
(void)values;
struct dictionary_unittest_sorting tmp = { .oldname = NULL, .oldvalue = NULL, .count = 0 };
size_t errors;
errors = dictionary_sorted_walkthrough_read(dict, dictionary_unittest_sorting_callback, &tmp);
if(tmp.count != entries) {
fprintf(stderr, "Expected %zu entries, counted %zu\n", entries, tmp.count);
errors++;
}
return errors;
}
static void dictionary_unittest_sorting(DICTIONARY *dict, char **names, char **values, size_t entries, size_t *errors) {
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, errors, dictionary_unittest_set_clone);
dictionary_unittest_run_and_measure_time(dict, "sorted walkthrough", names, values, entries, errors, dictionary_unittest_sorted_walkthrough);
}
static void dictionary_unittest_null_dfe(DICTIONARY *dict, char **names, char **values, size_t entries, size_t *errors) {
dictionary_unittest_run_and_measure_time(dict, "adding null value entries", names, values, entries, errors, dictionary_unittest_set_null);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach read loop", names, values, entries, errors, dictionary_unittest_foreach);
}
static int check_dictionary_callback(const char *name, void *value, void *data) {
(void)name;
(void)value;
(void)data;
return 1;
}
static size_t check_dictionary(DICTIONARY *dict, size_t entries, size_t linked_list_members) {
size_t errors = 0;
fprintf(stderr, "dictionary entries %ld, expected %zu...\t\t\t\t\t", dictionary_stats_entries(dict), entries);
if (dictionary_stats_entries(dict) != (long)entries) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
size_t ll = 0;
void *t;
dfe_start_read(dict, t)
ll++;
dfe_done(t);
fprintf(stderr, "dictionary foreach entries %zu, expected %zu...\t\t\t\t", ll, entries);
if(ll != entries) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
ll = dictionary_walkthrough_read(dict, check_dictionary_callback, NULL);
fprintf(stderr, "dictionary walkthrough entries %zu, expected %zu...\t\t\t\t", ll, entries);
if(ll != entries) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
ll = dictionary_sorted_walkthrough_read(dict, check_dictionary_callback, NULL);
fprintf(stderr, "dictionary sorted walkthrough entries %zu, expected %zu...\t\t\t", ll, entries);
if(ll != entries) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
NAME_VALUE *nv;
for(ll = 0, nv = dict->first_item; nv ;nv = nv->next)
ll++;
fprintf(stderr, "dictionary linked list entries %zu, expected %zu...\t\t\t\t", ll, linked_list_members);
if(ll != linked_list_members) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
return errors;
}
static int check_name_value_callback(const char *name, void *value, void *data) {
(void)name;
return value == data;
}
static size_t check_name_value_deleted_flag(DICTIONARY *dict, NAME_VALUE *nv, const char *name, const char *value, unsigned refcount, NAME_VALUE_FLAGS deleted_flags, bool searchable, bool browsable, bool linked) {
size_t errors = 0;
fprintf(stderr, "NAME_VALUE name is '%s', expected '%s'...\t\t\t\t", namevalue_get_name(nv), name);
if(strcmp(namevalue_get_name(nv), name) != 0) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
fprintf(stderr, "NAME_VALUE value is '%s', expected '%s'...\t\t\t", (const char *)nv->value, value);
if(strcmp((const char *)nv->value, value) != 0) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
fprintf(stderr, "NAME_VALUE refcount is %u, expected %u...\t\t\t\t\t", nv->refcount, refcount);
if (nv->refcount != refcount) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
fprintf(stderr, "NAME_VALUE deleted flag is %s, expected %s...\t\t\t", (nv->flags & NAME_VALUE_FLAG_DELETED)?"TRUE":"FALSE", (deleted_flags & NAME_VALUE_FLAG_DELETED)?"TRUE":"FALSE");
if ((nv->flags & NAME_VALUE_FLAG_DELETED) != (deleted_flags & NAME_VALUE_FLAG_DELETED)) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
void *v = dictionary_get(dict, name);
bool found = v == nv->value;
fprintf(stderr, "NAME_VALUE searchable %5s, expected %5s...\t\t\t\t", found?"true":"false", searchable?"true":"false");
if(found != searchable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
found = false;
void *t;
dfe_start_read(dict, t) {
if(t == nv->value) found = true;
}
dfe_done(t);
fprintf(stderr, "NAME_VALUE dfe browsable %5s, expected %5s...\t\t\t", found?"true":"false", browsable?"true":"false");
if(found != browsable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
found = dictionary_walkthrough_read(dict, check_name_value_callback, nv->value);
fprintf(stderr, "NAME_VALUE walkthrough browsable %5s, expected %5s...\t\t", found?"true":"false", browsable?"true":"false");
if(found != browsable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
found = dictionary_sorted_walkthrough_read(dict, check_name_value_callback, nv->value);
fprintf(stderr, "NAME_VALUE sorted walkthrough browsable %5s, expected %5s...\t", found?"true":"false", browsable?"true":"false");
if(found != browsable) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
found = false;
NAME_VALUE *n;
for(n = dict->first_item; n ;n = n->next)
if(n == nv) found = true;
fprintf(stderr, "NAME_VALUE linked %5s, expected %5s...\t\t\t\t", found?"true":"false", linked?"true":"false");
if(found != linked) {
fprintf(stderr, "FAILED\n");
errors++;
}
else
fprintf(stderr, "OK\n");
return errors;
}
static int string_threads_join = 0;
static void *string_thread(void *arg __maybe_unused) {
int dups = 1; //(gettid() % 10);
for(; 1 ;) {
if(string_threads_join)
break;
STRING *s = string_strdupz("string thread checking 1234567890");
for(int i = 0; i < dups ; i++)
string_dup(s);
for(int i = 0; i < dups ; i++)
string_freez(s);
string_freez(s);
}
return arg;
}
int dictionary_unittest(size_t entries) {
if(entries < 10) entries = 10;
DICTIONARY *dict;
size_t errors = 0;
fprintf(stderr, "Generating %zu names and values...\n", entries);
char **names = dictionary_unittest_generate_names(entries);
char **values = dictionary_unittest_generate_values(entries);
fprintf(stderr, "\nCreating dictionary single threaded, clone, %zu items\n", entries);
dict = dictionary_create(DICTIONARY_FLAG_SINGLE_THREADED);
dictionary_unittest_clone(dict, names, values, entries, &errors);
fprintf(stderr, "\nCreating dictionary multi threaded, clone, %zu items\n", entries);
dict = dictionary_create(DICTIONARY_FLAG_NONE);
dictionary_unittest_clone(dict, names, values, entries, &errors);
fprintf(stderr, "\nCreating dictionary single threaded, non-clone, add-in-front options, %zu items\n", entries);
dict = dictionary_create(DICTIONARY_FLAG_SINGLE_THREADED|DICTIONARY_FLAG_NAME_LINK_DONT_CLONE|DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE|DICTIONARY_FLAG_ADD_IN_FRONT);
dictionary_unittest_nonclone(dict, names, values, entries, &errors);
fprintf(stderr, "\nCreating dictionary multi threaded, non-clone, add-in-front options, %zu items\n", entries);
dict = dictionary_create(DICTIONARY_FLAG_NAME_LINK_DONT_CLONE|DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE|DICTIONARY_FLAG_ADD_IN_FRONT);
dictionary_unittest_nonclone(dict, names, values, entries, &errors);
fprintf(stderr, "\nCreating dictionary single-threaded, non-clone, don't overwrite options, %zu items\n", entries);
dict = dictionary_create(DICTIONARY_FLAG_SINGLE_THREADED|DICTIONARY_FLAG_NAME_LINK_DONT_CLONE|DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE|DICTIONARY_FLAG_DONT_OVERWRITE_VALUE);
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, &errors, dictionary_unittest_set_nonclone);
dictionary_unittest_run_and_measure_time(dict, "resetting non-overwrite entries", names, values, entries, &errors, dictionary_unittest_reset_dont_overwrite_nonclone);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach read loop", names, values, entries, &errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback", names, values, entries, &errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback stop", names, values, entries, &errors, dictionary_unittest_walkthrough_stop);
dictionary_unittest_run_and_measure_time(dict, "destroying full dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
fprintf(stderr, "\nCreating dictionary multi-threaded, non-clone, don't overwrite options, %zu items\n", entries);
dict = dictionary_create(DICTIONARY_FLAG_NAME_LINK_DONT_CLONE|DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE|DICTIONARY_FLAG_DONT_OVERWRITE_VALUE);
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, &errors, dictionary_unittest_set_nonclone);
dictionary_unittest_run_and_measure_time(dict, "walkthrough write delete this", names, values, entries, &errors, dictionary_unittest_walkthrough_delete_this);
dictionary_unittest_run_and_measure_time(dict, "destroying empty dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
fprintf(stderr, "\nCreating dictionary multi-threaded, non-clone, don't overwrite options, %zu items\n", entries);
dict = dictionary_create(DICTIONARY_FLAG_NAME_LINK_DONT_CLONE|DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE|DICTIONARY_FLAG_DONT_OVERWRITE_VALUE);
dictionary_unittest_run_and_measure_time(dict, "adding entries", names, values, entries, &errors, dictionary_unittest_set_nonclone);
dictionary_unittest_run_and_measure_time(dict, "foreach write delete this", names, values, entries, &errors, dictionary_unittest_foreach_delete_this);
dictionary_unittest_run_and_measure_time(dict, "traverse foreach read loop empty", names, values, 0, &errors, dictionary_unittest_foreach);
dictionary_unittest_run_and_measure_time(dict, "walkthrough read callback empty", names, values, 0, &errors, dictionary_unittest_walkthrough);
dictionary_unittest_run_and_measure_time(dict, "destroying empty dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
fprintf(stderr, "\nCreating dictionary single threaded, clone, %zu items\n", entries);
dict = dictionary_create(DICTIONARY_FLAG_SINGLE_THREADED);
dictionary_unittest_sorting(dict, names, values, entries, &errors);
dictionary_unittest_run_and_measure_time(dict, "destroying full dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
fprintf(stderr, "\nCreating dictionary single threaded, clone, %zu items\n", entries);
dict = dictionary_create(DICTIONARY_FLAG_SINGLE_THREADED);
dictionary_unittest_null_dfe(dict, names, values, entries, &errors);
dictionary_unittest_run_and_measure_time(dict, "destroying full dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
fprintf(stderr, "\nCreating dictionary single threaded, noclone, %zu items\n", entries);
dict = dictionary_create(DICTIONARY_FLAG_SINGLE_THREADED|DICTIONARY_FLAG_VALUE_LINK_DONT_CLONE);
dictionary_unittest_null_dfe(dict, names, values, entries, &errors);
dictionary_unittest_run_and_measure_time(dict, "destroying full dictionary", names, values, entries, &errors, dictionary_unittest_destroy);
// check reference counters
{
fprintf(stderr, "\nTesting reference counters:\n");
dict = dictionary_create(DICTIONARY_FLAG_NONE|DICTIONARY_FLAG_NAME_LINK_DONT_CLONE);
errors += check_dictionary(dict, 0, 0);
fprintf(stderr, "\nAdding test item to dictionary and acquiring it\n");
dictionary_set(dict, "test", "ITEM1", 6);
NAME_VALUE *nv = (NAME_VALUE *)dictionary_get_and_acquire_item(dict, "test");
errors += check_dictionary(dict, 1, 1);
errors += check_name_value_deleted_flag(dict, nv, "test", "ITEM1", 1, NAME_VALUE_FLAG_NONE, true, true, true);
fprintf(stderr, "\nChecking that reference counters are increased:\n");
void *t;
dfe_start_read(dict, t) {
errors += check_dictionary(dict, 1, 1);
errors +=
check_name_value_deleted_flag(dict, nv, "test", "ITEM1", 2, NAME_VALUE_FLAG_NONE, true, true, true);
}
dfe_done(t);
fprintf(stderr, "\nChecking that reference counters are decreased:\n");
errors += check_dictionary(dict, 1, 1);
errors += check_name_value_deleted_flag(dict, nv, "test", "ITEM1", 1, NAME_VALUE_FLAG_NONE, true, true, true);
fprintf(stderr, "\nDeleting the item we have acquired:\n");
dictionary_del(dict, "test");
errors += check_dictionary(dict, 0, 1);
errors += check_name_value_deleted_flag(dict, nv, "test", "ITEM1", 1, NAME_VALUE_FLAG_DELETED, false, false, true);
fprintf(stderr, "\nAdding another item with the same name of the item we deleted, while being acquired:\n");
dictionary_set(dict, "test", "ITEM2", 6);
errors += check_dictionary(dict, 1, 2);
fprintf(stderr, "\nAcquiring the second item:\n");
NAME_VALUE *nv2 = (NAME_VALUE *)dictionary_get_and_acquire_item(dict, "test");
errors += check_name_value_deleted_flag(dict, nv, "test", "ITEM1", 1, NAME_VALUE_FLAG_DELETED, false, false, true);
errors += check_name_value_deleted_flag(dict, nv2, "test", "ITEM2", 1, NAME_VALUE_FLAG_NONE, true, true, true);
fprintf(stderr, "\nReleasing the second item (the first is still acquired):\n");
dictionary_acquired_item_release(dict, (DICTIONARY_ITEM *)nv2);
errors += check_dictionary(dict, 1, 2);
errors += check_name_value_deleted_flag(dict, nv, "test", "ITEM1", 1, NAME_VALUE_FLAG_DELETED, false, false, true);
errors += check_name_value_deleted_flag(dict, nv2, "test", "ITEM2", 0, NAME_VALUE_FLAG_NONE, true, true, true);
fprintf(stderr, "\nDeleting the second item (the first is still acquired):\n");
dictionary_del(dict, "test");
errors += check_dictionary(dict, 0, 1);
errors += check_name_value_deleted_flag(dict, nv, "test", "ITEM1", 1, NAME_VALUE_FLAG_DELETED, false, false, true);
fprintf(stderr, "\nReleasing the first item (which we have already deleted):\n");
dictionary_acquired_item_release(dict, (DICTIONARY_ITEM *)nv);
errors += check_dictionary(dict, 0, 0);
fprintf(stderr, "\nAdding again the test item to dictionary and acquiring it\n");
dictionary_set(dict, "test", "ITEM1", 6);
nv = (NAME_VALUE *)dictionary_get_and_acquire_item(dict, "test");
errors += check_dictionary(dict, 1, 1);
errors += check_name_value_deleted_flag(dict, nv, "test", "ITEM1", 1, NAME_VALUE_FLAG_NONE, true, true, true);
fprintf(stderr, "\nDestroying the dictionary while we have acquired an item\n");
dictionary_destroy(dict);
fprintf(stderr, "Releasing the item (on a destroyed dictionary)\n");
dictionary_acquired_item_release(dict, (DICTIONARY_ITEM *)nv);
nv = NULL;
dict = NULL;
}
// check string
{
long int string_entries_starting = string_base.entries;
fprintf(stderr, "\nChecking strings...\n");
STRING *s1 = string_strdupz("hello unittest");
STRING *s2 = string_strdupz("hello unittest");
if(s1 != s2) {
errors++;
fprintf(stderr, "ERROR: duplicating strings are not deduplicated\n");
}
else
fprintf(stderr, "OK: duplicating string are deduplicated\n");
STRING *s3 = string_dup(s1);
if(s3 != s1) {
errors++;
fprintf(stderr, "ERROR: cloning strings are not deduplicated\n");
}
else
fprintf(stderr, "OK: cloning string are deduplicated\n");
if(s1->refcount != 3) {
errors++;
fprintf(stderr, "ERROR: string refcount is not 3\n");
}
else
fprintf(stderr, "OK: string refcount is 3\n");
STRING *s4 = string_strdupz("world unittest");
if(s4 == s1) {
errors++;
fprintf(stderr, "ERROR: string is sharing pointers on different strings\n");
}
else
fprintf(stderr, "OK: string is properly handling different strings\n");
usec_t start_ut, end_ut;
STRING **strings = mallocz(entries * sizeof(STRING *));
start_ut = now_realtime_usec();
for(size_t i = 0; i < entries ;i++) {
strings[i] = string_strdupz(names[i]);
}
end_ut = now_realtime_usec();
fprintf(stderr, "Created %zu strings in %llu usecs\n", entries, end_ut - start_ut);
start_ut = now_realtime_usec();
for(size_t i = 0; i < entries ;i++) {
strings[i] = string_dup(strings[i]);
}
end_ut = now_realtime_usec();
fprintf(stderr, "Cloned %zu strings in %llu usecs\n", entries, end_ut - start_ut);
start_ut = now_realtime_usec();
for(size_t i = 0; i < entries ;i++) {
string_freez(strings[i]);
string_freez(strings[i]);
}
end_ut = now_realtime_usec();
fprintf(stderr, "Freed %zu strings in %llu usecs\n", entries, end_ut - start_ut);
freez(strings);
if(string_base.entries != string_entries_starting + 2) {
errors++;
fprintf(stderr, "ERROR: strings dictionary should have %ld items but it has %ld\n", string_entries_starting + 2, string_base.entries);
}
else
fprintf(stderr, "OK: strings dictionary has 2 items\n");
}
// check 2-way merge
{
struct testcase {
char *src1; char *src2; char *expected;
} tests[] = {
{ "", "", ""},
{ "a", "", "[x]"},
{ "", "a", "[x]"},
{ "a", "a", "a"},
{ "abcd", "abcd", "abcd"},
{ "foo_cs", "bar_cs", "[x]_cs"},
{ "cp_UNIQUE_INFIX_cs", "cp_unique_infix_cs", "cp_[x]_cs"},
{ "cp_UNIQUE_INFIX_ci_unique_infix_cs", "cp_unique_infix_ci_UNIQUE_INFIX_cs", "cp_[x]_cs"},
{ "foo[1234]", "foo[4321]", "foo[[x]]"},
{ NULL, NULL, NULL },
};
for (struct testcase *tc = &tests[0]; tc->expected != NULL; tc++) {
STRING *src1 = string_strdupz(tc->src1);
STRING *src2 = string_strdupz(tc->src2);
STRING *expected = string_strdupz(tc->expected);
STRING *result = string_2way_merge(src1, src2);
if (string_cmp(result, expected) != 0) {
fprintf(stderr, "string_2way_merge(\"%s\", \"%s\") -> \"%s\" (expected=\"%s\")\n",
string2str(src1),
string2str(src2),
string2str(result),
string2str(expected));
errors++;
}
string_freez(src1);
string_freez(src2);
string_freez(expected);
string_freez(result);
}
}
dictionary_unittest_free_char_pp(names, entries);
dictionary_unittest_free_char_pp(values, entries);
{
#ifdef NETDATA_INTERNAL_CHECKS
size_t ofound_deleted_on_search = string_base.found_deleted_on_search,
ofound_available_on_search = string_base.found_available_on_search,
ofound_deleted_on_insert = string_base.found_deleted_on_insert,
ofound_available_on_insert = string_base.found_available_on_insert,
ospins = string_base.spins;
#endif
size_t oinserts, odeletes, osearches, oentries, oreferences, omemory, oduplications, oreleases;
string_statistics(&oinserts, &odeletes, &osearches, &oentries, &oreferences, &omemory, &oduplications, &oreleases);
time_t seconds_to_run = 5;
int threads_to_create = 2;
fprintf(
stderr,
"Checking string concurrency with %d threads for %ld seconds...\n",
threads_to_create,
seconds_to_run);
// check string concurrency
netdata_thread_t threads[threads_to_create];
string_threads_join = 0;
for (int i = 0; i < threads_to_create; i++) {
char buf[100 + 1];
snprintf(buf, 100, "string%d", i);
netdata_thread_create(
&threads[i], buf, NETDATA_THREAD_OPTION_DONT_LOG | NETDATA_THREAD_OPTION_JOINABLE, string_thread, NULL);
}
sleep_usec(seconds_to_run * USEC_PER_SEC);
string_threads_join = 1;
for (int i = 0; i < threads_to_create; i++) {
void *retval;
netdata_thread_join(threads[i], &retval);
}
size_t inserts, deletes, searches, sentries, references, memory, duplications, releases;
string_statistics(&inserts, &deletes, &searches, &sentries, &references, &memory, &duplications, &releases);
fprintf(stderr, "inserts %zu, deletes %zu, searches %zu, entries %zu, references %zu, memory %zu, duplications %zu, releases %zu\n",
inserts - oinserts, deletes - odeletes, searches - osearches, sentries - oentries, references - oreferences, memory - omemory, duplications - oduplications, releases - oreleases);
#ifdef NETDATA_INTERNAL_CHECKS
size_t found_deleted_on_search = string_base.found_deleted_on_search,
found_available_on_search = string_base.found_available_on_search,
found_deleted_on_insert = string_base.found_deleted_on_insert,
found_available_on_insert = string_base.found_available_on_insert,
spins = string_base.spins;
fprintf(stderr, "on insert: %zu ok + %zu deleted\non search: %zu ok + %zu deleted\nspins: %zu\n",
found_available_on_insert - ofound_available_on_insert,
found_deleted_on_insert - ofound_deleted_on_insert,
found_available_on_search - ofound_available_on_search,
found_deleted_on_search - ofound_deleted_on_search,
spins - ospins
);
#endif
}
fprintf(stderr, "\n%zu errors found\n", errors);
return errors ? 1 : 0;
}